Iterative Solvers for Large Linear Systems Part IIIa: Method of Steepest Descent

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

Outline

- Basics of Iterative Methods
- Splitting-schemes
 - Jacobi- u. Gauß-Seidel-scheme
 - Relaxation methods
- Methods for symmetric, positive definite Matrices
 - Method of steepest descent
 - Method of conjugate directions
 - CG-scheme

Outline

- Multigrid Method
 - Smoother, Prolongation, Restriction
 - Twogrid Method and Extension
- Methods for non-singular Matrices
 - GMRES
 - BiCG, CGS and BiCGSTAB
- Preconditioning
 - ILU, IC, GS, SGS, ...

We consider

$$Ax = b$$

with given data $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$.

hods
r ns
$\subseteq \mathbb{R}^n$
≤ n
rithm nstraint)
$\subset \mathbb{R}^n$

Example

$$A = I \in \mathbb{R}^{2 \times 2}$$

 $\circ K_1 = L_1$ (Orthogonal projection method)

Example

$$A = I \in \mathbb{R}^{2 \times 2}$$

- $\circ K_1 = L_1$ (Orthogonal projection method)
- $\circ K_1 \neq L_1$ (Skew projection method)

Krylov subspace approach:

Projection method based on

$$K_m = K_m(A, r_0) = \operatorname{span}\{r_0, Ar_0, \dots, A^{m-1}r_0\},\$$

with $r_0 = b - Ax_0$ is called Krylov subspace method

Basic idea:

Minimize the function

$$F(x) = \frac{1}{2}(Ax, x) - (b, x)$$

with respect to specific search directions

$$p_0, p_1, \ldots \in \mathbb{R}^n \setminus \{0\}.$$

Procedure:

- Choose $x_0 \in \mathbb{R}^n$ and $p_0, p_1, \ldots \in \mathbb{R}^n \setminus \{0\}$.
- For m = 0, 1, ... we calculate x_{m+1} such that

$$F(x_{m+1}) \leq F(y) \quad \forall y \in x_m + \operatorname{span}\{p_m\}$$

$$\Longrightarrow x_{m+1} = \arg\min_{\lambda \in \mathbb{R}} \underbrace{F(x_m + \lambda p_m)}_{=f_{x_m, p_m}(\lambda)}$$

Questions:

- ① Does $x^* = A^{-1}b$ represent the global minimum of F? Yes
- **2** How do we calculate $\lambda \in \mathbb{R}$?

Concerning 1)

$$F(x) = \frac{1}{2}(Ax, x) - (b, x)$$

$$\Rightarrow \nabla F(x) = \frac{1}{2}(A + A^{T})x - b$$

$$A \text{ symm.} = Ax - b$$

$$\Rightarrow \nabla^2 F(x) = A \stackrel{\text{A pos.def.}}{\Rightarrow} F \text{ is a convex mapping}$$

$$\nabla F(x) = 0 \iff x = A^{-1}b$$

Questions:

- ① Does $x^* = A^{-1}b$ represent the global minimum of F? Yes
- 2 How do we calculate $\lambda \in \mathbb{R}$? $\lambda = \frac{(b Ax_m, p_m)}{(Ap_m, p_m)}$

Conc. 2)
$$f_{x,p}(\lambda) = \frac{1}{2}(A(x+\lambda p), x+\lambda p) - (b, x+\lambda p)$$
$$= F(x) + \lambda(Ax-b, p) + \frac{1}{2}\lambda^2(Ap, p)$$
$$f'_{x,p}(\lambda) = (Ax-b, p) + \lambda(Ap, p)$$
$$f''_{x,p}(\lambda) = (Ap, p) > 0 \quad \text{für } p \neq 0$$

• Thus, $f_{x,p}$ is convex and the optimal λ is given in the form

$$f'_{X,p}(\lambda) = 0 \Longleftrightarrow \lambda = \frac{(b - Ax, p)}{(Ap, p)}.$$

Residual

The vector r = b - Ax is called residual (vector).

Algorithm:

- Choose $x_0 \in \mathbb{R}^n$ and $p_0, p_1, \ldots \in \mathbb{R}^n \setminus \{0\}$
- For m = 0, 1, ...

$$r_m = b - Ax_m$$

$$\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}$$

$$x_{m+1} = x_m + \lambda_m p_m$$

Problem:

Specification of the search direction p_0, p_1, \ldots

Method of steepest descent

Basic idea:

Choose the optimal search direction in the local sense

$$\tilde{p}_m = -\nabla F(x_m) = -(Ax_m - b) = r_m$$

Normalizing the search direction:

$$p_m = \frac{\tilde{p}_m}{\|\tilde{p}_m\|_2} = \frac{r_m}{\|r_m\|_2}$$

Stopping criterion: $r_m = 0$

Method of steepest descent

Algorithm:

- Choose $x_0 \in \mathbb{R}^n$
- For m = 0, 1, ...

$$r_m = b - Ax_m$$

If
$$r_m \neq 0$$

$$\lambda_m = \frac{\|r_m\|_2^2}{(Ar_m, r_m)}$$

$$x_{m+1} = x_m + \lambda_m r_m$$