Iterative Solvers for Large Linear Systems Part VI: Preconditioning

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

- Basics of Iterative Methods
- Splitting-schemes
 - Jacobi- u. Gauß-Seidel-scheme
 - Relaxation methods
- Methods for symmetric, positive definite Matrices
 - Method of steepest descent
 - Method of conjugate directions
 - CG-scheme

Outline

- Multigrid Method
 - Smoother, Prolongation, Restriction
 - Twogrid Method and Extension
- Methods for non-singular Matrices
 - GMRES
 - BiCG, CGS and BiCGSTAB
- Preconditioning
 - ILU, IC, GS, SGS, ...

Preconditioning

Goal: Convergence acceleration and stabilization

Condition number

Let $A \in \mathbb{R}^{nxn}$ be non-singular, then

```
cond_a(A) = ||A||_a ||A^{-1}||_a
```

is called the condition number of A w.r.t. $||.||_a$

<u>Alternatives:</u> Let $P_L, P_R \in \mathbb{R}^{n \times n}$ be non-singular, then

 $P_L A P_R y = P_L b$ $x = P_R y$

is called a preconditioned system associated with Ax = b.

Left preconditioning: $P_L \neq I$ Right preconditioning: $P_R \neq I$

Two-sided preconditioning: $P_L \neq I \neq P_R$

 $P_L
eq I
eq P_R$

Preconditioning

Goal: Convergence acceleration and stabilization

Condition number

Let $A \in \mathbb{R}^{nxn}$ be non-singular, then

```
cond_a(A) = ||A||_a ||A^{-1}||_a
```

is called the condition number of A w.r.t. $||.||_a$

Alternatives:

Let $P_L, P_R \in \mathbb{R}^{n \times n}$ be non-singular, then

$$P_L A P_R y = P_L b$$
$$x = P_R y$$

is called a preconditioned system associated with Ax = b.

Left preconditioning: $P_L \neq I$ Right preconditioning: $P_R \neq I$ Two-sided preconditioning: $P_L \neq I \neq P_R$

Preconditioning

Properties of the condition number:

- $cond(I) = ||I|| ||I^{-1}|| = 1 \cdot 1 = 1$
- $cond(A) = ||A|| ||A^{-1}|| \ge ||A \cdot A^{-1}|| = ||I|| = 1$
- Let A be normal (d.h. $A^T A = A A^T$), then

$$cond_2(A) = \frac{|\lambda_n|}{|\lambda_1|}$$

where λ_1 , λ_n are both eigenvalues with the smallest and largest absolut value, respectively. (A symmetric \implies A normal)

Crucial points:

- P_L , P_R easy to calculated (or more precisely matrix-vector-products with P_L , P_R easy to calculated).
- A sparse \implies P_L , P_R sparse.
- $P_L A P_R \approx I$, such that

 $cond(P_L A P_R) \approx cond(I) \ll cond(A)$

as good as possible.

Scaling

<u>Choose:</u> $P_L = D$ or $P_R = D$ with $D = diag\{d_{11}, \dots, d_{nn}\}$ <u>Possibilities:</u>

Scaling using the diagonal element

$$d_{ii} = a_{ii}^{-1}, i = 1, \cdots, n$$
 $(a_{ii} \neq 0 \forall i)$

Scaling row- or columnwise w.r.t. the 1-Norm

$$d_{ii} = (\sum_{j=1}^{n} |a_{ij}|)^{-1}, d_{jj} = (\sum_{i=1}^{n} |a_{ij}|)^{-1}$$

Scaling row- or columnwise w.r.t. the 2-Norm

$$d_{ii} = (\sum_{j=1}^{n} a_{ij}^2)^{-\frac{1}{2}}, d_{jj} = (\sum_{i=1}^{n} a_{ij}^2)^{-\frac{1}{2}}$$

• Scaling row- or columnwise w.r.t. the ∞ -Norm

$$d_{ii} = (\max_{j=1,...,n} |a_{ij}|)^{-1}, d_{jj} = (\max_{i=1,...,n} |a_{ij}|)^{-1}$$

Advantage:

Disadvantage:

 \longrightarrow Easy to calculate, low storage requirements

 \longrightarrow Usually very low acceleration of the convergence

Model problem: Convection-Diffusion-Equation

<u>Given:</u> $\beta = (\cos(\alpha), \sin(\alpha)), \alpha = \frac{\pi}{4}, \epsilon = 0.1, \Omega = (0, 1) x (0, 1)$ Sought after: $u \in C^2(\Omega) \cap C(\overline{\Omega})$ with

 $\beta \nabla u - \epsilon \bigtriangleup u = 0$ in Ω and $u(x, y) = x^2 + y^2$ on $\partial \Omega$

Discretization:

•
$$N = 100, h = x_{i+1} - x_i = y_{i+1} - y_i = \frac{1}{N+1}$$

- Central differences for $\triangle u = \partial_x^2 u + \partial_y^2 u$
- One-sided differences for $\nabla u = (\partial_x u, \partial_y u)^T$
- Yields A u = b with

Results of different Preconditioners based on scaling

- L/R: Left/Right Preconditioning
- Z/S: Scaling row- (Z) or columnwise (S)
- 1/2: Scaling w.r.t. the 1-/2-Norm

• Iterative Solution Method: BiCGSTAB

- Splitting method: $x_{m+1} = B^{-1} (B A) x_m + B^{-1} b$ with $B \approx A$ and $B^{-1} x$ simple to calculate.
- <u>Idea:</u> Choose $P_{L/R} = B^{-1}$

Types: A = D + L + R

- Jacobi method $\longrightarrow P = D^{-1}$
- Gauß Seidel method $\longrightarrow P = (D + L)^{-1}$
- SOR method $\longrightarrow P = \omega (D + \omega L)^{-1}$
- Symm. Gauß Seidel method \rightarrow $P = (D + R)^{-1} D (D + L)^{-1}$
- SSOR method \longrightarrow
 - $P = \omega (2 \omega) (D + \omega R)^{-1} D (D + \omega L)^{-1}$

- No additional staroge requirements
- No calculations
- often good acceleration of the convergence

Splitting method: $x_{m+1} = B^{-1} (B - A) x_m + B^{-1} b$ with $B \approx A$ and $B^{-1} x$ simple to calculate.

<u>Idea:</u> Choose $P_{L/R} = B^{-1}$

Types: A = D + L + R

- Jacobi method $\longrightarrow P = D^{-1}$
- Gauß Seidel method $\longrightarrow P = (D + L)^{-1}$
- SOR method $\longrightarrow P = \omega (D + \omega L)^{-1}$
- Symm. Gauß Seidel method \rightarrow $P = (D + R)^{-1} D (D + L)^{-1}$
- SSOR method \longrightarrow

$$P = \omega (2 - \omega) (D + \omega R)^{-1} D (D + \omega L)^{-1}$$

- No additional staroge requirements
- No calculations
- often good acceleration of the convergence

- Splitting method: $x_{m+1} = B^{-1} (B A) x_m + B^{-1} b$ with $B \approx A$ and $B^{-1} x$ simple to calculate.
- <u>Idea:</u> Choose $P_{L/R} = B^{-1}$

Types: A = D + L + R

- Jacobi method $\longrightarrow P = D^{-1}$
- Gauß Seidel method $\longrightarrow P = (D + L)^{-1}$
- SOR method $\longrightarrow P = \omega (D + \omega L)^{-1}$
- Symm. Gauß Seidel method \rightarrow $P = (D + R)^{-1} D (D + L)^{-1}$
- SSOR method \longrightarrow

 $P = \omega (2 - \omega) (D + \omega R)^{-1} D (D + \omega L)^{-1}$

- No additional staroge requirements
- No calculations
- often good acceleration of the convergence

- Splitting method: $x_{m+1} = B^{-1} (B A) x_m + B^{-1} b$ with $B \approx A$ and $B^{-1} x$ simple to calculate.
- <u>Idea:</u> Choose $P_{L/R} = B^{-1}$

Types: A = D + L + R

- Jacobi method $\longrightarrow P = D^{-1}$
- Gauß Seidel method $\longrightarrow P = (D + L)^{-1}$
- SOR method $\longrightarrow P = \omega (D + \omega L)^{-1}$
- Symm. Gauß Seidel method \rightarrow $P = (D + R)^{-1} D (D + L)^{-1}$
- SSOR method \longrightarrow

$$P = \omega (2 - \omega) (D + \omega R)^{-1} D (D + \omega L)^{-1}$$

- No additional staroge requirements
- No calculations
- often good acceleration of the convergence

Results of Splitting-associated preconditioner

• L/R: Left/Right Preconditioning

• Iterative Solution Method: BiCGSTAB

Standard Gaussian elimination yields $A = L \cdot R$

Problems w.r.t. large, sparse matrices:

- Huge computational effort and storage requirements
- Rounding errors

Idea:

• Caclculate
$$A = L \cdot R + F$$
, with

•
$$r_{ii} = 1, i = 1, ..., n$$

•
$$I_{ij} = r_{ij} = 0$$
, if $a_{ij} = 0$

•
$$l_{ij} = r_{ji} = 0$$
, if $i < j$
• $(L \cdot R)_{ij} = a_{ij}$, if $a_{ij} \neq 0$

- $f_{ij} = 0$, if $a_{ij} \neq 0$
- Storage of A = Complete storage of L and R
- Low computational effort compared to standard Gaussian elimination

Standard Gaussian elimination yields $A = L \cdot R$

Problems w.r.t. large, sparse matrices:

- Huge computational effort and storage requirements
- Rounding errors

ldea:

• Caclculate
$$A = L \cdot R + F$$
, with
• $r_{ii} = 1, i = 1, ..., n$
• $l_{ij} = r_{ij} = 0$, if $a_{ij} = 0$
• $l_{ij} = r_{ji} = 0$, if $i < j$
• $(L \cdot R)_{ij} = a_{ij}$, if $a_{ij} \neq 0$

- $f_{ij} = 0$, if $a_{ij} \neq 0$
- Storage of A = Complete storage of L and R
- Low computational effort compared to standard Gaussian elimination

Standard Gaussian elimination yields $A = L \cdot R$

Problems w.r.t. large, sparse matrices:

- Huge computational effort and storage requirements
- Rounding errors

<u>ldea:</u>

• Caclculate
$$A = L \cdot R + F$$
, with

•
$$r_{ii} = 1, i = 1, ..., n$$

•
$$l_{ij} = r_{ij} = 0$$
, if $a_{ij} = 0$

•
$$I_{ij} = r_{ji} = 0$$
, if $i < j$
• $(L \cdot R)_{ij} = a_{ij}$, if $a_{ij} \neq 0$

•
$$f_{ij} = 0$$
, if $a_{ij} \neq 0$

- Storage of A = Complete storage of L and R
- Low computational effort compared to standard Gaussian elimination

Standard Gaussian elimination yields $A = L \cdot R$

Problems w.r.t. large, sparse matrices:

- Huge computational effort and storage requirements
- Rounding errors

<u>ldea:</u>

• Caclculate
$$A = L \cdot R + F$$
, with

•
$$r_{ii} = 1, i = 1, ..., n$$

•
$$I_{ij} = r_{ij} = 0$$
, if $a_{ij} = 0$

•
$$I_{ij} = r_{ji} = 0$$
, if $i < j$
• $(L \cdot R)_{ij} = a_{ij}$, if $a_{ij} \neq 0$

•
$$f_{ij} = 0$$
, if $a_{ij} \neq 0$

- Storage of A = Complete storage of L and R
- Low computational effort compared to standard Gaussian elimination

Procedure:
$$a_{ki} = (L \cdot R)_{ki}$$
 for $a_{ki} \neq 0$ directly yields
$$a_{ki} = \sum_{m=1}^{n} I_{km} r_{mi} \stackrel{r_{mi}=0, m>i}{=} \sum_{m=1}^{i} I_{km} r_{mi} \stackrel{r_{ii}=1}{=} \sum_{m=1}^{i-1} I_{km} r_{mi} + I_{ki}$$

Concerning the i-th coloumn of L one gets

$$I_{ki} = a_{ki} - \sum_{m=1}^{i-1} I_{km} r_{mi}, \ k = i, ..., n, \text{ mit } a_{ki} \neq 0$$

Analogously, the i-th row of R is given by

$$r_{ik} = \frac{1}{I_{ii}}(a_{ik} - \sum_{m=1}^{i-1} I_{im} r_{mk}), k = i+1, ..., n, \text{ mit } a_{ik} \neq 0$$

<u>Preconditioner</u>: $P = R^{-1} L^{-1}$

Advantage: Good improvement of the covergence Disadvantage: Low additional computational effort

Procedure:
$$a_{ki} = (L \cdot R)_{ki}$$
 for $a_{ki} \neq 0$ directly yields
 $a_{ki} = \sum_{m=1}^{n} I_{km} r_{mi} \stackrel{r_{mi}=0, m>i}{=} \sum_{m=1}^{i} I_{km} r_{mi} \stackrel{r_{ii}=1}{=} \sum_{m=1}^{i-1} I_{km} r_{mi} + I_{ki}$

Concerning the i-th coloumn of L one gets

$$I_{ki} = a_{ki} - \sum_{m=1}^{i-1} I_{km} r_{mi}, \ k = i, ..., n, \text{ mit } a_{ki} \neq 0$$

Analogously, the i-th row of R is given by

$$r_{ik} = \frac{1}{I_{ii}}(a_{ik} - \sum_{m=1}^{i-1} I_{im} r_{mk}), k = i+1, ..., n, \text{ mit } a_{ik} \neq 0$$

<u>Preconditioner</u>: $P = R^{-1} L^{-1}$ Advantage: Disadvantage:

Good improvement of the covergence Low additional computational effort and storage requirements

Results of the ILU-Factorization

• L/R: Convection-Diffusion-Equation: $\epsilon = 0.01$

Results of the ILU-Factorization

Andreas Meister (University Kassel)

Iterative Solvers

<u>Given:</u> A x = b, where A symmetric, positive definite

Form of the PCG-scheme:

$$\underbrace{P_L A P_R}_{= A^{p}} x^{p} = P_L b$$
$$x = P_R x^{p}$$

Assumption concerning the applicability of CG:

A^p symmetric, positive definite

Preconditioned CG-scheme (PCG)

Proceeding:

Employ $P_R = P_L^T$ to obtain

(a)
$$(A^{p})^{T} = (P_{L} A P_{L}^{T})^{T} = (P_{L}^{T})^{T} A P_{L}^{T}$$

 $= P_{L} A P_{L}^{T} = A^{p}$

 $\longrightarrow A^{p}$ symmetric

(b) Since $y = P_L^T x \neq 0$ for all $x \neq 0$ one gets

$$(x, A^{p}x) = x^{T} A^{p} x = x^{T} P_{L} A P_{L}^{T} x$$

= $(P_{L}^{T} x)^{T} A P_{L}^{T} x = y^{T} A y > 0$

 $\longrightarrow A^{p}$ positive definite

Incomplete Cholesky-Factorization:

- Procedure is equivalent to the ILU approach
- Benefit from the symmetry of *A*
- Form

$$A = L L^T + F$$

Symmetric Preconditioning

$$P_L A P_R x^{p} = P_L b$$
$$x = P_R x^{p}$$

with

$$P_L = L^{-1}$$
 and $P_R = L^{-T}$

Symmetric Gauß-Seidel method:

- Classical splitting in terms of A = L + D + R
- Basic formulation of the preconditioner

$$P_{SGS} = (D + R)^{-1} D (D + L)^{-1}$$

• Principles of symmetric preconditioners

A symmetric $\implies D + R = D + L^T = (D + L)^T$

A positive definite $\implies a_{ii} = (e_i, Ae_i) > 0$, $e_i = i$ -th canonical basis vector

 $\implies D = diag\{a_{11}, ..., a_{nn}\} = D^{1/2} D^{1/2}$ with $D^{1/2} = diag\{a_{11}^{1/2}, ..., a_{nn}^{1/2}\}$

• Determination of the symmetric preconditioner

$$P_{SGS} = (D + L)^{-T} D^{1/2} D^{1/2} (D + L)^{-1}$$

= $(D^{1/2} (D + L)^{-1})^{T} D^{1/2} (D + L)^{-1} = P_L P_R$

Symmetric Gauß-Seidel method:

- Classical splitting in terms of A = L + D + R
- Basic formulation of the preconditioner

 $P_{SGS} = (D + R)^{-1} D (D + L)^{-1}$

Principles of symmetric preconditioners

A symmetric $\implies D + R = D + L^T = (D + L)^T$

A positive definite $\implies a_{ii} = (e_i, Ae_i) > 0$, $e_i = i$ -th canonical basis vector

 $\implies D = diag\{a_{11}, ..., a_{nn}\} = D^{1/2} D^{1/2}$ with $D^{1/2} = diag\{a_{11}^{1/2}, ..., a_{nn}^{1/2}\}$

Determination of the symmetric preconditioner

$$P_{SGS} = (D + L)^{-T} D^{1/2} D^{1/2} (D + L)^{-1}$$

= $(D^{1/2} (D + L)^{-1})^{T} D^{1/2} (D + L)^{-1} = P_L P_R$

Symmetric Gauß-Seidel method:

- Classical splitting in terms of A = L + D + R
- Basic formulation of the preconditioner

 $P_{SGS} = (D + R)^{-1} D (D + L)^{-1}$

• Principles of symmetric preconditioners

A symmetric $\implies D + R = D + L^T = (D + L)^T$

A positive definite $\implies a_{ii} = (e_i, Ae_i) > 0$, $e_i = i$ -th canonical basis vector

 $\implies D = diag\{a_{11}, ..., a_{nn}\} = D^{1/2} D^{1/2}$ with $D^{1/2} = diag\{a_{11}^{1/2}, ..., a_{nn}^{1/2}\}$

Determination of the symmetric preconditioner

$$P_{SGS} = (D + L)^{-T} D^{1/2} D^{1/2} (D + L)^{-1}$$

= $(D^{1/2} (D + L)^{-1})^{T} D^{1/2} (D + L)^{-1} = P_L P_R$

Symmetric Gauß-Seidel method:

- Classical splitting in terms of A = L + D + R
- Basic formulation of the preconditioner

 $P_{SGS} = (D + R)^{-1} D (D + L)^{-1}$

• Principles of symmetric preconditioners

A symmetric $\implies D + R = D + L^T = (D + L)^T$

A positive definite $\implies a_{ii} = (e_i, Ae_i) > 0$, $e_i = i$ -th canonical basis vector

 $\implies D = diag\{a_{11}, ..., a_{nn}\} = D^{1/2} D^{1/2}$ with $D^{1/2} = diag\{a_{11}^{1/2}, ..., a_{nn}^{1/2}\}$

• Determination of the symmetric preconditioner

$$P_{SGS} = (D + L)^{-T} D^{1/2} D^{1/2} (D + L)^{-1}$$

= $(D^{1/2} (D + L)^{-1})^{T} D^{1/2} (D + L)^{-1} = P_L P_R$

Symmetric Gauß-Seidel method:

- Classical splitting in terms of A = L + D + R
- Basic formulation of the preconditioner

 $P_{SGS} = (D + R)^{-1} D (D + L)^{-1}$

• Principles of symmetric preconditioners

A symmetric $\implies D + R = D + L^T = (D + L)^T$

A positive definite $\implies a_{ii} = (e_i, Ae_i) > 0$, $e_i = i$ -th canonical basis vector

 $\implies D = diag\{a_{11}, ..., a_{nn}\} = D^{1/2} D^{1/2}$ with $D^{1/2} = diag\{a_{11}^{1/2}, ..., a_{nn}^{1/2}\}$

Determination of the symmetric preconditioner

$$P_{SGS} = (D + L)^{-T} D^{1/2} D^{1/2} (D + L)^{-1}$$

= $\underbrace{(D^{1/2} (D + L)^{-1})^{T}}_{P_L :=} \underbrace{D^{1/2} (D + L)^{-1}}_{P_R :=} = P_L P_R$

Preconditioners in practical applications

Applications:

- Simulation of inviscid fluid flow Euler equations
- Simulation of viscous fluid flow Navier-Stokes equations

Numerical method:

- Finite-Volumen method using unstructered grids
- Implicit time integration scheme
 - Solution of a (non-)linear system of equations Ax = b each timestep
 - Properties of the matrix $A \in \mathbb{R}^{n \times n}$
 - \circ large: $n \approx 10^4 10^6$
 - \circ sparse ($\approx 0.1\%$)
 - \circ unsymmetric
 - badly conditioned

BiNACA0012-profil

Ma= 0.55, Angle of attack 6°, inviscid, Triangulation: 13577 points

Fig.: Triangulation and isolines of the density distribution

Andreas Meister (University Kassel)

Iterative Solvers

BiNACA0012-profil

Andreas Meister (University Kassel)

NACA0012-profil

Re= 500, Ma= 0.85, Angle of attack 0° , Triangulation: 8742 points

Fig.: Triangulation and isolines of the Mach number distribution

Andreas Meister (University Kassel)

NACA0012-profil

Andreas Meister (University Kassel)

Laminar flow about a flat plate

 $Re=6 \cdot 10^6$, Ma=5.0, Angle of attack 0°

Triangulation: 7350 points

Fig.: Isolines of the Mach number distribution

Laminar flow about a flat plate

RAE 2822-profil

Ma= 0.75, Angle of attack 3° , inviscid Triangulation: 9974 triangles, 5071 points

Fig.: Density and C_p -distribution

Iterative Solvers

Explicit scheme	Implicit scheme	
	Scaling	Incomplete LU(5)
3497%	852%	100%

Tab.: Percentage comparison of the CPU-time

SKF1.1-profil

Ma= 0.65, Angle of attack 3° , inviscid Triangulation: 46914 triangles, 23751 points

Fig.: Density and C_p -distribution

Explicit scheme	Implicit scheme	
	Scaling	Incomplete LU(5)
1003%	688%	100%

Tab.: Percentage comparison of the CPU-time

Preconditioning: General procedure

$$A x = b \iff \begin{cases} P_L A P_R y = P_L b \\ x = P_R y \end{cases}$$

Goal: Convergence acceleration and stabilization

Alternatives:

- Scaling
- Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
- Incomplete Factorization (ILU, IC)

PCG-scheme:

- $P_R = P_L^T \implies P_L A P_R$ symm. pos. def., if A symm. pos. def.
- Symmetric Gauß-Seidel-scheme, IC

Preconditioning: General procedure

$$A x = b \iff \begin{cases} P_L A P_R y = P_L b \\ x = P_R y \end{cases}$$

Goal: Convergence acceleration and stabilization

Alternatives:

- Scaling
- Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
- Incomplete Factorization (ILU, IC)

PCG-scheme:

- $P_R = P_L^T \implies P_L A P_R$ symm. pos. def., if A symm. pos. def.
- Symmetric Gauß-Seidel-scheme, IC

Preconditioning: General procedure

$$A x = b \iff \begin{cases} P_L A P_R y = P_L b \\ x = P_R y \end{cases}$$

<u>Goal:</u> Convergence acceleration and stabilization Alternatives:

- Scaling
- Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
- Incomplete Factorization (ILU, IC)

PCG-scheme:

- $P_R = P_L^T \implies P_L A P_R$ symm. pos. def., if A symm. pos. def.
- Symmetric Gauß-Seidel-scheme, IC

Preconditioning: General procedure

$$A x = b \iff \begin{cases} P_L A P_R y = P_L b \\ x = P_R y \end{cases}$$

Goal: Convergence acceleration and stabilization

Alternatives:

- Scaling
- Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
- Incomplete Factorization (ILU, IC)

PCG-scheme:

- $P_R = P_L^T \implies P_L A P_R$ symm. pos. def., if A symm. pos. def.
- Symmetric Gauß-Seidel-scheme, IC

Preconditioning: General procedure

$$A x = b \iff \begin{cases} P_L A P_R y = P_L b \\ x = P_R y \end{cases}$$

Goal: Convergence acceleration and stabilization

Alternatives:

- Scaling
- Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
- Incomplete Factorization (ILU, IC)

PCG-scheme:

- $P_R = P_L^T \implies P_L A P_R$ symm. pos. def., if A symm. pos. def.
- Symmetric Gauß-Seidel-scheme, IC