lterative Solvers for Large Linear Systems

Part IV: Multigrid Methods

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

Andreas Meister (University of Kassel) lterative Solvers Multigrid Methods 1/73



@ Basics of Iterative Methods

@ Splitting schemes

@ Jacobi scheme and Gauf3-Seidel method
o Relaxation methods

@ Methods for symmetric, positive definite matrices

e Method of steepest descent
e Method of conjugate directions
e CG scheme
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@ Multigrid Method
@ Smoother, Prolongation, Restriction

e Twogrid Method and Extension

@ Methods for non-singular Matrices
o GMRES

e BICG, CGS and BiCGSTAB

@ Preconditioning
o ILU, IC, GS, SGS, ...
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Model problem: Poisson’s equation
Given: Q= (0,1)and f e C(Q,R)
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Model problem: Poisson’s equation

2= (0,1)and f € C(2,R)
uec C?(Q,R)N C(Q,R) with
—Uu"(x) = b(x) forx e,
ux) = 0 for x € 002 = {0,1}.

Given:

Sought:
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Model problem: Poisson’s equation

Given: Q= (0,1)and f e C(Q,R)
Sought: u < C?(Q,R)N C(Q,R) with

—u"(x)

u(x)

Mesh hierarchy: ), :

b(x)
= 0
Qp, = {jhe |j=1,...

for x € €2,
for x € 0Q2 = {0, 1}.
2t —1} ¢=0,1,...
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Model problem: Poisson’s equation

Approximation: Utilizing u; := u(jh,) yields

.y 0t
Ui ¢ + 207 — Uy
2
g

—u"(jhe) ~
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Model problem: Poisson’s equation

Approximation: Utilizing u; := u(jh,) yields

14 Iy
_u,/(jhﬁ) ~ _uj+1 —I_2uj u 1

j_

Linear system of equations:

Agu€ — bg
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Fourier modes

Eigenfunctions of the corresponding boundary value problem

u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.
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Fourier modes

Eigenfunctions of the corresponding boundary value problem
u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.

Definition of the Fourier modes

The vectors .
sin fmhy
e’/ = \/2h, ; eRNe j=1,... N,
sin jmNyhy
are called Fourier modes.
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Fourier modes

Eigenfunctions of the corresponding boundary value problem
u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.

Definition of the Fourier modes

The vectors .
sin fmhy
e’/ = \/2h, ; eRNe j=1,... N,
sin jmNyhy
are called Fourier modes.

Properties of the Fourier modes
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Fourier modes

Eigenfunctions of the corresponding boundary value problem
u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.

Definition of the Fourier modes

The vectors .
sin fmhy
e’/ = \/2h, ; eRNe j=1,... N,
sin jmNyhy
are called Fourier modes.

| \

Properties of the Fourier modes

@ Orthonormal basis of R
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Fourier modes

Eigenfunctions of the corresponding boundary value problem
u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.

Definition of the Fourier modes

The vectors .
sin fmhy
e’/ = \/2h, ; eRNe j=1,... N,
sin jmNyhy
are called Fourier modes.

4

Properties of the Fourier modes

@ Orthonormal basis of R
@ Discrete, equidistant sampling of the eigenfunctions

Andreas Meister (University of Kassel) lterative Solvers Multigrid Methods 6/73



Fourier modes

Eigenfunctions of the corresponding boundary value problem
u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.

Definition of the Fourier modes

The vectors .
sin fmhy
e’/ = \/2h, ; eRNe j=1,... N,
sin jmNyhy
are called Fourier modes.

| \

Properties of the Fourier modes

@ Orthonormal basis of R
@ Discrete, equidistant sampling of the eigenfunctions
@ Eigenvectors
Aetl = \Hehl j=1,...,N,.
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Fourier modes

Eigenfunctions of the corresponding boundary value problem
u" = au, u(0) =u(1) =0 are u(x)=csin(jrx), je N, ce R.

Definition of the Fourier modes

The vectors .
sin fmhy
e’/ = \/2h, ; eRNe j=1,... N,
sin jmNyhy
are called Fourier modes

| \

Properties of the Fourier modes

@ Orthonormal basis of R
@ Discrete, equidistant sampling of the eigenfunctions

@ Eigenvectors

. o h _
Aell = \bighi N\t = 4p; 2 sin (”;), i=1,....N,.
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Jacobi relaxation method

We consider the linear system

A,u’ = b® wurt. the mesh Qy
using the usual splitting ansatz:

A, = B, + (A, — B,), B, = D, = diag{ A/} = diag{2h,*}.
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Jacobi relaxation method

We consider the linear system

A,u’ = b® wurt. the mesh Qy
using the usual splitting ansatz:

A, = B, + (A, — B,), B, = D, = diag{ A/} = diag{2h,*}.

u, ., = u,+aD,’ (bg - Aguffn)
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Jacobi relaxation method

We consider the linear system

Au’ = b wurt the mesh
using the usual splitting ansatz:
A, = B, + (A, — B,), B, = D, = diag{ A/} = diag{2h,*}.
u, ., = u,+aD,’ (bg — Aguffn)

= ul +wh? (bf _ Agufn) L w=0/2
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Jacobi relaxation method

We consider the linear system

Au’ = b wurt the mesh
using the usual splitting ansatz:
A, = B, + (A, — B,), B, = D, = diag{ A/} = diag{2h,*}.
u, ., = u,+aD,’ (bg — Aguffn)
= ul +wh? (bf _ Agufn) L w=0/2

- (l _ wthg) u’. + whl b’
N——

N J/

M;(rw) N;(w)
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Jacobi relaxation method

We consider the linear system

Au’ = b wurt the mesh
using the usual splitting ansatz:
A, = B, + (A, — B,), B, = D, = diag{ A/} = diag{2h,*}.
u, ., = u,+aD,’ (bg — Aguffn)
= ul +wh? (bf _ Agufn) L w=0/2

- (l _ wthg) u’. + whl b’
N——

N J/

MZ(rw) N;(w)

Does an interrelationship between error and Fourier modes exist?
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Jacobi relaxation method

Introducing the exact solution
uf,* _ Ae—'lbﬁ
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Jacobi relaxation method

Introducing the exact solution
uf,* _ Ae—'lbﬁ

0\,

yields (due to the consistency) with ug — u™* = >~ e’/

Ul — ut* = My(w)ul + Ny(w)bt — (Mg(w)ug’* + Ng(w)bf)
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Jacobi relaxation method

Introducing the exact solution
uf,* _ Ae—'lbﬁ

' ' i * N '
yields (due to the consistency) with ug — u** = >~ o’/

Ul — ut* = My(w)ul + Ny(w)bt — (Mg(w)ug’* + Ng(w)bf)

Ny
— M,(w) (ug ~ uﬁ»*) =3 oA (w)et.
j=1
Finally N, )
ut, — utr = Z Qo {Xq’f(w)} e/ form=0,1,...
j=1
with

A (w) =1 — 4wsin? (”%) j=1,...,N,

since My(w) = (I — wh?Ay)
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Error analysis of the classical Jacobi method (w = 1/2)
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Error analysis of the classical Jacobi method (w = 1/2)

@ Significant damping of medium frequencies.
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Error analysis of the classical Jacobi method (w = 1/2)

@ Significant damping of medium frequencies.
@ Almost no damping of small and high frequencies.
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Error analysis of the classical Jacobi method (w = 1/2)

@ Significant damping of medium frequencies.
@ Almost no damping of small and high frequencies.
@ Refinement of the grid — degradation of the convergence rate.
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Error analysis of the classical Jacobi method (w = 1/2)

@ Significant damping of medium frequencies.
@ Almost no damping of small and high frequencies.
@ Refinement of the grid — degradation of the convergence rate.

@ Due to M\o1(1/2) = Amax = —Amin = —A\5Ne(1/2) no acceleration
by means of relaxation is possible.
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Variation of the relaxation parameter

A3 (w)
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Convergence test:

@ Consider the grid Q3 and the corresponding Fourier modes e,

j=1,...,15.

@ For each Fourier mode and each relaxation parameter w count the
number of iterations m necessary to satisfy

| My(w)e

> <107%|e"

=1

» =107
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Variation of the relaxation parameter

Classical Jacobi method  Relaxation parameter w = 1/3

Relaxation parameter w = 1/4  Relaxation parameter w = 1/8
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Damped Jacobi method (w = 1/4)

Development of the error

1

0.9r

8 10 12 14 16
k

ed .= (0.75, 0.2, 0.6, 0.45, 0.9, 0.6, 0.8, 0.85,
0.55, 0.7, 0.9, 0.5, 0.6, 0.3, 0.2)" e R™
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1

@ Correction of the approximate solution on the fine grid €2, using
the error approximation on the coarse grid €2,_+
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Basic Idea of the Two Grid Method
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1

@ Correction of the approximate solution on the fine grid €2, using
the error approximation on the coarse grid €2,_+
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1

@ Correction of the approximate solution on the fine grid €2, using
the error approximation on the coarse grid €2,_+

@ Basically required operators:

e Smoother on Q, — Damped Jacobi method
e Mapping from €2, to ©,_1 — Relaxation

e Solver on 2,_1 — Direct or iterative method
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1

@ Correction of the approximate solution on the fine grid €2, using
the error approximation on the coarse grid €2,_+

@ Basically required operators:
e Smoother on Q, — Damped Jacobi method
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Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1

@ Correction of the approximate solution on the fine grid €2, using
the error approximation on the coarse grid €2,_+

@ Basically required operators:
e Smoother on Q, — Damped Jacobi method
e Mapping from €2, to ©,_1 — Relaxation

e Solver on 2,_1 — Direct or iterative method

e Mapping from €,_1 to Q, — Prolongation

Andreas Meister (University of Kassel) lterative Solvers Multigrid Methods 13/73



Basic Idea of the Two Grid Method

@ Significant damping of high error frequencies on the fine grid €2,
(Fourier modes e*/, j close to N,)

@ Approximation of long wave errors on €2,_1

@ Correction of the approximate solution on the fine grid €2, using
the error approximation on the coarse grid €2,_+

@ Basically required operators:

e Smoother on Q, — Damped Jacobi method
e Mapping from €2, to ©,_1 — Relaxation
e Solver on 2,_1 — Direct or iterative method

e Mapping from €,_1 to Q, — Prolongation

@ Correction step on €,

lterative Solvers

Andreas Meister (University of Kassel)

Multigrid Methods

13/73



Mapping from €, to €, 4 (Injection)

Definition of the restriction
A mapping
F RN — RN

IS called restriction from €2, to €2,_1, if it is linear und surjective.

@ Graphical presentation:

@ Matrix representation:

—1 Ng_1><Ng
R, = N cR
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Mapping from €2, to Q,_4 (Linear restriction)

Definition of the restriction
A mapping
F RN — RN

Is called restriction from €, to €,_4, if it is linear und surjective.

@ Graphical presentation:

241

@ Matrix representation:

1 2 1
1/ 1 2 1

R€—1 _
¢ 4
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Effect of the restriction on the Fourier modes

04 4 g 12 16 % 2 4 6 g % 2 4 6 8
k k k
Original Injection Linear restriction
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Effect of the restriction on the Fourier modes
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0.2 | = 02
%Q_)& 0 % 0
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Original Injection
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Effect of the restriction on the Fourier modes
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Original Injection Linear restriction
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Effect of the restriction on the Fourier modes
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Original Injection Linear restriction
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Effect of the restriction on the Fourier modes

0.4 0.4 0.4
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

Rg—1ee,j _ \/Léef—%/ for je{1,...,Ny_1},

R§‘1e£’f _ 0 for j = Np_1 +1,

R:e" = —1 e~ for j=N;+1—7 with 7¢ {1 Ne1}
¢ V2 / J J ARREAL N

Andreas Meister (University of Kassel) lterative Solvers Multigrid Methods 21/73



Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

R e = \i@ef—“/ for je{1,...,Ny_1},

R e = 0 for j= Np_1+1,

R e = — €1 for j=Ne+1—7 with 7€ {1,...,Ny_+}. )
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

=100 A b1 :
R, e’ = 7€ I for je{1,...,Ny_1},
R e = 0 for j= Np_q1+1,
R e = — €717 for j=N;+1 -7 with 7€ {1,...,Np_+}.
y
0.4 0.4
= 0.2 A 02
2 o v 0
& o2 & 02
04 > 4 6 8 04 > 4 6 8
k k
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

010 A a1 :
R, e’ = 7€ I for je{1,...,Ny_1},
R e = 0 for j= Np_q1+1,
R e = — €717 for j=N;+1 -7 with 7€ {1,...,Np_+}.
y
0.4 0.4
= 02 02
2 v 0
& o2 & o2
0% 2 4 6 8 0% 2 4 6 8
k k
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

=100 A b1 :
R, e’ = 7€ I for je{1,...,Ny_1},
R e = 0 for j= Np_q1+1,
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0.4 0.4
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

-1 0 1 o0—1) -
R, e’ = 7€ I for je{1,...,Ny_1},
R e = 0 for j= Np_q1+1,
R e = — €717 for j=N;+1 -7 with 7€ {1,...,Np_+}.
y
0.4 0.4
= 0.2 ~ 02
2 v 0
& oo & o2
'040 2 4 6 8 '0'40 2 4 6 8
k k
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

=100 A b1 :
R, e’ = 7€ I for je{1,...,Ny_1},
R e = 0 for j= Np_q1+1,
R e = — €717 for j=N;+1 -7 with 7€ {1,...,Np_+}.
y
0.4 0.4
= 0.2 <02
2 o v 0
& o2 & 02
04 > 4 6 8 04 > 4 6 8
k k
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Analysis of the Injection

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the injection satisfy

Rg—'Ief,j — \/Lﬁee_‘l’j fOf j - {1 g o o oy N£—1}7

R§_1e£’j = 0 for j: Np_1+1,
R e = e for j=N+1—7 with je {1,...,N1}.
4
0.4 0.4
= 02 = 02
oo v o0
& oo & oo
0% 2 4 5 8 0% > 4 6 8
k k
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfty

R 'e" = \%96—1,/' for je {1,...,Ny_1},

R e = 0 for j = Np_1 +1,

R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.
with ¢; = cos? (jw%) and s; = sin® (jw%).
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

_ 7 ©Cx I .
Rﬁ 196’1 = \/—%eg L for ] € {1, : .,Ng_1},
R:~1et = 0 for j =N 1

V4 T ./_ /—1 + Y
R e = —j—%eﬁ—w for j=Ny+1—7 with 7€ {1,...,N;_1}.

with ¢; = cos? (jw%) and s; = sin® (jw%).

0.4 . . . 0.4 . | |
=02 /M\ | -2 02 /\
oo ' o0
5 oo & o2

0% 2 4 6 8 0% 5 4 6 8

k e
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

0100 G al—1 :
RE e = \/—%e / fOI’]E{1,...,Ng_1},
R e = 0 for j= Np_1+1,
R e = —j—%eﬁ—w for j=Ny+1—7 with 7€ {1,...,N;_1}.
with ¢; = cos? (jw%) and s; = sin® (jw%).
0.4 0.4
= 0.2 = 0.2
v oo v oo
5—0.2 5—0.2
04 > 4 6 8 0% > 4 6 8
k k
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

0100 G al—1 :
RE e = \/—%e / fOI’]E{1,...,Ng_1},
R e = 0 for j= Np_1+1,
R e = —j—%eﬁ—w for j=Ny+1—7 with 7€ {1,...,N;_1}.
with ¢; = cos? (jw%) and s; = sin® (jw%).
0.4 0.4
= 0.2 = 0.2
v oo v oo
5—0.2 5—0.2
04 > 4 6 8 0% > 4 6 8
k k
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

0100 G al—1 :
RE e = \/—%e / fOI’]E{1,...,Ng_1},
R e = 0 for j= Np_1+1,
R e = —j—%eﬁ—w for j=Ny+1—7 with 7€ {1,...,N;_1}.
with ¢; = cos? (jw%) and s; = sin® (jw%).
0.4 0.4
= 0.2 = 0.2
Y v oo
5—0.2 5—0.2
04 > 4 6 8 0% > 4 6 8
k k
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

R§_1e£’j = %eg_u for je{1,...,Ny_1},

R, 'e" = 0 for j = Np_1+1,

R e = —j—%eﬁ—%i for j=N,+1—7 with 7e {1,...,N_4}.
with ¢; = cos? (jw%) and s; = sin® (jw%).

0.4 . . . 0.4
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

010 G al—1 :
RE e = \/—%e / fOI’]E{1,...,Ng_1},
R e = 0 for j= Np_1+1,
R e = —j—%eﬁ—w for j=Ny+1—7 with 7€ {1,...,N;_1}.
with ¢; = cos? (jw%) and s; = sin® (jw%).
0.4 0.4
= 0.2 = 0.2
Lo Lo
5—0.2 5—0.2
04 > 4 6 8 0% > 4 6 8
k k
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

R§_1e£’j = %eg_u for je{1,...,Ny_1},

R, 'e" = 0 for j = Np_1+1,

R e = —j—%eﬁ—%i for j=N,+1—7 with 7e {1,...,N_4}.
with ¢; = cos? (jw%) and s; = sin® (jw%).

0.4 . . . 0.4
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

_ 7 ©Cx I .
Rﬁ 196’1 = \/—%eg L for ] € {1, : .,Ng_1},
R:~1et = 0 for j =N 1

V4 T ./_ /—1 + Y
R e = —j—%eﬁ—w for j=Ny+1—7 with 7€ {1,...,N;_1}.

with ¢; = cos? (jw%) and s; = sin® (jw%).

0.4 0.4
= 02 = 02
6. o0
& oo & o2
04 2 4 6 8 04 > 2 6 8
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfy

R§_1e£’j = %eg_u for je{1,...,Ny_1},

R, 'e" = 0 for j = Np_1+1,

R e = —j—%eﬁ—%i for j=N,+1—7 with 7e {1,...,N_4}.
with ¢; = cos? (jw%) and s; = sin® (jw%).

0.4 . . . 0.4
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Analysis of the Linear Restriction

Theorem
The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfty
queg’j: j_j’éef—‘l,j for jE {17'°°7N€—1}7
R e = 0 for j= N, 1 +1,
R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.
with ¢; = cos® (jw%) and s; = sin® (jw%).
0.4 ' ‘ ' 0.4
5 0.2/ 1 éfi 0.2"
0 f W 0 /\//\/
5—0.2- 1 5—0.2-
04 2 4 6 8 04 2 4 6 8
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Analysis of the Linear Restriction

Theorem
The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfty

queg’j: j_j’éef—‘l,j for jE {17'°°7N€—1}7

R, 'e" = 0 for j = Ny_1 +1,

R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.

with ¢; = cos® (jw%) and s; = sin® (jw%).
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Analysis of the Linear Restriction

Theorem
The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfty
queg’j: j_j’éef—‘l,j for jE {17'°°7N€—1}7
R e = 0 for j= N, 1 +1,
R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.
with ¢; = cos® (jw%) and s; = sin® (jw%).
0.4 ' ‘ ' 0.4
5 0.2/ 1 &"-Si 0.2"
m;_) O m(ﬁ)_) 0 G/e/e-\e\e/e/o
5—0.2- 1 5—0.2-
04 2 4 6 8 04 2 4 6 8
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Analysis of the Linear Restriction

Theorem
The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfty
queg’j: j_j’éef—‘l,j for jE {17'°°7N€—1}7
R e = 0 for j= N, 1 +1,
R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.
with ¢; = cos® (jw%) and s; = sin® (jw%).
0.4 ' ‘ ' 0.4
5 0.2/ 1 éfi 0.2"
v 0 v 0 e—e—oTT—g
5—0.2- 1 5—0.2-
04 2 4 6 8 04 2 4 6 8
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Analysis of the Linear Restriction

Theorem
The images of the Fourier modes e/, j = 1,..., N, on Q, concerning
the linear restriction satisfty
queg’j: j_j’éef—‘l,j for jE {17'°°7N€—1}7
R e = 0 for j= N, 1 +1,
R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.
with ¢; = cos® (jw%) and s; = sin® (jw%).
0.4 ' ‘ ' 0.4
5—3\ 0.2} 1 55\ 0.2/
v Of v 0 o—e—o—0—0—0—9
5—0.2- 1 5—0.2-
04 2 4 6 8 04 2 4 6 8
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Analysis of the Linear Restriction

The images of the Fourier modes e/, j =1, ..., N, on Q, concerning
the linear restriction satisfty

R 'e" = \%96—1,/' for je {1,...,Ny_1},

R e = 0 for j= N, 1 +1,

R e = —ZLe" for j=N;+1—7 with je {1,...,Niq}.
with ¢; = cos? (jw%) and s; = sin® (jw%).

0.4 . ‘ . 0.4
~ 0.2 1 0.2
= ol o
MQ_) 0, 1 mq_) 07
oo oo
5_0.2_ \\9\9’// _ 5_0'2_
' ‘ ' ~0.4

04 > 4 6 8 “0 2 4 6 8
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Mapping from €, 4 to Q, (Prolongation)

Definition of the prolongation

A mapping
G : RV RV

Is called prolongation from Q,_4 to €2, if it is linear und injective.

VAVAV,

)

@ Graphical presentation: 0

@ Matrix representation: ( 1
2
1 1 1
PZ — RNgXNg_1
-17 5 ? <
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Effect of the prolongation on the Fourier modes

Applying the prolongation to the scaled Fourier modes

Y 1 :
e’ = e"/
v2hy
yields
1 o 1 a
0.8 1 0.8 1
0.015;
0.6! 2206
5 il e 0.01]
04 R 04 =
0.2 I o2 0.005
% 4 s 12 16 % 4 8 12 16 % "3 %8 ° 12 % e
2 k k
~3,1 ~2,1 ~3,1 ~2,1
e Ple e’ — Ple
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Analysis of the linear prolongation

Theorem

The images of the Fourier modes e/, j =1,..., Ny_1y on Qy_1
concerning the linear prolongation satisfy

P, e =+2 (cje gt Net f)

with ¢; = cos? (’ : ) and s; = sin (%)

oy

: SN 1
0.8l | o8
0.015|
32
0.6 0.6
T w < 0.01]
[ e i g
0.4l 804 |
0l [ 0.005|
% 4 3 2 16 % 4 8 12 16 % "1 8 15 16
k k k
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

Q lterate uf, = My’ + Nb*, m=1,.,j
@ Restrict the defect 0~ = R, 'd",
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j
@ Restrict the defect 0~ = R, 'd",
© Solve A,_ie! " = d* ! exact
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j
@ Restrict the defect 0~ = R, 'd",
© Solve A,_ie! " = d* ! exact

@ Prolongation of the result and correction of the approximate
solution
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j

@ Restrict the defect 0~ = R, 'd",

@ Solve A, e’ ! = d* 7 exact

@ Prolongation of the result and correction of the approximate
solution

Coarse grid correction
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j
@ Restrict the defect 0~ = R, 'd",
© Solve A,_ie! " = d* ! exact

@ Prolongation of the result and correction of the approximate
solution

Coarse grid correction

up® = ub,— P e
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j
@ Restrict the defect 0~ = R, 'd",
© Solve A,_ie! " = d* ! exact

@ Prolongation of the result and correction of the approximate
solution

Coarse grid correction

up® = ub,— P e

oyt 0 A1 gf—1
= Uun—P,_4A, _d
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Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j

@ Restrict the defect 0~ = R, 'd",

@ Solve A, e’ ! = d* 7 exact

@ Prolongation of the result and correction of the approximate

solution

Coarse grid correction

Ufh new _

14 14 —1 gf—1

1 pl—1
un,— P A R

lterative Solvers Multigrid Methods

Andreas Meister (University of Kassel)



Two grid method

Let ef, = ut, — u’* (error), d, = A,e’, = A,ut, — b’ (defect)

@ lterate u’, = Mout,_, + Nb*, m=1, .. j

@ Restrict the defect 0~ = R, 'd",

@ Solve A, e’ ! = d* 7 exact

@ Prolongation of the result and correction of the approximate
solution

Coarse grid correction

up® = ub,— P e

_ 14 14 -1 f—1
= Uun—P,_4A, _d
14 —1 pl—1 4t

= U,- P AR’ (Afuﬁv - bﬁ)
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Coarse grid correction effect on the error

e = Uy, — U™ = oe" and W% (e) = (I - P;_1A, R 'A))e

one obtains
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Coarse grid correction effect on the error

one obtains

/,new

/.ne
e, [1eW

:um
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Coarse grid correction effect on the error

one obtains

/,new

/.ne
e, [1eW

:um

= up, — u" — Pl AR (A, - b)

. uﬁ,*
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Coarse grid correction effect on the error

one obtains

/,new

/.ne
e, [1eW

:um
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Coarse grid correction effect on the error

one obtains

/,new

/.ne
e, [1eW

:um
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Coarse grid correction effect on the error

one obtains

/,new

/.ne
e, [1eW

p— um
= up, — u" — Pl AR (A, - b)
¢ 0 a—1 pl—1p ol

GGK ¢/
— Yy (em)

. uﬁ,*
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Coarse grid correction effect on the Fourier modes

0.5_ M |
oo“m& Or 1
_05
0 4 8 12 16
k
0.5/ -
ﬁ“-—«
ooqsse Or 1
_0.5/ -
0 4 8 12 16
k

Fourier mode

= 05
~ - 0-0-0-0-6-0-6-6-6-6-0-0-0-900 -
xS
3 0.5
0 4 8 12 16
k
= 0.5
OOQ.) 0
S
%m—05
0 4 8 12 16

k

Image under coarse grid correction
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Coarse grid correction effect on the Fourier modes

0.5/ | % 0.5 j
mmr-se Ot ] < Ot ]
~0.5 | 30 0.5 ]
0 4 g8 12 16 0 4 8 12 16
k k
Fourier mode Image under coarse grid correction
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Coarse grid correction effect on the Fourier modes

0.5 Be =05
0 4 8 12 16 ~ 0 4 8 12 16
k k
Fourier mode Image under coarse grid correction
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Analysis of the coarse grid correction

The images of the Fourier modes e/, j =1,..., N, on Q, w.r.t. the
coarse grid correction with linear restriction and prolongation satisfy

wGGK( f/) _ Sj ee,]_l_sj eeaj fOI‘jG {1,...,Ng_1}and]_: Ng‘|‘1 _j7
wGGK( 7/) — eﬁ,j fOI'j — N£—1 + 17

\U?GK (eg’j) — Cjeg’j—I—Cje&J_ forj =Ny, +1—jwithj € {1,...,Ng_1}

where ¢; = cos? (7mhy/2) and s; = sin® (jrhy/2).
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Analysis of the coarse grid correction

Theorem

The images of the Fourier modes e/, j =1,..., N, on Q, w.r.t. the
coarse grid correction with linear restriction and prolongation satisfy

Wy (ee’j) = sje+s e forje{l,... Nyqtandj=Ny+1-]
\IJEGK (eé,j) — et/ for j = Np_1 + 1,

wCK (') = ;€' 4 c; 7 forj= Np+1—Fwithje {1,...,Np1}

where ¢; = cos? (7rh,/2) and s; = sin® (jrh,/2).

0.5¢ 1 Z° 0.5
—_ M CYDQ.)
o3 e : : — - 0600666066600
% 0 < 0
0.5 % 0.5
0 4 8 12 16 0 4 8 12 16
k k
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Analysis of the coarse grid correction

Theorem

The images of the Fourier modes e/, j =1,..., N, on Q, w.r.t. the
coarse grid correction with linear restriction and prolongation satisfy

Wy (ee’j) = sje+s e forje{l,... Nyqtandj=Ny+1-]
\IJEGK (eé,j) — et/ for j = Np_1 + 1,

wCK (') = ;€' 4 c; 7 forj= Np+1—Fwithje {1,...,Np1}

where ¢; = cos? (7rh,/2) and s; = sin® (jrh,/2).

0.5 0.5¢
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Analysis of the coarse grid correction

Theorem

The images of the Fourier modes e/, j =1,..., N, on Q, w.r.t. the
coarse grid correction with linear restriction and prolongation satisfy

Wy (ee’j) = sje+s e forje{l,... Nyqtandj=Ny+1-]
\IJEGK (eé,j) — et/ for j = Np_1 + 1,

wCK (') = ;€' 4 c; 7 forj= Np+1—Fwithje {1,...,Np1}

where ¢; = cos? (7rh,/2) and s; = sin® (jrh,/2).

0.5 0.5¢
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Analysis of the coarse grid correction

The images of the Fourier modes e/, j =1,..., N, on Q, w.r.t. the
coarse grid correction with linear restriction and prolongation satisfy

wGGK( f,j) _ Sj ee,]_l_sj eeaj forj€{1,...,Ng_1}andj: Ng‘|‘1 _j7
wGGK ( 7/) — eﬁ,j fOI'j — N£—1 + 17
ngK (ee,j) = c; e+ c;e" forj=Ny+1—7withje {1,... Np_1}

where ¢; = cos? (7mhy/2) and s; = sin® (jrhy/2).

Andreas Meister (University of Kassel) lterative Solvers Multigrid Methods 57 /73



Analysis of the coarse grid correction

The images of the Fourier modes e/, j =1,..., N, on Q, w.r.t. the
coarse grid correction with linear restriction and prolongation satisfy

wGGK( f,j) _ Sj ee,]_l_sj eeaj fOI‘jG {17...,N€_1}andj: Ng‘|‘1 _j7

wGGK ( 7/) — eﬁ,j fOI'j — N£—1 + 17

\U?GK (ee’j) — Cjeg’j—I—Cje&J_ forj =Ny, +1—jwithj € {1,...,/\/5_1}

where ¢; = cos? (7mhy/2) and s; = sin® (jrhy/2).
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Two grid method
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Two grid method

@ 1 number of steps for pre-smoothing
@ 1> number of steps for post-smoothing
@ Graphical presentation

(¢

(31
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Two grid method - damped Jacobi method (w = 1/4)

Development of the error

Fehler

ed .= (0.75, 0.2, 0.6, 0.45, 0.9, 0.6, 0.8, 0.85,
0.55, 0.7, 0.9, 0.5, 0.6, 0.3, 0.2)" e R™

——————————————————————————————————————
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Analysis of the two grid method

Let the two grid method be defined by damped Jacobi method in
combination with linear restriction and linear prolongation. Then the
images of the Fourier modes e/, j =1, ..., N, on €, satisfy

where ¢; = cos? (jw%), sj = sin? (jw%), A = A% (1/4) and
LT — NLI(1/4).
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Analysis of the two grid method

Let the two grid method be defined by damped Jacobi method in
combination with linear restriction and linear prolongation. Then the
images of the Fourier modes e/, j =1, ..., N, on €, satisfy

waM(y1,u2) <e£,j> _ ()\é,j)w S (()\E,j)vzef,f + ()\E,J_)Vz eE,J_)

for j€{1,...,Ng_1} and j:NE‘|‘1 —j,

where ¢; = cos? (jw%), sj = sin? (jw%), A = A% (1/4) and
AT — NLI(1/4).
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Analysis of the two grid method

Let the two grid method be defined by damped Jacobi method in
combination with linear restriction and linear prolongation. Then the

images of the Fourier modes e/, j = 1,..., N, on , satisfy
\UEZGM(W’VZ) <e£,j> _ ()\B,j)w Sj ((}\E,j)ugeﬁ,j 4+ ()\E,j_)uzeﬁ,j)
for je{1,....,N,_1} and 7= N, +1— |,

waM(V1,V2) (eﬁ,j) _ ()\ﬁ,j)w —I—VQeﬁ,j for ]: NE—‘I 4+ 1,

where ¢; = cos? (jw%), sj = sin? (jw%), A = A% (1/4) and
LT — NLI(1/4).
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Analysis of the two grid method

Let the two grid method be defined by damped Jacobi method in
combination with linear restriction and linear prolongation. Then the

images of the Fourier modes e/, j = 1,..., N, on , satisfy
\UEZGM(I/-],I/Q) <e£,j> _ (}\é,j)m Sj (()\E,j)l/geﬁ,j 4+ ()\E,j_)uzeﬁ,j)
for je{1,....,N,_1} and 7= N, +1— |,
Wy M) (e”) = (\ytreghd for j= Ny ¢ 41,
yZEM(1.2) (ee,/) = (WY (( N2 ghd 4 (\ETYve ee,i)

for j=N;,+1—7 with 7€ {1,... Ny_1},

where ¢; = cos? (jw%), sj = sin? (jw%), A = A% (1/4) and
LT — NLI(1/4).
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Multigrid method

@ Problem: Two grid method is usually not workable
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Multigrid method

@ Problem: Two grid method is usually not workable

@ Extension:
o Solve A,_;e’~' = d“~' approximately on Q,_1
(sufficient, since P;_, A, d"" ~ &)
e Employ a two grid method on €,_;
= three grid method

e Carry forward to obtain a ¢ + 1 grid method
and solve
Aoeo = do

exact.
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Multigrid method

Oukpub 2" 2t = gy (u'?,_f'?)

Eg_l.=l]
For i=1, .. 7

f—1  _ G MGM({r1,0) f—1 #—1
€ =y, (E:'.—]_ o )

uf = uf — Pg_lef;_l

For i=1,. .. 1

uf = ¢y (u'?,_f'?)

Cutpub z’
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Multigrid method

@ V-cycley=1, [ =3:

@ W-cycley=2, [=3:

GI-I'

N
e

2,

\/\/

R P
G i &
A o = /

E E

lterative Solvers
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Multigrid method - damped Jacobi method (w = 1/4)

Poisson’s equation

—u"(x) = f(x) forxeQ,
ux) = 0 for x € 02 = {0, 1}

where

f(x) = %2 (9 sin <%7X> + 25 sin (SWTX>)

Exact solution

u(x) = sin(2xx) cos (%X)

Initialization

ud = (u(xy), - ,u(xn))" — €5 with x; = ihg

using
e .= (0.75, 0.2, 0.6, 0.45, 0.9, 0.6, 0.8, 0.85,

0.55, 0.7, 0.9, 0.5, 0.6, 0.3, 0.2)" e R'™
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Multigrid method - damped Jacobi method (w = 1/4)

Poisson’s equation - V-cycle

o
ool
15} 0.8F
07
n 06}
” = 0.5f
=
& 04t
0.5F
0.3
02t
or 0.1
0_
0.5 -0.1 ' ' ] ' :
1 2 4 6 8 10 12 14 16
X
y
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Multigrid method - damped Jacobi method (w = 1/4)

Poisson’'s equation - W-cycle

o
ool
15} 0.8F
07
n 06}
” = 0.5f
=
& 04t
0.5F
0.3
02t
or 0.1
0_
0.5 -0.1 ' ' '
1 2 4 6 8 10 12 14 16
X
y
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Multigrid method versus Jacobi method

Poisson’s equation - Percentage comparison - Run times

Computational effort
Mesh | Number of | Multigrid method Classical
Unknowns Jacobi method
Q5 7 100 % 117 %
Q4 31 100 % 838 %
Q6 127 100 % 9255 %
Qg 511 100 % 128161 %
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Full multigrid method

@ ldea: Improvement of the initial guess u‘ using coarser grids

@ Vorgehensweise:

e Solve Ayu® = b° on Q, exact.

e Prolongation of u° to 4 and smoothing
= u'.

@ Repeat the last step w.r.t. €25,...,€,
= ut.

e Apply the multigrid method using u*
@ V-cycle~v=1. /=2:
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Full multigrid method - damped Jacobi method

Poisson’s equation - V-cycle
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Full multigrid method - damped Jacobi method

Poisson’'s equation - W-cycle
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Summary
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@ Multigrid methods combine two algorithm with complementary
properties
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@ Multigrid methods combine two algorithm with complementary
properties

@ Damped splitting schemes as smoother

@ Coarse grid correction to handle long wave errors

@ Computational effort grows linearly with the number of unknowns
@ Method is much fast then usual splitting schemes

@ Efficiency depends on the properties of the underlying linear
system

e Algebraic multigrid method
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@ Multigrid methods combine two algorithm with complementary
properties

@ Damped splitting schemes as smoother

@ Coarse grid correction to handle long wave errors

@ Computational effort grows linearly with the number of unknowns
@ Method is much fast then usual splitting schemes

@ Efficiency depends on the properties of the underlying linear
system

e Algebraic multigrid method
@ Applicability as preconditioner
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