Supplementary material for the article "Domain wall fluctuations of the six-vertex model at the ice point"
by Michael Prähofer and Herbert Spohn
(2023), arxiv.org/abs/2305.09502

The  six vertex configuration of size 6\times6 with DWBC






corresponds to the ASM 

\begin{pmatrix}0&0&+&0&0&0\\+&0&-&+&0&0\\0&+&0&-&0&+\\0&0&0&+&0&0\\0&0&+&-&+&0\\0&0&0&+&0&0\end{pmatrix}\in\{0,\pm1\}^{6\times6}

The SE facet is characterized by the 5\times5 matrix

\begin{pmatrix}0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&1\\0&0&0&0&1\\0&0&0&1&1\end{pmatrix} or by  \begin{pmatrix}1&1&0&0&0\\1&0&0&0&0\\1&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\end{pmatrix}, the so-called
occupation matrix, obtained by reversing the order of columns and rows.
Equivalent Description is by the piecewise linear edge function  h_N:[-N,N]\to\mathbb{R} whose graph is the line bordering the SE facet in the quite natural frame rotated clockwise by \frac\pi4

 \begin{array}{c|rrrrrrrrrrrrrr} k&-5&-4&-3&-2&-1&\ 0\ &+1&+2&+3&+4&+5\\\hline h_5(k)&5&4&3&2&3&2&3&4&3&4&5\end{array}

The total number of (N+1)\times(N+1) ASMs is given by Z_{N}=\displaystyle\prod\limits_{k=0}^N \frac{(3k+1)!}{(N+k+1)!}, eg. Z_0=1, Z_1=2, Z_2=7Z_3=42Z_3=42Z_4=429Z_5=7436Z_6=218348.
Below we indicate the emptiness probability matrix P_N, which is the sum of all N\times N occupation matrices divided by Z_N. for N=1,\dots,6:

P_1=\begin{pmatrix}\frac12\end{pmatrix}P_2=\begin{pmatrix}\frac57&\frac27\\\frac27&0\end{pmatrix}P_3=\displaystyle\frac1{42}\begin{pmatrix}35&21&7\\21&4&0\\7&0&0\end{pmatrix}, P_4=\frac1{429}\begin{pmatrix}387 & 282 & 147 & 42 \\ 282 & 102 & 14 & 0 \\ 147 & 14 & 0 & 0 \\ 42 & 0 & 0 & 0 \end{pmatrix},

P_5=\frac1{7436}\begin{pmatrix}7007 & 5720 & 3718 & 1716 & 429 \\  5720 & 2889 & 805 & 84 & 0 \\  3718 & 805 & 49 & 0 & 0 \\  1716 & 84 & 0 & 0 & 0 \\  429 & 0 & 0 & 0 & 0 \end{pmatrix}, P_6=\frac1{218348}\begin{pmatrix}210912 & 184884 & 137567 & 80783 & 33463 & 7436 \\  184885 & 115089 & 46785 & 10414 & 859 & 0 \\  137565 & 46788 & 7007 & 294 & 0 & 0 \\  80781 & 10414 & 294 & 0 & 0 & 0 \\  33464 & 859 & 0 & 0 & 0 & 0 \\  7436 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}

The above exact values have been obtained by guessing the numerators from sufficiently precise Monte-Carlo simulations. By brute force enumeration one might be able to extend this table up to N=10. Note that due to symmetries of the model we have (P_N)_{1,k}+(P_N)_{1,N+1-k}=1=(P_N)_{k,1}+(P_N)_{N+1-k,1} for k=1,\dots,N.

The following files contain the results from Monte-Carlo simulations with the coupling-from-the-past algorithm, taking advantage of the possibility to choose all local flip probabilities to be \tfrac12 using 64 multispin encoding of the gradients of the height matrix for system sizes N=2^k-2, k=2,\dots,11. In the files the first lines starting with '#' containing header information like system size and number of samples. Each data line contains the numbers k, l,(P_N)_{k,l} separated by spaces, with the probability (P_N)_{k,l}\in(0,1) guessed from the Monte-Carlo results. Only entries of P_Nwhich are different from 0 and 1 are recorded.

ASM_occupation_sparse_00002.txt
ASM_occupation_sparse_00006.txt
ASM_occupation_sparse_00014.txt
ASM_occupation_sparse_00030.txt
ASM_occupation_sparse_00062.txt
ASM_occupation_sparse_00126.txt
ASM_occupation_sparse_00254.txt
ASM_occupation_sparse_00510.txt
ASM_occupation_sparse_01022.txt
ASM_occupation_sparse_02046.txt

These files have been produced with the help of the C program "squareice.c" and a simple python script contained in 

squareice.zip

We have also recorded the edge functions  h_Nfor each realization when N\geq30. Due to large memory requirement we provide these data only on request (mail to praehofer@ma.tum.de).

Michael Prähofer, 2023-04-17

  • Keine Stichwörter