Iterative Solvers for Linear Systems 2023

Preliminary Agenda

(All Times in CEST)

Day 1:

09:00 - 10:00  Introduction, Basics and Practicals (Lecture + Practicals)
10:00 - 11:00  Consistency and Convergence (Lecture)
11:00 - 11:30  Break
11:30 - 12:15  Jacobi Method (Lecture)
12:15 - 13:00  Practicals
13:00 - 14:00  Lunch
14:00 - 14:30  Gauß-Seidel Method (Lecture)
14:30 - 15:00  Practicals
15:00 - 15:15  Q+A

Day 2:

09:00 - 10:00  Relaxation Schemes (Lecture)
10:00 - 10:45  Practicals
10:45 - 11:00  Break
11:00 - 11:30  Method of Steepest Descent (Lecture)
11:30 - 12:00  Practicals
12:00 - 13:00  Lunch
13:00 - 14:00  Method of Conjugate Gradients (Lecture)
14:00 - 14:45  Practicals
14:45 - 15:00  Q+A

Day 3:

09:00 - 10:00  Introduction to Multigrid Methods (Lecture)
10:00 - 10:30  Practicals
10:30 - 10:45  Break
10:45 - 11:45  GMRES and BICG (Lecture)
11:45 - 12:15  Practicals
12:15 - 13:15  Lunch
13:15 - 13:45  Variants of BICG (Lecture)
13:45 - 14:15  Practicals
14:15 - 15:15  Preconditioning
15:15 - 15:30  Q+A

Slides

All Lecture Slides:

Exercises

Survey

  • Please fill out the online survey under https://tinyurl.com/survey-hits1s23
  • This helps us and our partner institutions to
    • increase the quality of the courses,
    • design the future training programme at LRZ according to your needs and wishes,
    • get future funding for training events.

Literature


  • van der Vorst: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, 2003, 236 pages. 0-521-81828-1 70 X
  • Golub, van Loan: Matrix Computation. Johns Hopkins University Press, 1996 (3rd ed.) 664p. 0-801-85414-8 43 X
  • Yousef Saad: Iterative methods for sparse linear systems. 2nd ed., SIAM, 2003, 528p. 0-898-71534-2
  • J. J. Te Riele, Th. J. Dekker, H. A. Van Der Vorst: Algorithms and Applications on Vector and Parallel Computers . (Special Topics in Supercomputing, No 3), Elsevier 1987, 470p. 0-444-70322-5 47