Problem

Given is a simply supported Euler-Bernoulli beam:

 The eigenfrequencies \omega_i and mode shapes \phi_i can be found analytically with

\begin{equation*} \omega_i = \left(\frac{i\pi}{l}\right)^2 \sqrt{\frac{EI}{\rho A}},\quad \phi_i = \sin \left(\frac{i\pi x}{l}\right). \end{equation*}

Consider the two load cases

  • A: 1N at \frac{l}{2}
  • B: 0.5N at \frac{l}{4} and \frac{3l}{4}

Which modes do not have a contribution to the beam's displacement following load case A, B, and the combination of A and B? Validate your result by calculating the response using the mode superposition method.