Iterative Solvers for Large Linear Systems Part IV: Multigrid Methods

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

Outline

- Basics of Iterative Methods
- Splitting schemes
 - Jacobi scheme and Gauß-Seidel method
 - Relaxation methods
- Methods for symmetric, positive definite matrices
 - Method of steepest descent
 - Method of conjugate directions
 - CG scheme

Outline

- Multigrid Method
 - Smoother, Prolongation, Restriction
 - Twogrid Method and Extension
- Methods for non-singular Matrices
 - GMRES
 - BiCG, CGS and BiCGSTAB
- Preconditioning
 - ILU, IC, GS, SGS, ...

Given: $\Omega = (0, 1)$ and $f \in C(\Omega, \mathbb{R})$

Sought:
$$u \in C^2(\Omega, \mathbb{R}) \cap C(\overline{\Omega}, \mathbb{R})$$
 with $-u''(x) = b(x)$ for $x \in \Omega$, $u(x) = 0$ for $x \in \partial \Omega = \{0, 1\}$.

Mesh hierarchy: $\Omega_{\ell} := \Omega_{h_{\ell}} = \{jh_{\ell} \mid j = 1, \dots, 2^{\ell+1} - 1\} \ \ell = 0, 1, \dots$

$$N_{\ell} := 2^{\ell+1} - 1, \ h_{\ell} = 2^{-\ell} h_0, \ h_0 = 1/2$$

Given: $\Omega = (0, 1)$ and $f \in C(\Omega, \mathbb{R})$

Sought: $u \in C^2(\Omega, \mathbb{R}) \cap C(\overline{\Omega}, \mathbb{R})$ with

$$-u''(x) = b(x)$$
 for $x \in \Omega$,

$$u(x) = 0$$
 for $x \in \partial \Omega = \{0, 1\}$.

Mesh hierarchy: $\Omega_{\ell} := \Omega_{h_{\ell}} = \{jh_{\ell} \mid j = 1, \dots, 2^{\ell+1} - 1\} \ \ell = 0, 1, \dots$

$$N_{\ell} := 2^{\ell+1} - 1, \ h_{\ell} = 2^{-\ell} h_0, \ h_0 = 1/2$$

Given: $\Omega = (0, 1)$ and $f \in C(\Omega, \mathbb{R})$

Sought: $u \in C^2(\Omega, \mathbb{R}) \cap C(\overline{\Omega}, \mathbb{R})$ with

$$-u''(x) = b(x) \text{ for } x \in \Omega,$$

$$u(x) = 0$$
 for $x \in \partial \Omega = \{0, 1\}$.

Mesh hierarchy: $\Omega_{\ell} := \Omega_{h_{\ell}} = \{jh_{\ell} \mid j = 1, \dots, 2^{\ell+1} - 1\} \ \ell = 0, 1, \dots$

$$N_{\ell} := 2^{\ell+1} - 1, \ h_{\ell} = 2^{-\ell} h_0, \ h_0 = 1/2$$

Approximation: Utilizing $u_j^\ell := u(jh_\ell)$ yields

$$-u''(jh_\ell) pprox rac{-u_{j+1}^\ell + 2u_j^\ell - u_{j-1}^\ell}{h_\ell^2}$$

Linear system of equations:

$$A_{\ell}u^{\ell}=b^{\ell}$$

with

Approximation: Utilizing $u_j^\ell := u(jh_\ell)$ yields

$$-u''(jh_\ell)pprox rac{-u_{j+1}^\ell+2u_j^\ell-u_{j-1}^\ell}{h_\ell^2}$$

Linear system of equations:

$$oldsymbol{A}_\ell oldsymbol{u}^\ell = oldsymbol{b}^\ell$$

with

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$oldsymbol{e}^{\ell,j} = \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \ \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell$$

are called Fourier modes.

- Orthonormal basis of $\mathbb{R}^{N_{\ell}}$
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

$$m{A}_{\ell}m{e}^{\ell,j}=\lambda^{\ell,j}m{e}^{\ell,j},\ \lambda^{\ell,j}=4h_{\ell}^{-2}\sin^2\left(rac{J^{\prime\prime\prime\prime\prime\ell}}{2}
ight),\ m{j}=1,\ldots,m{N}_{\ell}.$$

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$oldsymbol{e}^{\ell,j} = \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \ \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell$$

are called Fourier modes.

- Orthonormal basis of \mathbb{R}^{N}
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$egin{aligned} oldsymbol{e}^{\ell,j} &= \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell \end{aligned}$$

are called Fourier modes.

- Orthonormal basis of $\mathbb{R}^{N_{\ell}}$
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

$$\mathbf{A}_{\ell}\mathbf{e}^{\ell,j}=\lambda^{\ell,j}\mathbf{e}^{\ell,j},\ \ \lambda^{\ell,j}=4h_{\ell}^{-2}\sin^2\left(\frac{j\pi h_{\ell}}{2}\right),\ \ j=1,\ldots,N_{\ell}.$$

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$m{e}^{\ell,j} = \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \ \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell$$

are called Fourier modes.

- Orthonormal basis of $\mathbb{R}^{N_{\ell}}$
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

$$\mathbf{A}_{\ell}\mathbf{e}^{\ell,j}=\lambda^{\ell,j}\mathbf{e}^{\ell,j},\ \ \lambda^{\ell,j}=4h_{\ell}^{-2}\sin^2\left(\frac{j\pi n_{\ell}}{2}\right),\ \ j=1,\ldots,N_{\ell}.$$

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$m{e}^{\ell,j} = \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \ \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell$$

are called Fourier modes.

- Orthonormal basis of $\mathbb{R}^{N_{\ell}}$
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

$$\mathbf{A}_{\ell}\mathbf{e}^{\ell,j}=\lambda^{\ell,j}\mathbf{e}^{\ell,j},\ \ \lambda^{\ell,j}=4h_{\ell}^{-2}\sin^2\left(\frac{j\pi h_{\ell}}{2}\right),\ \ j=1,\ldots,N_{\ell}.$$

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$oldsymbol{e}^{\ell,j} = \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \ \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell$$

are called Fourier modes.

- Orthonormal basis of $\mathbb{R}^{N_{\ell}}$
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

$$m{A}_{\ell}m{e}^{\ell,j}=\lambda^{\ell,j}m{e}^{\ell,j}, \ \ \lambda^{\ell,j}=4h_{\ell}^{-2}\sin^2\left(rac{j\pi h_{\ell}}{2}
ight), \ \ j=1,\ldots,N_{\ell}.$$

Eigenfunctions of the corresponding boundary value problem

$$u'' = \alpha u, \ u(0) = u(1) = 0 \text{ are } u(x) = c \sin(j\pi x), \ j \in N, \ c \in R.$$

Definition of the Fourier modes

The vectors

$$m{e}^{\ell,j} = \sqrt{2h_\ell} \left(egin{array}{c} \sin j\pi h_\ell \ dots \ \sin j\pi N_\ell h_\ell \end{array}
ight) \in \mathbb{R}^{N_\ell}, \quad j=1,\ldots,N_\ell$$

are called Fourier modes.

- Orthonormal basis of $\mathbb{R}^{N_{\ell}}$
- Discrete, equidistant sampling of the eigenfunctions
- Eigenvectors

$$m{A}_{\ell}m{e}^{\ell,j}=\lambda^{\ell,j}m{e}^{\ell,j}, \ \ \lambda^{\ell,j}=4h_{\ell}^{-2}\sin^2\left(rac{j\pi h_{\ell}}{2}
ight), \ \ j=1,\ldots,N_{\ell}.$$

We consider the linear system

$$oldsymbol{A}_\ell oldsymbol{u}^\ell = oldsymbol{b}^\ell \quad ext{w.r.t. the mesh} \quad \Omega_\ell$$

using the usual splitting ansatz:

$$m{A}_{\ell} = m{B}_{\ell} + (m{A}_{\ell} - m{B}_{\ell}), m{B}_{\ell} = m{D}_{\ell} = \mathrm{diag}\{m{A}_{\ell}\} = \mathrm{diag}\{2h_{\ell}^{-2}\}.$$

$$\mathbf{u}_{m+1}^{\ell} = \mathbf{u}_{m}^{\ell} + \tilde{\omega} \mathbf{D}_{\ell}^{-1} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right) \\
= \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right), \quad \omega = \tilde{\omega}/2 \\
= \underbrace{\left(\mathbf{I} - \omega h_{\ell}^{2} \mathbf{A}_{\ell} \right) \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \mathbf{I} \mathbf{b}^{\ell}}_{\mathbf{N}_{\ell}(\omega)}$$

We consider the linear system

$$oldsymbol{A}_\ell oldsymbol{u}^\ell = oldsymbol{b}^\ell \quad ext{w.r.t. the mesh} \quad \Omega_\ell$$

using the usual splitting ansatz:

$$m{A}_{\ell} = m{B}_{\ell} + (m{A}_{\ell} - m{B}_{\ell}), m{B}_{\ell} = m{D}_{\ell} = \mathrm{diag}\{m{A}_{\ell}\} = \mathrm{diag}\{2h_{\ell}^{-2}\}.$$

$$\mathbf{u}_{m+1}^{\ell} = \mathbf{u}_{m}^{\ell} + \widetilde{\omega} \mathbf{D}_{\ell}^{-1} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right) \\
= \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right), \quad \omega = \widetilde{\omega}/2 \\
= \underbrace{\left(\mathbf{I} - \omega h_{\ell}^{2} \mathbf{A}_{\ell} \right) \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \mathbf{I} \mathbf{b}^{\ell}}_{\mathbf{N}_{\ell}(\omega)}$$

We consider the linear system

$$oldsymbol{A}_\ell oldsymbol{u}^\ell = oldsymbol{b}^\ell \quad ext{w.r.t. the mesh} \quad \Omega_\ell$$

using the usual splitting ansatz:

$$m{A}_{\ell} = m{B}_{\ell} + (m{A}_{\ell} - m{B}_{\ell}), m{B}_{\ell} = m{D}_{\ell} = \mathrm{diag}\{m{A}_{\ell}\} = \mathrm{diag}\{2h_{\ell}^{-2}\}.$$

$$\mathbf{u}_{m+1}^{\ell} = \mathbf{u}_{m}^{\ell} + \tilde{\omega} \mathbf{D}_{\ell}^{-1} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right) \\
= \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right), \quad \omega = \tilde{\omega}/2 \\
= \underbrace{\left(\mathbf{I} - \omega h_{\ell}^{2} \mathbf{A}_{\ell} \right) \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \mathbf{I} \mathbf{b}^{\ell}}_{\mathbf{N}_{\ell}(\omega)}$$

We consider the linear system

$$oldsymbol{A}_\ell oldsymbol{u}^\ell = oldsymbol{b}^\ell \quad ext{w.r.t. the mesh} \quad \Omega_\ell$$

using the usual splitting ansatz:

$$m{A}_{\ell} = m{B}_{\ell} + (m{A}_{\ell} - m{B}_{\ell}), m{B}_{\ell} = m{D}_{\ell} = \mathrm{diag}\{m{A}_{\ell}\} = \mathrm{diag}\{2h_{\ell}^{-2}\}.$$

$$\mathbf{u}_{m+1}^{\ell} = \mathbf{u}_{m}^{\ell} + \tilde{\omega} \mathbf{D}_{\ell}^{-1} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right) \\
= \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right), \quad \omega = \tilde{\omega}/2 \\
= \underbrace{\left(\mathbf{I} - \omega h_{\ell}^{2} \mathbf{A}_{\ell} \right)}_{\mathbf{M}_{\ell}(\omega)} \mathbf{u}_{m}^{\ell} + \underbrace{\omega h_{\ell}^{2} \mathbf{I} \mathbf{b}^{\ell}}_{\mathbf{N}_{\ell}(\omega)}$$

We consider the linear system

$$oldsymbol{A}_\ell oldsymbol{u}^\ell = oldsymbol{b}^\ell \quad ext{w.r.t. the mesh} \quad \Omega_\ell$$

using the usual splitting ansatz:

$$m{A}_{\ell} = m{B}_{\ell} + (m{A}_{\ell} - m{B}_{\ell}), m{B}_{\ell} = m{D}_{\ell} = \mathrm{diag}\{m{A}_{\ell}\} = \mathrm{diag}\{2h_{\ell}^{-2}\}.$$

$$\mathbf{u}_{m+1}^{\ell} = \mathbf{u}_{m}^{\ell} + \tilde{\omega} \mathbf{D}_{\ell}^{-1} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right) \\
= \mathbf{u}_{m}^{\ell} + \omega h_{\ell}^{2} \left(\mathbf{b}^{\ell} - \mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} \right), \quad \omega = \tilde{\omega}/2 \\
= \underbrace{\left(\mathbf{I} - \omega h_{\ell}^{2} \mathbf{A}_{\ell} \right)}_{\mathbf{M}_{\ell}(\omega)} \mathbf{u}_{m}^{\ell} + \underbrace{\omega h_{\ell}^{2} \mathbf{I} \mathbf{b}^{\ell}}_{\mathbf{N}_{\ell}(\omega)}$$

Introducing the exact solution

$$oldsymbol{u}^{\ell,*} = oldsymbol{A}_{\ell}^{-1} oldsymbol{b}^{\ell}$$

yields (due to the consistency) with $u_0^{\ell} - u^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_j e^{\ell,j}$

$$oldsymbol{u}_1^\ell - oldsymbol{u}^{\ell,*} = oldsymbol{M}_\ell(\omega)oldsymbol{u}_0^\ell + oldsymbol{N}_\ell(\omega)oldsymbol{b}^\ell - \left(oldsymbol{M}_\ell(\omega)oldsymbol{u}^{\ell,*} + oldsymbol{N}_\ell(\omega)oldsymbol{b}^\ell\right)$$

$$= \mathbf{M}_{\ell}(\omega) \left(\mathbf{u}_{0}^{\ell} - \mathbf{u}^{\ell,*} \right) = \sum_{j=1}^{N_{\ell}} \alpha_{j} \lambda^{\ell,j}(\omega) \mathbf{e}^{\ell,j}.$$

Finally

$$\mathbf{u}_m^{\ell} - \mathbf{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_j \left[\lambda^{\ell,j}(\omega) \right]^m \mathbf{e}^{\ell,j} \text{ for } m = 0, 1, \dots$$

with

$$\lambda^{\ell,j}(\omega) = 1 - 4\omega \sin^2\left(\frac{j\pi h_\ell}{2}\right), \ j = 1,\ldots,N_\ell$$

since
$$M_{\ell}(\omega) = (I - \omega h_{\ell}^2 A_{\ell})$$

Introducing the exact solution

$$oldsymbol{u}^{\ell,*} = oldsymbol{A}_{\ell}^{-1} oldsymbol{b}^{\ell}$$

yields (due to the consistency) with $\mathbf{u}_0^{\ell} - \mathbf{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_j \mathbf{e}^{\ell,j}$

$$egin{aligned} oldsymbol{u}_1^\ell - oldsymbol{u}^{\ell,*} &= oldsymbol{M}_\ell(\omega)oldsymbol{u}_0^\ell + oldsymbol{N}_\ell(\omega)oldsymbol{b}^\ell - \left(oldsymbol{M}_\ell(\omega)oldsymbol{u}^{\ell,*} + oldsymbol{N}_\ell(\omega)oldsymbol{b}^\ell
ight) \ &= oldsymbol{M}_\ell(\omega)\left(oldsymbol{u}_0^\ell - oldsymbol{u}^{\ell,*}
ight) = \sum_{j=1}^{N_\ell}lpha_j\lambda^{\ell,j}(\omega)oldsymbol{e}^{\ell,j}. \end{aligned}$$

Finally

$$u_m^{\ell} - u^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_j \left[\lambda^{\ell,j}(\omega) \right]^m e^{\ell,j} \text{ for } m = 0, 1, \dots$$

with

$$\lambda^{\ell,j}(\omega) = 1 - 4\omega \sin^2\left(\frac{j\pi h_\ell}{2}\right), \quad j = 1,\ldots,N_\ell$$

since $M_{\ell}(\omega) = \left(I - \omega h_{\ell}^2 A_{\ell}\right)$

Introducing the exact solution

$$oldsymbol{u}^{\ell,*} = oldsymbol{A}_{\ell}^{-1} oldsymbol{b}^{\ell}$$

yields (due to the consistency) with $\mathbf{u}_0^{\ell} - \mathbf{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_j \mathbf{e}^{\ell,j}$

$$egin{aligned} oldsymbol{u}_1^\ell - oldsymbol{u}^{\ell,*} &= oldsymbol{M}_\ell(\omega)oldsymbol{u}_0^\ell + oldsymbol{N}_\ell(\omega)oldsymbol{b}^\ell - \left(oldsymbol{M}_\ell(\omega)oldsymbol{u}^{\ell,*} + oldsymbol{N}_\ell(\omega)oldsymbol{b}^\ell
ight) \ &= oldsymbol{M}_\ell(\omega)\left(oldsymbol{u}_0^\ell - oldsymbol{u}^{\ell,*}
ight) = \sum_{j=1}^{N_\ell}lpha_j\lambda^{\ell,j}(\omega)oldsymbol{e}^{\ell,j}. \end{aligned}$$

Finally

$$oldsymbol{u}_m^{\ell} - oldsymbol{u}^{\ell,*} = \sum_{j=1}^{N_\ell} lpha_j \left[\lambda^{\ell,j}(\omega) \right]^m oldsymbol{e}^{\ell,j} ext{ for } m = 0, 1, \dots$$

with

$$\lambda^{\ell,j}(\omega) = 1 - 4\omega \sin^2\left(rac{j\pi h_\ell}{2}
ight), \ j = 1,\dots, N_\ell$$

since $extbf{ extit{M}}_{\ell}(\omega) = \left(extbf{ extit{I}} - \omega extbf{ extit{h}}_{\ell}^2 extbf{ extit{A}}_{\ell}
ight)$

- Significant damping of medium frequencies.
- Almost no damping of small and high frequencies.
- ullet Refinement of the grid \to degradation of the convergence rate.
- Due to $\lambda^{\ell,1}(1/2) = \lambda_{max} = -\lambda_{min} = -\lambda^{\ell,N_{\ell}}(1/2)$ no acceleration by means of relaxation is possible.

- Significant damping of medium frequencies.
- Almost no damping of small and high frequencies.
- ullet Refinement of the grid o degradation of the convergence rate.
- Due to $\lambda^{\ell,1}(1/2) = \lambda_{max} = -\lambda_{min} = -\lambda^{\ell,N_{\ell}}(1/2)$ no acceleration by means of relaxation is possible.

- Significant damping of medium frequencies.
- Almost no damping of small and high frequencies.
- ullet Refinement of the grid o degradation of the convergence rate.
- Due to $\lambda^{\ell,1}(1/2) = \lambda_{max} = -\lambda_{min} = -\lambda^{\ell,N_{\ell}}(1/2)$ no acceleration by means of relaxation is possible.

- Significant damping of medium frequencies.
- Almost no damping of small and high frequencies.
- ullet Refinement of the grid \to degradation of the convergence rate.
- Due to $\lambda^{\ell,1}(1/2) = \lambda_{max} = -\lambda_{min} = -\lambda^{\ell,N_{\ell}}(1/2)$ no acceleration by means of relaxation is possible.

- Significant damping of medium frequencies.
- Almost no damping of small and high frequencies.
- ullet Refinement of the grid \to degradation of the convergence rate.
- Due to $\lambda^{\ell,1}(1/2) = \lambda_{max} = -\lambda_{min} = -\lambda^{\ell,N_{\ell}}(1/2)$ no acceleration by means of relaxation is possible.

Variation of the relaxation parameter

Convergence test:

- Consider the grid Ω_3 and the corresponding Fourier modes $e^{3,j}$, j = 1, ..., 15.
- For each Fourier mode and each relaxation parameter ω count the number of iterations m necessary to satisfy

$$\|\mathbf{M}_{J}(\omega)^{m}\mathbf{e}^{\ell,j}\|_{2} \leq 10^{-2} \underbrace{\|\mathbf{e}^{\ell,j}\|_{2}}_{=1} = 10^{-2}$$

Variation of the relaxation parameter

Classical Jacobi method

Relaxation parameter $\omega = 1/3$

Relaxation parameter $\omega = 1/4$ Relaxation parameter $\omega = 1/8$

Damped Jacobi method ($\omega = 1/4$)

Development of the error

$$\mathbf{e}_0^3 := (0.75, 0.2, 0.6, 0.45, 0.9, 0.6, 0.8, 0.85, 0.55, 0.7, 0.9, 0.5, 0.6, 0.3, 0.2)^T \in \mathbb{R}^{15}$$

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - ullet Smoother on $\Omega_\ell o$ Damped Jacobi method
 - Mapping from Ω_ℓ to $\Omega_{\ell-1} \to \mathsf{Relaxation}$
 - ullet Solver on $\Omega_{\ell-1} o$ Direct or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} o \mathsf{Prolongation}$
 - Correction step on Ω_ℓ

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - ullet Smoother on $\Omega_\ell o$ Damped Jacobi method
 - ullet Mapping from Ω_ℓ to $\Omega_{\ell-1} o \mathsf{Relaxation}$
 - ullet Solver on $\Omega_{\ell-1} o$ Direct or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} o \mathsf{Prolongation}$
 - Correction step on Ω_ℓ

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - ullet Smoother on $\Omega_\ell o \mathsf{Damped}$ Jacobi methoc
 - ullet Mapping from Ω_ℓ to $\Omega_{\ell-1} o \mathsf{Relaxation}$
 - ullet Solver on $\Omega_{\ell-1} o$ Direct or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_ℓ

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell o \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - ullet Smoother on $\Omega_\ell o {\sf Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_ℓ to $\Omega_{\ell-1} o \mathsf{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} o \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \mathsf{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \text{Prolongation}$
 - Correction step on Ω_{ℓ}

- Significant damping of high error frequencies on the fine grid Ω_{ℓ} (Fourier modes $e^{\ell,j}$, j close to N_{ℓ})
- Approximation of long wave errors on $\Omega_{\ell-1}$
- Correction of the approximate solution on the fine grid Ω_{ℓ} using the error approximation on the coarse grid $\Omega_{\ell-1}$
- Basically required operators:
 - Smoother on $\Omega_\ell \to \mathsf{Damped}$ Jacobi method
 - Mapping from Ω_{ℓ} to $\Omega_{\ell-1} \to \text{Relaxation}$
 - Solver on $\Omega_{\ell-1} \to \mathsf{Direct}$ or iterative method
 - Mapping from $\Omega_{\ell-1}$ to $\Omega_{\ell} \to \text{Prolongation}$
 - Correction step on Ω_{ℓ}

Mapping from Ω_{ℓ} to $\Omega_{\ell-1}$ (Injection)

Definition of the restriction

A mapping

$$m{F}: \mathbb{R}^{N_\ell}
ightarrow \mathbb{R}^{N_{\ell-1}}$$

is called restriction from Ω_{ℓ} to $\Omega_{\ell-1}$, if it is linear und surjective.

Graphical presentation:

• Matrix representation:

$$m{R}_{\ell}^{\ell-1} = \left(egin{array}{ccccc} 0 & 1 & 0 & & & & \ & & 0 & 1 & 0 & & \ & & \ddots & \ddots & \ddots & \ & & & 0 & 1 & 0 \end{array}
ight) \in \mathbb{R}^{N_{\ell-1} \times N_{\ell}}$$

Mapping from Ω_{ℓ} to $\Omega_{\ell-1}$ (Linear restriction)

Definition of the restriction

A mapping

$$\boldsymbol{F}: \mathbb{R}^{N_\ell} \to \mathbb{R}^{N_{\ell-1}}$$

is called restriction from Ω_{ℓ} to $\Omega_{\ell-1}$, if it is linear und surjective.

• Graphical presentation:

• Matrix representation:

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j}=rac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j}\quad ext{ for } j\in\{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j}=-rac{1}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j=N_{\ell}+1-\bar{\jmath} \ \text{with } \bar{\jmath}\in\{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{1}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell} + 1 - \bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell} + 1 - \bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell} + 1 - \bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell} + 1 - \bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell} + 1 - \bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Theorem

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Analysis of the Linear Restriction

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ concerning the **linear restriction** satisfy

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \quad \text{with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Analysis of the Linear Restriction

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ concerning the **linear restriction** satisfy

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\mathbf{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Analysis of the Linear Restriction

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ concerning the **linear restriction** satisfy

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \frac{c_j}{\sqrt{2}}\mathbf{e}^{\ell-1,j} \quad \text{ for } j \in \{1,\ldots,N_{\ell-1}\},$$

$$\mathbf{R}_{\ell}^{\ell-1}\mathbf{e}^{\ell,j} = \mathbf{0}$$
 for $j = N_{\ell-1} + 1$,

$$\boldsymbol{R}_{\ell}^{\ell-1}\boldsymbol{e}^{\ell,j} = -\frac{s_{\bar{\jmath}}}{\sqrt{2}}\boldsymbol{e}^{\ell-1,\bar{\jmath}} \quad \text{for } j = N_{\ell}+1-\bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}.$$

with
$$c_j = \cos^2\left(j\pi\frac{h_\ell}{2}\right)$$
 and $s_{\bar{\jmath}} = \sin^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$.

Mapping from $\Omega_{\ell-1}$ to Ω_{ℓ} (Prolongation)

Definition of the prolongation

A mapping

$$G: \mathbb{R}^{N_{\ell-1}} o \mathbb{R}^{N_{\ell}}$$

is called prolongation from $\Omega_{\ell-1}$ to Ω_{ℓ} , if it is linear und injective.

• Graphical presentation:

• Matrix representation:

$$m{P}_{\ell-1}^\ell=rac{1}{2}\left(egin{array}{ccc}2&&&&\1&1&&&\&2&&&\&1&&&\&&\ddots\end{array}
ight)\in\mathbb{R}^{N_\ell imes N_\ell imes N_\ell-}$$

Effect of the prolongation on the Fourier modes

Applying the prolongation to the scaled Fourier modes

$$\widetilde{m{e}}^{\ell,j} = rac{1}{\sqrt{2h_\ell}}m{e}^{\ell,j}$$

yields

Analysis of the linear prolongation

Theorem

The images of the Fourier modes $e^{\ell-1,j}$, $j=1,\ldots,N_{\ell-1}$ on $\Omega_{\ell-1}$ concerning the **linear prolongation** satisfy

$$oldsymbol{P}_{\ell-1}^{\ell}oldsymbol{e}^{\ell-1,j} = \sqrt{2}\left(c_joldsymbol{e}^{\ell,j} - s_joldsymbol{e}^{\ell,N_\ell+1-j}\right)$$

with
$$c_j = \cos^2\left(\frac{j\pi h_\ell}{2}\right)$$
 and $s_j = \sin^2\left(\frac{j\pi h_\ell}{2}\right)$.

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $\boldsymbol{u}_{m}^{\ell} = \boldsymbol{M}_{\ell} \boldsymbol{u}_{m-1}^{\ell} + \boldsymbol{N}_{\ell} \boldsymbol{b}^{\ell}, \quad m = 1, ..., j$
- 2 Restrict the defect $d^{\ell-1} = R_{\ell}^{\ell-1} d_m^{\ell}$
- 3 Solve $\mathbf{A}_{\ell-1}\mathbf{e}^{\ell-1}=\mathbf{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{A}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $\boldsymbol{u}_{m}^{\ell} = \boldsymbol{M}_{\ell} \boldsymbol{u}_{m-1}^{\ell} + \boldsymbol{N}_{\ell} \boldsymbol{b}^{\ell}, \quad m = 1, ..., j$
- 2 Restrict the defect $d^{\ell-1} = R_\ell^{\ell-1} d_m^\ell$
- 3 Solve $\mathbf{A}_{\ell-1}\mathbf{e}^{\ell-1}=\mathbf{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{A}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $oldsymbol{u}_m^\ell = oldsymbol{M}_\ell oldsymbol{u}_{m-1}^\ell + oldsymbol{N}_\ell oldsymbol{b}^\ell, \quad m=1,...,j$
- 2 Restrict the defect ${m d}^{\ell-1} = {m R}_\ell^{\ell-1} {m d}_m^\ell$
- 3 Solve $\mathbf{A}_{\ell-1}\mathbf{e}^{\ell-1}=\mathbf{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{A}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $oldsymbol{u}_m^\ell = oldsymbol{M}_\ell oldsymbol{u}_{m-1}^\ell + oldsymbol{N}_\ell oldsymbol{b}^\ell, \quad m=1,...,j$
- **2** Restrict the defect ${m d}^{\ell-1} = {m R}^{\ell-1}_{\ell} {m d}^{\ell}_{m}$
- 3 Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{A}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $oldsymbol{u}_m^\ell = oldsymbol{M}_\ell oldsymbol{u}_{m-1}^\ell + oldsymbol{N}_\ell oldsymbol{b}^\ell, \quad m=1,...,j$
- **2** Restrict the defect ${m d}^{\ell-1} = {m R}_\ell^{\ell-1} {m d}_m^\ell$
- Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{A}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $oldsymbol{u}_m^\ell = oldsymbol{M}_\ell oldsymbol{u}_{m-1}^\ell + oldsymbol{N}_\ell oldsymbol{b}^\ell, \quad m=1,...,j$
- **2** Restrict the defect ${m d}^{\ell-1} = {m R}_\ell^{\ell-1} {m d}_m^\ell$
- Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{A}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $oldsymbol{u}_m^\ell = oldsymbol{M}_\ell oldsymbol{u}_{m-1}^\ell + oldsymbol{N}_\ell oldsymbol{b}^\ell, \quad m=1,...,j$
- **2** Restrict the defect ${m d}^{\ell-1} = {m R}_\ell^{\ell-1} {m d}_m^\ell$
- 3 Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $oldsymbol{u}_m^\ell = oldsymbol{M}_\ell oldsymbol{u}_{m-1}^\ell + oldsymbol{N}_\ell oldsymbol{b}^\ell, \quad m=1,...,j$
- **2** Restrict the defect ${m d}^{\ell-1} = {m R}_\ell^{\ell-1} {m d}_m^\ell$
- 3 Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $\boldsymbol{u}_{m}^{\ell} = \boldsymbol{M}_{\ell} \boldsymbol{u}_{m-1}^{\ell} + \boldsymbol{N}_{\ell} \boldsymbol{b}^{\ell}, \quad m = 1, ..., j$
- **2** Restrict the defect ${m d}^{\ell-1} = {m R}_\ell^{\ell-1} {m d}_m^\ell$
- Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} \left(m{A}_{\ell} m{u}_{m}^{\ell} - m{b}^{\ell}
ight) \end{array}$$

Let
$$m{e}_m^\ell = m{u}_m^\ell - m{u}^{\ell,*}$$
 (error), $m{d}_m^\ell = m{A}_\ell m{e}_m^\ell = m{A}_\ell m{u}_m^\ell - m{b}^\ell$ (defect)

- 1 Iterate $\boldsymbol{u}_{m}^{\ell} = \boldsymbol{M}_{\ell} \boldsymbol{u}_{m-1}^{\ell} + \boldsymbol{N}_{\ell} \boldsymbol{b}^{\ell}, \quad m = 1, ..., j$
- **2** Restrict the defect $\mathbf{d}^{\ell-1} = \mathbf{R}^{\ell-1}_{\ell} \mathbf{d}_{m}^{\ell}$
- 3 Solve $\boldsymbol{A}_{\ell-1}\boldsymbol{e}^{\ell-1}=\boldsymbol{d}^{\ell-1}$ exact
- Prolongation of the result and correction of the approximate solution

$$egin{array}{lll} m{u}_{m}^{\ell,new} &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{e}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{d}^{\ell-1} \ &=& m{u}_{m}^{\ell} - m{P}_{\ell-1}^{\ell} m{A}_{\ell-1}^{-1} m{R}_{\ell}^{\ell-1} m{d}_{m}^{\ell} \ &=& m{u}_{m}^{\ell} - m{b}_{\ell}^{\ell} \ \end{pmatrix}$$

Using

$$\mathbf{e}_{m}^{\ell} = \mathbf{u}_{m}^{\ell} - \mathbf{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_{j} \mathbf{e}^{\ell,j} \text{ and } \Psi_{\ell}^{GGK}(\mathbf{e}) = (\mathbf{I} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \mathbf{A}_{\ell}) \mathbf{e}$$

$$\begin{aligned}
\mathbf{e}_{m}^{\ell,\text{new}} &= \mathbf{u}_{m}^{\ell,\text{new}} - \mathbf{u}^{\ell,*} \\
&= \mathbf{u}_{m}^{\ell} - \mathbf{u}^{\ell,*} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \left(\mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} - \mathbf{b}^{\ell} \right) \\
&= \mathbf{e}_{m}^{\ell} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \mathbf{A}_{\ell} \mathbf{e}_{m}^{\ell} \\
&= \mathbf{\Psi}_{\ell}^{GGK} \left(\mathbf{e}_{m}^{\ell} \right) \\
&= \sum_{j=1}^{N_{\ell}} \alpha_{j} \mathbf{\Psi}_{\ell}^{GGK} \left(\mathbf{e}^{\ell,j} \right)
\end{aligned}$$

Using

$$\mathbf{e}_{m}^{\ell} = \mathbf{u}_{m}^{\ell} - \mathbf{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_{j} \mathbf{e}^{\ell,j} \text{ and } \Psi_{\ell}^{GGK}(\mathbf{e}) = (\mathbf{I} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \mathbf{A}_{\ell}) \mathbf{e}$$

$$oldsymbol{e}_{m}^{\ell,\text{new}} = oldsymbol{u}_{m}^{\ell,\text{new}} - oldsymbol{u}^{\ell,*}$$

$$= oldsymbol{u}_{m}^{\ell} - oldsymbol{u}^{\ell,*} - oldsymbol{P}_{\ell-1}^{\ell} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_{\ell}^{\ell-1} \left(oldsymbol{A}_{\ell} oldsymbol{u}_{m}^{\ell} - oldsymbol{b}^{\ell}
ight)$$

$$= oldsymbol{e}_{m}^{\ell} - oldsymbol{P}_{\ell-1}^{\ell} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_{\ell}^{\ell-1} oldsymbol{A}_{\ell} oldsymbol{e}_{m}^{\ell}$$

$$= oldsymbol{V}_{\ell}^{GGK} \left(oldsymbol{e}_{m}^{\ell} \right)$$

$$= \sum_{j=1}^{N_{\ell}} lpha_{j} oldsymbol{V}_{\ell}^{GGK} \left(oldsymbol{e}^{\ell,j} \right)$$

Using

$$\boldsymbol{e}_{m}^{\ell} = \boldsymbol{u}_{m}^{\ell} - \boldsymbol{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_{j} \boldsymbol{e}^{\ell,j} \text{ and } \Psi_{\ell}^{GGK}(\boldsymbol{e}) = (\boldsymbol{I} - \boldsymbol{P}_{\ell-1}^{\ell} \boldsymbol{A}_{\ell-1}^{-1} \boldsymbol{R}_{\ell}^{\ell-1} \boldsymbol{A}_{\ell}) \boldsymbol{e}$$

$$oldsymbol{e}_{m}^{\ell,\text{new}} = oldsymbol{u}_{m}^{\ell,\text{new}} - oldsymbol{u}^{\ell,*}$$

$$= oldsymbol{u}_{m}^{\ell} - oldsymbol{u}^{\ell,*} - oldsymbol{P}_{\ell-1}^{\ell} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_{\ell}^{\ell-1} \left(oldsymbol{A}_{\ell} oldsymbol{u}_{m}^{\ell} - oldsymbol{b}^{\ell}
ight)$$

$$= oldsymbol{e}_{m}^{\ell} - oldsymbol{P}_{\ell-1}^{\ell} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_{\ell}^{\ell-1} oldsymbol{A}_{\ell} oldsymbol{e}_{m}^{\ell}$$

$$= oldsymbol{V}_{\ell}^{GGK} \left(oldsymbol{e}_{m}^{\ell} \right)$$

$$= \sum_{j=1}^{N_{\ell}} lpha_{j} oldsymbol{V}_{\ell}^{GGK} \left(oldsymbol{e}^{\ell,j} \right)$$

Using

$$\mathbf{e}_{m}^{\ell} = \mathbf{u}_{m}^{\ell} - \mathbf{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_{j} \mathbf{e}^{\ell,j} \text{ and } \Psi_{\ell}^{GGK}(\mathbf{e}) = (\mathbf{I} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \mathbf{A}_{\ell}) \mathbf{e}$$

$$\begin{aligned}
\mathbf{e}_{m}^{\ell,\text{new}} &= \mathbf{u}_{m}^{\ell,\text{new}} - \mathbf{u}^{\ell,*} \\
&= \mathbf{u}_{m}^{\ell} - \mathbf{u}^{\ell,*} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \left(\mathbf{A}_{\ell} \mathbf{u}_{m}^{\ell} - \mathbf{b}^{\ell} \right) \\
&= \mathbf{e}_{m}^{\ell} - \mathbf{P}_{\ell-1}^{\ell} \mathbf{A}_{\ell-1}^{-1} \mathbf{R}_{\ell}^{\ell-1} \mathbf{A}_{\ell} \mathbf{e}_{m}^{\ell} \\
&= \mathbf{\Psi}_{\ell}^{GGK} \left(\mathbf{e}_{m}^{\ell} \right) \\
&= \sum_{j=1}^{N_{\ell}} \alpha_{j} \mathbf{\Psi}_{\ell}^{GGK} \left(\mathbf{e}^{\ell,j} \right)
\end{aligned}$$

Using

$$\boldsymbol{e}_{m}^{\ell} = \boldsymbol{u}_{m}^{\ell} - \boldsymbol{u}^{\ell,*} = \sum_{j=1}^{N_{\ell}} \alpha_{j} \boldsymbol{e}^{\ell,j} \text{ and } \Psi_{\ell}^{GGK}(\boldsymbol{e}) = (\boldsymbol{I} - \boldsymbol{P}_{\ell-1}^{\ell} \boldsymbol{A}_{\ell-1}^{-1} \boldsymbol{R}_{\ell}^{\ell-1} \boldsymbol{A}_{\ell}) \boldsymbol{e}$$

$$oldsymbol{e}_{m}^{\ell, ext{new}} = oldsymbol{u}_{m}^{\ell, ext{new}} - oldsymbol{u}^{\ell, ext{new}} = oldsymbol{u}_{m}^{\ell, ext{new}} - oldsymbol{u}^{\ell, ext{new}} = oldsymbol{e}_{\ell-1}^{\ell} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_{\ell}^{\ell-1} oldsymbol{A}_{\ell} oldsymbol{e}_{m}^{\ell} = oldsymbol{e}_{m}^{\ell} oldsymbol{GGK} \left(oldsymbol{e}_{m}^{\ell} \right) = \sum_{j=1}^{N_{\ell}} lpha_{j} \Psi_{\ell}^{GGK} \left(oldsymbol{e}^{\ell, j} \right)$$

Using

$$oldsymbol{e}_m^\ell = oldsymbol{u}_m^\ell - oldsymbol{u}^{\ell,*} = \sum_{j=1}^{N_\ell} lpha_j oldsymbol{e}^{\ell,j} ext{ and } \Psi_\ell^{GGK}\left(oldsymbol{e}
ight) = (oldsymbol{I} - oldsymbol{P}_{\ell-1}^\ell oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_\ell^{\ell-1} oldsymbol{A}_\ell) oldsymbol{e}$$

$$egin{aligned} oldsymbol{e}_{m}^{\ell, ext{new}} &= oldsymbol{u}_{m}^{\ell, ext{new}} - oldsymbol{u}^{\ell, ext{new}} - oldsymbol{u}^{\ell, ext{new}} \\ &= oldsymbol{u}_{m}^{\ell} - oldsymbol{u}^{\ell, ext{new}} - oldsymbol{P}_{\ell-1}^{\ell} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{A}_{\ell-1}^{-1} oldsymbol{R}_{\ell}^{\ell-1} oldsymbol{A}_{\ell} oldsymbol{e}_{m}^{\ell} \\ &= oldsymbol{v}_{\ell}^{GGK} \left(oldsymbol{e}_{m}^{\ell} \right) \\ &= \sum_{j=1}^{N_{\ell}} lpha_{j} \Psi_{\ell}^{GGK} \left(oldsymbol{e}^{\ell, j} \right) \end{aligned}$$

Coarse grid correction effect on the Fourier modes

Coarse grid correction effect on the Fourier modes

Image under coarse grid correction

Coarse grid correction effect on the Fourier modes

Image under coarse grid correction

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_{\ell}$ on Ω_{ℓ} w.r.t. the coarse grid correction with linear restriction and prolongation satisfy

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = s_j \mathbf{e}^{\ell,j} + s_j \mathbf{e}^{\ell,\bar{\jmath}} \text{ for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = \mathbf{e}^{\ell,j} \qquad \text{ for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = \mathbf{e}^{\ell,j} \quad \text{for } j = N_{\ell-1} + 1,
\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = \mathbf{c}_{\bar{\jmath}} \mathbf{e}^{\ell,j} + \mathbf{c}_{\bar{\jmath}} \mathbf{e}^{\ell,\bar{\jmath}} \quad \text{for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1, \dots, N_{\ell-1}\}$$

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ w.r.t. the **coarse grid correction** with linear restriction and prolongation satisfy

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = s_{j} \boldsymbol{e}^{\ell,j} + s_{j} \boldsymbol{e}^{\ell,\bar{\jmath}} \text{ for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = \boldsymbol{e}^{\ell,j} \qquad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = c_{\bar{\jmath}} \mathbf{e}^{\ell,j} + c_{\bar{\jmath}} \mathbf{e}^{\ell,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}$$

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ w.r.t. the **coarse grid correction** with linear restriction and prolongation satisfy

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = s_{j} \boldsymbol{e}^{\ell,j} + s_{j} \boldsymbol{e}^{\ell,\bar{\jmath}} \text{ for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = \mathbf{e}^{\ell,j} \qquad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = c_{\bar{\jmath}} \, \boldsymbol{e}^{\ell,j} + c_{\bar{\jmath}} \, \boldsymbol{e}^{\ell,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}$$

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j = 1, ..., N_{\ell}$ on Ω_{ℓ} w.r.t. the **coarse grid correction** with linear restriction and prolongation satisfy

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = s_{j} \boldsymbol{e}^{\ell,j} + s_{j} \boldsymbol{e}^{\ell,\bar{\jmath}} \text{ for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = \mathbf{e}^{\ell,j} \qquad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = c_{\bar{\jmath}} \mathbf{e}^{\ell,j} + c_{\bar{\jmath}} \mathbf{e}^{\ell,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}$$

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ w.r.t. the **coarse grid correction** with linear restriction and prolongation satisfy

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = s_{j} \boldsymbol{e}^{\ell,j} + s_{j} \boldsymbol{e}^{\ell,\bar{\jmath}} \text{ for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = \boldsymbol{e}^{\ell,j} \qquad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = c_{\bar{\jmath}} \mathbf{e}^{\ell,j} + c_{\bar{\jmath}} \mathbf{e}^{\ell,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}$$

Theorem

The images of the Fourier modes $e^{\ell,j}$, $j = 1, ..., N_{\ell}$ on Ω_{ℓ} w.r.t. the **coarse grid correction** with linear restriction and prolongation satisfy

$$\Psi_{\ell}^{GGK}\left(\boldsymbol{e}^{\ell,j}\right) = s_{j} \boldsymbol{e}^{\ell,j} + s_{j} \boldsymbol{e}^{\ell,\bar{\jmath}} \text{ for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = \mathbf{e}^{\ell,j} \qquad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{GGK}\left(\mathbf{e}^{\ell,j}\right) = c_{\bar{\jmath}} \mathbf{e}^{\ell,j} + c_{\bar{\jmath}} \mathbf{e}^{\ell,\bar{\jmath}} \text{ for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\}$$

For $i = 1, \ldots, \nu_1$

$$u^\ell := \phi_\ell \left(u^\ell, f^\ell
ight)$$

$$oldsymbol{d}^{\ell+1} := R_\ell^{\ell+1} \left(oldsymbol{A}_\ell oldsymbol{u}^\ell - oldsymbol{f}^\ell
ight).$$

$$m{e}^{\ell-1} := A_{\ell-1}^{-1} m{d}^{\ell-1}$$

$$u^\ell := u^\ell - P_{\ell-1}^\ell e^{\ell-1}$$

For $i = 1, \ldots, \nu_2$

$$u^\ell := \phi_\ell \left(u^\ell, f^\ell
ight)$$

- ν_1 number of steps for pre-smoothing
- ν_2 number of steps for post-smoothing
- Graphical presentation

Two grid method - damped Jacobi method ($\omega = 1/4$)

Development of the error

$$\mathbf{e}_0^3 := (0.75, 0.2, 0.6, 0.45, 0.9, 0.6, 0.8, 0.85, 0.55, 0.7, 0.9, 0.5, 0.6, 0.3, 0.2)^T \in \mathbb{R}^{15}$$

Analysis of the two grid method

Theorem

Let the two grid method be defined by damped Jacobi method in combination with linear restriction and linear prolongation. Then the images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ satisfy

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\mathbf{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} \mathbf{s}_{j} \left((\lambda^{\ell,j})^{\nu_{2}} \mathbf{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \mathbf{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\mathbf{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}+\nu_{2}} \mathbf{e}^{\ell,j} \quad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\mathbf{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} \mathbf{c}_{\bar{\jmath}} \left((\lambda^{\ell,j})^{\nu_{2}} \mathbf{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \mathbf{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\},$$

where
$$c_{\bar{\jmath}} = \cos^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$$
, $s_j = \sin^2\left(j\pi\frac{h_\ell}{2}\right)$, $\lambda^{\ell,j} = \lambda^{\ell,j}(1/4)$ and $\lambda^{\ell,\bar{\jmath}} = \lambda^{\ell,\bar{\jmath}}(1/4)$.

Analysis of the two grid method

Theorem

Let the two grid method be defined by damped Jacobi method in combination with linear restriction and linear prolongation. Then the images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_\ell$ on Ω_ℓ satisfy

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\mathbf{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} s_{j} \left((\lambda^{\ell,j})^{\nu_{2}} \mathbf{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \mathbf{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\mathbf{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}+\nu_{2}} \mathbf{e}^{\ell,j} \quad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\mathbf{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} c_{\bar{\jmath}} \left((\lambda^{\ell,j})^{\nu_{2}} \mathbf{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \mathbf{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\},$$

where
$$c_{\bar{\jmath}}=\cos^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$$
, $s_j=\sin^2\left(j\pi\frac{h_\ell}{2}\right)$, $\lambda^{\ell,j}=\lambda^{\ell,j}(1/4)$ and $\lambda^{\ell,\bar{\jmath}}=\lambda^{\ell,\bar{\jmath}}(1/4)$.

Analysis of the two grid method

Theorem

Let the two grid method be defined by damped Jacobi method in combination with linear restriction and linear prolongation. Then the images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_{\ell}$ on Ω_{ℓ} satisfy

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\boldsymbol{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} s_{j} \left((\lambda^{\ell,j})^{\nu_{2}} \boldsymbol{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \boldsymbol{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\boldsymbol{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}+\nu_{2}} \boldsymbol{e}^{\ell,j} \quad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\boldsymbol{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} c_{\bar{\jmath}} \left((\lambda^{\ell,j})^{\nu_{2}} \boldsymbol{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \boldsymbol{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\},$$

where
$$c_{\bar{\jmath}}=\cos^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$$
, $s_j=\sin^2\left(j\pi\frac{h_\ell}{2}\right)$, $\lambda^{\ell,j}=\lambda^{\ell,j}(1/4)$ and $\lambda^{\ell,\bar{\jmath}}=\lambda^{\ell,\bar{\jmath}}(1/4)$.

Analysis of the two grid method

Theorem

Let the two grid method be defined by damped Jacobi method in combination with linear restriction and linear prolongation. Then the images of the Fourier modes $e^{\ell,j}$, $j=1,\ldots,N_{\ell}$ on Ω_{ℓ} satisfy

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\boldsymbol{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} s_{j} \left((\lambda^{\ell,j})^{\nu_{2}} \boldsymbol{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \boldsymbol{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j \in \{1,\ldots,N_{\ell-1}\} \text{ and } \bar{\jmath} = N_{\ell} + 1 - j,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\boldsymbol{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}+\nu_{2}} \boldsymbol{e}^{\ell,j} \quad \text{for } j = N_{\ell-1} + 1,$$

$$\Psi_{\ell}^{ZGM(\nu_{1},\nu_{2})}\left(\boldsymbol{e}^{\ell,j}\right) = (\lambda^{\ell,j})^{\nu_{1}} c_{\bar{\jmath}} \left((\lambda^{\ell,j})^{\nu_{2}} \boldsymbol{e}^{\ell,j} + (\lambda^{\ell,\bar{\jmath}})^{\nu_{2}} \boldsymbol{e}^{\ell,\bar{\jmath}}\right)$$

$$\text{for } j = N_{\ell} + 1 - \bar{\jmath} \text{ with } \bar{\jmath} \in \{1,\ldots,N_{\ell-1}\},$$

where
$$c_{\bar{\jmath}}=\cos^2\left(\bar{\jmath}\pi\frac{h_\ell}{2}\right)$$
, $s_j=\sin^2\left(j\pi\frac{h_\ell}{2}\right)$, $\lambda^{\ell,j}=\lambda^{\ell,j}(1/4)$ and $\lambda^{\ell,\bar{\jmath}}=\lambda^{\ell,\bar{\jmath}}(1/4)$.

- Problem: Two grid method is usually not workable
- Extension:
 - Solve $A_{\ell-1}e^{\ell-1}=d^{\ell-1}$ approximately on $\Omega_{\ell-1}$ (sufficient, since $P_{\ell-1}^{\ell}A_{\ell-1}^{-1}d^{\ell-1}\approx e^{\ell}$)
 - Employ a two grid method on $\Omega_{\ell-1}$
 - ⇒ three grid method
 - Carry forward to obtain a $\ell+1$ grid method and solve

$$\mathbf{A}_0\mathbf{e}^0=\mathbf{d}^0$$

exact.

- Problem: Two grid method is usually not workable
- Extension:
 - Solve $\mathbf{A}_{\ell-1}\mathbf{e}^{\ell-1} = \mathbf{d}^{\ell-1}$ approximately on $\Omega_{\ell-1}$ (sufficient, since $\mathbf{P}_{\ell-1}^{\ell}\mathbf{A}_{\ell-1}^{-1}\mathbf{d}^{\ell-1} \approx \mathbf{e}^{\ell}$)
 - Employ a two grid method on $\Omega_{\ell-1}$
 - ⇒ three grid method
 - Carry forward to obtain a ℓ + 1 grid method and solve

$$oldsymbol{A}_0oldsymbol{e}^0=oldsymbol{d}^0$$

exact.

Y $\ell = 0$	И
$u^0:=A_0^{-1}f^0$	For $i=1,\ldots,\nu_1$
Output 210	$u^\ell := \phi_\ell \left(u^\ell, f^\ell ight)$
	$oxed{d^{\ell-1} := R_\ell^{\ell-1} \left(A_\ell u^\ell - f^\ell ight)}$
	$e_0^{\ell-1} := 0$
	For $i=1,\ldots,\gamma$
	$\boldsymbol{e}_i^{\ell-1} := \phi_{\ell-1}^{\operatorname{MGM}(\nu_1,\nu_2)} \left(\boldsymbol{e}_{i-1}^{\ell-1}, \boldsymbol{d}^{\ell-1} \right)$
	$u^\ell := u^\ell - P_{\ell-1}^\ell e_\gamma^{\ell-1}$
	For $i=1,\ldots,\nu_2$
	$u^\ell := \phi_\ell\left(u^\ell, f^\ell ight)$
	Output u^ℓ

• V-cycle $\gamma = 1, I = 3$:

• W-cycle $\gamma = 2$, I = 3:

Multigrid method - damped Jacobi method ($\omega = 1/4$)

Poisson's equation

$$-u''(x) = f(x) \text{ for } x \in \Omega,$$

 $u(x) = 0 \text{ for } x \in \partial\Omega = \{0, 1\}$

where

$$f(x) = \frac{\pi^2}{8} \left(9 \sin \left(\frac{3\pi x}{2} \right) + 25 \sin \left(\frac{5\pi x}{2} \right) \right)$$

Exact solution

$$u(x) = \sin(2\pi x)\cos\left(\frac{\pi x}{2}\right)$$

Initialization

$$u_0^3 = (u(x_1), \dots, u(x_{N_3}))^T - e_0^3$$
 with $x_i = ih_3$

using

$$\mathbf{e}_0^3 := (0.75, 0.2, 0.6, 0.45, 0.9, 0.6, 0.8, 0.85, 0.55, 0.7, 0.9, 0.5, 0.6, 0.3, 0.2)^T \in \mathbb{R}^{15}$$

Multigrid method - damped Jacobi method ($\omega = 1/4$)

Multigrid method - damped Jacobi method ($\omega = 1/4$)

Multigrid method versus Jacobi method

Poisson's equation - Percentage comparison - Run times

Computational effort			
Mesh	Number of	Multigrid method	Classical
	Unknowns		Jacobi method
Ω_2	7	100 %	117 %
Ω_4	31	100 %	838 %
Ω_6	127	100 %	9255 %
Ω_8	511	100 %	128161 %

Full multigrid method

- Idea: Improvement of the initial guess u^{ℓ} using coarser grids
- Vorgehensweise:
 - Solve $\mathbf{A}_0 \mathbf{u}^0 = \mathbf{b}^0$ on Ω_0 exact.
 - Prolongation of u^0 to Ω_1 and smoothing $\Rightarrow u^1$.
 - Repeat the last step w.r.t. $\Omega_2, \ldots, \Omega_\ell$ $\Rightarrow \boldsymbol{u}^\ell$.
 - Apply the multigrid method using u^{ℓ}
- V-cycle $\gamma = 1$. l = 2:

Full multigrid method - damped Jacobi method

Full multigrid method - damped Jacobi method

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner

- Multigrid methods combine two algorithm with complementary properties
- Damped splitting schemes as smoother
- Coarse grid correction to handle long wave errors
- Computational effort grows linearly with the number of unknowns
- Method is much fast then usual splitting schemes
- Efficiency depends on the properties of the underlying linear system
 - Algebraic multigrid method
- Applicability as preconditioner