
Iterative Solvers for Large Linear Systems

Part VI: Preconditioning

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 1 / 31

Outline

Basics of Iterative Methods

Splitting-schemes

Jacobi- u. Gauß-Seidel-scheme
Relaxation methods

Methods for symmetric, positive definite Matrices

Method of steepest descent
Method of conjugate directions
CG-scheme

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 2 / 31

Outline

Multigrid Method

Smoother, Prolongation, Restriction

Twogrid Method and Extension

Methods for non-singular Matrices
GMRES
BiCG, CGS and BiCGSTAB

Preconditioning
ILU, IC, GS, SGS, ...

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 3 / 31

Preconditioning

Goal: Convergence acceleration and stabilization

Condition number
Let A ∈ Rnxn be non-singular, then

conda(A) = ||A||a ||A−1||a

is called the condition number of A w.r.t. ||.||a

Alternatives:
Let PL,PR ∈ Rnxn be non-singular, then

PL A PR y = PL b
x = PR y

is called a preconditioned system associated with Ax = b.

Left preconditioning: PL 6= I

Right preconditioning: PR 6= I

Two-sided preconditioning: PL 6= I 6= PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 4 / 31

Preconditioning

Goal: Convergence acceleration and stabilization

Condition number
Let A ∈ Rnxn be non-singular, then

conda(A) = ||A||a ||A−1||a

is called the condition number of A w.r.t. ||.||a

Alternatives:
Let PL,PR ∈ Rnxn be non-singular, then

PL A PR y = PL b
x = PR y

is called a preconditioned system associated with Ax = b.

Left preconditioning: PL 6= I

Right preconditioning: PR 6= I

Two-sided preconditioning: PL 6= I 6= PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 4 / 31

Preconditioning

Properties of the condition number:

cond(I) = ||I|| ||I−1|| = 1 · 1 = 1

cond(A) = ||A|| ||A−1|| ≥ ||A · A−1|| = ||I|| = 1

Let A be normal (d.h. AT A = AAT), then

cond2(A) = |λn|
|λ1|

where λ1, λn are both eigenvalues with the smallest and largest
absolut value, respectively.
(A symmetric =⇒ A normal)

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 5 / 31

Preconditioning

Crucial points:

PL, PR easy to calculated (or more precisely
matrix-vector-products with PL, PR easy to calculated).

A sparse =⇒ PL, PR sparse.

PL A PR ≈ I, such that

cond(PL A PR) ≈ cond(I)� cond(A)

as good as possible.

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 6 / 31

Scaling
Choose: PL = D or PR = D with D = diag{d11, · · · , dnn}

Possibilities:

Scaling using the diagonal element

dii = a−1
ii , i = 1, · · · , n (aii 6= 0 ∀i)

Scaling row- or columnwise w.r.t. the 1-Norm

dii = (
n∑

j=1

|aij |)−1 , djj = (
n∑

i=1

|aij |)−1

Scaling row- or columnwise w.r.t. the 2-Norm

dii = (
n∑

j=1

a2
ij)−

1
2 , djj = (

n∑
i=1

a2
ij)−

1
2

Scaling row- or columnwise w.r.t. the∞-Norm

dii = (max
j=1,...,n

|aij |)−1 , djj = (max
i=1,...,n

|aij |)−1

Advantage: −→ Easy to calculate, low storage requirements

Disadvantage: −→ Usually very low acceleration of the convergence

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 7 / 31

Model problem: Convection-Diffusion-Equation

Given: β = (cos(α) , sin(α)) , α = π
4 , ε = 0.1 , Ω = (0,1) x (0,1)

Sought after: u ∈ C2(Ω) ∩ C(Ω) with

β Ou − ε 4u = 0 in Ω and u(x , y) = x2 + y2 on ∂ Ω

Discretization:

N = 100, h = xi+1 − xi = yi+1 − yi = 1
N+1

Central differences for 4u = ∂2
x u + ∂2

y u

One-sided differences for Ou = (∂xu, ∂yu)T

Yields A u = b with

A = tridiag{ D , B , −ε I } ∈ RN2xN2

B = tridiag{ −ε − h cosα , 4ε + h (cosα + sinα) , −ε} ∈ RNxN

D = diag { −ε − h sinα} ∈ RNxN

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 8 / 31

Results of different Preconditioners based on scaling

L/R: Left/Right Preconditioning
Z/S: Scaling row- (Z) or columnwise (S)
1/2: Scaling w.r.t. the 1-/2-Norm

Iterative Solution Method: BiCGSTAB

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 9 / 31

Splitting-associated preconditioners

Splitting method: xm+1 = B−1 (B − A) xm + B−1b
with B ≈ A and B−1x simple to calculate.

Idea: Choose PL/R = B−1

Types: A = D + L + R

Jacobi - method −→ P = D−1

Gauß - Seidel - method −→ P = (D + L)−1

SOR - method −→ P = ω (D + ω L)−1

Symm. Gauß - Seidel - method −→
P = (D + R)−1 D (D + L)−1

SSOR - method −→
P = ω (2 − ω) (D + ω R)−1 D (D + ω L)−1

Advantages:
No additional staroge requirements
No calculations
often good acceleration of the convergence

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 10 / 31

Splitting-associated preconditioners

Splitting method: xm+1 = B−1 (B − A) xm + B−1b
with B ≈ A and B−1x simple to calculate.

Idea: Choose PL/R = B−1

Types: A = D + L + R

Jacobi - method −→ P = D−1

Gauß - Seidel - method −→ P = (D + L)−1

SOR - method −→ P = ω (D + ω L)−1

Symm. Gauß - Seidel - method −→
P = (D + R)−1 D (D + L)−1

SSOR - method −→
P = ω (2 − ω) (D + ω R)−1 D (D + ω L)−1

Advantages:
No additional staroge requirements
No calculations
often good acceleration of the convergence

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 10 / 31

Splitting-associated preconditioners

Splitting method: xm+1 = B−1 (B − A) xm + B−1b
with B ≈ A and B−1x simple to calculate.

Idea: Choose PL/R = B−1

Types: A = D + L + R

Jacobi - method −→ P = D−1

Gauß - Seidel - method −→ P = (D + L)−1

SOR - method −→ P = ω (D + ω L)−1

Symm. Gauß - Seidel - method −→
P = (D + R)−1 D (D + L)−1

SSOR - method −→
P = ω (2 − ω) (D + ω R)−1 D (D + ω L)−1

Advantages:
No additional staroge requirements
No calculations
often good acceleration of the convergence

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 10 / 31

Splitting-associated preconditioners

Splitting method: xm+1 = B−1 (B − A) xm + B−1b
with B ≈ A and B−1x simple to calculate.

Idea: Choose PL/R = B−1

Types: A = D + L + R

Jacobi - method −→ P = D−1

Gauß - Seidel - method −→ P = (D + L)−1

SOR - method −→ P = ω (D + ω L)−1

Symm. Gauß - Seidel - method −→
P = (D + R)−1 D (D + L)−1

SSOR - method −→
P = ω (2 − ω) (D + ω R)−1 D (D + ω L)−1

Advantages:
No additional staroge requirements
No calculations
often good acceleration of the convergence

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 10 / 31

Results of Splitting-associated preconditioner

L/R: Left/Right Preconditioning

Iterative Solution Method: BiCGSTAB

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 11 / 31

Incomplete LU-Factorization

Standard Gaussian elimination yields A = L · R

Problems w.r.t. large, sparse matrices:
Huge computational effort and storage requirements
Rounding errors

Idea:
Caclculate A = L · R + F , with

rii = 1, i = 1, ...,n
lij = rij = 0, if aij = 0
lij = rji = 0, if i < j
(L · R)ij = aij , if aij 6= 0

Properties:
fij = 0, if aij 6= 0
Storage of A = Complete storage of L and R
Low computational effort compared to standard Gaussian
elimination

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 12 / 31

Incomplete LU-Factorization

Standard Gaussian elimination yields A = L · R

Problems w.r.t. large, sparse matrices:
Huge computational effort and storage requirements
Rounding errors

Idea:
Caclculate A = L · R + F , with

rii = 1, i = 1, ...,n
lij = rij = 0, if aij = 0
lij = rji = 0, if i < j
(L · R)ij = aij , if aij 6= 0

Properties:
fij = 0, if aij 6= 0
Storage of A = Complete storage of L and R
Low computational effort compared to standard Gaussian
elimination

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 12 / 31

Incomplete LU-Factorization

Standard Gaussian elimination yields A = L · R

Problems w.r.t. large, sparse matrices:
Huge computational effort and storage requirements
Rounding errors

Idea:
Caclculate A = L · R + F , with

rii = 1, i = 1, ...,n
lij = rij = 0, if aij = 0
lij = rji = 0, if i < j
(L · R)ij = aij , if aij 6= 0

Properties:
fij = 0, if aij 6= 0
Storage of A = Complete storage of L and R
Low computational effort compared to standard Gaussian
elimination

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 12 / 31

Incomplete LU-Factorization

Standard Gaussian elimination yields A = L · R

Problems w.r.t. large, sparse matrices:
Huge computational effort and storage requirements
Rounding errors

Idea:
Caclculate A = L · R + F , with

rii = 1, i = 1, ...,n
lij = rij = 0, if aij = 0
lij = rji = 0, if i < j
(L · R)ij = aij , if aij 6= 0

Properties:
fij = 0, if aij 6= 0
Storage of A = Complete storage of L and R
Low computational effort compared to standard Gaussian
elimination

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 12 / 31

Incomplete LU-Factorization

Procedure: aki = (L · R)ki for aki 6= 0 directly yields

aki =
n∑

m=1

lkm rmi
rmi =0, m>i=

i∑
m=1

lkm rmi
rii =1=

i−1∑
m=1

lkm rmi + lki

Concerning the i-th coloumn of L one gets

lki = aki −
i−1∑
m=1

lkm rmi , k = i , ...,n, mit aki 6= 0

Analogously, the i-th row of R is given by

rik = 1
lii

(aik −
i−1∑
m=1

lim rmk), k = i + 1, ...,n, mit aik 6= 0

Preconditioner: P = R−1 L−1

Advantage: Good improvement of the covergence
Disadvantage: Low additional computational effort

and storage requirements

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 13 / 31

Incomplete LU-Factorization

Procedure: aki = (L · R)ki for aki 6= 0 directly yields

aki =
n∑

m=1

lkm rmi
rmi =0, m>i=

i∑
m=1

lkm rmi
rii =1=

i−1∑
m=1

lkm rmi + lki

Concerning the i-th coloumn of L one gets

lki = aki −
i−1∑
m=1

lkm rmi , k = i , ...,n, mit aki 6= 0

Analogously, the i-th row of R is given by

rik = 1
lii

(aik −
i−1∑
m=1

lim rmk), k = i + 1, ...,n, mit aik 6= 0

Preconditioner: P = R−1 L−1

Advantage: Good improvement of the covergence
Disadvantage: Low additional computational effort

and storage requirements

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 13 / 31

Results of the ILU-Factorization

L/R: Convection-Diffusion-Equation: ε = 0.01

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 14 / 31

Results of the ILU-Factorization

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 15 / 31

Preconditioned CG-scheme (PCG)

Given: A x = b, where A symmetric, positive definite

Form of the PCG-scheme:

PL A PR︸ ︷︷ ︸
= A p

x p = PL b

x = PR x p

Assumption concerning the applicability of CG:

A p symmetric, positive definite

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 16 / 31

Preconditioned CG-scheme (PCG)

Proceeding:

Employ PR = PT
L to obtain

(a) (A p)T = (PL A PT
L)T = (PT

L)T A PT
L

= PL A PT
L = A p

−→ A p symmetric

(b) Since y = PT
L x 6= 0 for all x 6= 0 one gets

(x ,A px) = xT A p x = xT PL A PT
L x

= (PT
L x)T A PT

L x = yT A y > 0

−→ A p positive definite

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 17 / 31

Preconditioners for PCG

Incomplete Cholesky-Factorization:

Procedure is equivalent to the ILU approach
Benefit from the symmetry of A
Form

A = L LT + F

Symmetric Preconditioning

PL A PR x p = PL b
x = PR x p

with
PL = L−1 and PR = L−T

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 18 / 31

Preconditioners for PCG
Symmetric Gauß-Seidel method:

Classical splitting in terms of A = L + D + R
Basic formulation of the preconditioner

PSGS = (D + R)−1 D (D + L)−1

Principles of symmetric preconditioners

A symmetric =⇒ D + R = D + LT = (D + L)T

A positive definite =⇒ aii = (ei ,Aei) > 0,
ei = i-th canonical basis vector

=⇒ D = diag{a11, ...,ann} = D1/2 D1/2

with D1/2 = diag{a1/2
11 , ...,a

1/2
nn }

Determination of the symmetric preconditioner
PSGS = (D + L)−T D1/2 D1/2 (D + L)−1

= (D1/2 (D + L)−1)T︸ ︷︷ ︸
PL:=

D1/2 (D + L)−1︸ ︷︷ ︸
PR :=

= PL PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 19 / 31

Preconditioners for PCG
Symmetric Gauß-Seidel method:

Classical splitting in terms of A = L + D + R
Basic formulation of the preconditioner

PSGS = (D + R)−1 D (D + L)−1

Principles of symmetric preconditioners

A symmetric =⇒ D + R = D + LT = (D + L)T

A positive definite =⇒ aii = (ei ,Aei) > 0,
ei = i-th canonical basis vector

=⇒ D = diag{a11, ...,ann} = D1/2 D1/2

with D1/2 = diag{a1/2
11 , ...,a

1/2
nn }

Determination of the symmetric preconditioner
PSGS = (D + L)−T D1/2 D1/2 (D + L)−1

= (D1/2 (D + L)−1)T︸ ︷︷ ︸
PL:=

D1/2 (D + L)−1︸ ︷︷ ︸
PR :=

= PL PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 19 / 31

Preconditioners for PCG
Symmetric Gauß-Seidel method:

Classical splitting in terms of A = L + D + R
Basic formulation of the preconditioner

PSGS = (D + R)−1 D (D + L)−1

Principles of symmetric preconditioners

A symmetric =⇒ D + R = D + LT = (D + L)T

A positive definite =⇒ aii = (ei ,Aei) > 0,
ei = i-th canonical basis vector

=⇒ D = diag{a11, ...,ann} = D1/2 D1/2

with D1/2 = diag{a1/2
11 , ...,a

1/2
nn }

Determination of the symmetric preconditioner
PSGS = (D + L)−T D1/2 D1/2 (D + L)−1

= (D1/2 (D + L)−1)T︸ ︷︷ ︸
PL:=

D1/2 (D + L)−1︸ ︷︷ ︸
PR :=

= PL PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 19 / 31

Preconditioners for PCG
Symmetric Gauß-Seidel method:

Classical splitting in terms of A = L + D + R
Basic formulation of the preconditioner

PSGS = (D + R)−1 D (D + L)−1

Principles of symmetric preconditioners

A symmetric =⇒ D + R = D + LT = (D + L)T

A positive definite =⇒ aii = (ei ,Aei) > 0,
ei = i-th canonical basis vector

=⇒ D = diag{a11, ...,ann} = D1/2 D1/2

with D1/2 = diag{a1/2
11 , ...,a

1/2
nn }

Determination of the symmetric preconditioner
PSGS = (D + L)−T D1/2 D1/2 (D + L)−1

= (D1/2 (D + L)−1)T︸ ︷︷ ︸
PL:=

D1/2 (D + L)−1︸ ︷︷ ︸
PR :=

= PL PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 19 / 31

Preconditioners for PCG
Symmetric Gauß-Seidel method:

Classical splitting in terms of A = L + D + R
Basic formulation of the preconditioner

PSGS = (D + R)−1 D (D + L)−1

Principles of symmetric preconditioners

A symmetric =⇒ D + R = D + LT = (D + L)T

A positive definite =⇒ aii = (ei ,Aei) > 0,
ei = i-th canonical basis vector

=⇒ D = diag{a11, ...,ann} = D1/2 D1/2

with D1/2 = diag{a1/2
11 , ...,a

1/2
nn }

Determination of the symmetric preconditioner
PSGS = (D + L)−T D1/2 D1/2 (D + L)−1

= (D1/2 (D + L)−1)T︸ ︷︷ ︸
PL:=

D1/2 (D + L)−1︸ ︷︷ ︸
PR :=

= PL PR

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 19 / 31

Preconditioners in practical applications

Applications:

Simulation of inviscid fluid flow
Euler equations

Simulation of viscous fluid flow
Navier-Stokes equations

Numerical method:

Finite-Volumen method using unstructered grids
Implicit time integration scheme

Solution of a (non-)linear system of equations Ax = b each
timestep
Properties of the matrix A ∈ Rnxn

◦ large: n ≈ 104 − 106

◦ sparse (≈ 0.1%)
◦ unsymmetric
◦ badly conditioned

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 20 / 31

BiNACA0012-profil

Ma= 0.55, Angle of attack 6◦, inviscid,
Triangulation: 13577 points

Fig.: Triangulation and isolines of the density distribution

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 21 / 31

BiNACA0012-profil

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 22 / 31

NACA0012-profil

Re= 500, Ma= 0.85, Angle of attack 0◦, Triangulation: 8742 points

Fig.: Triangulation and isolines of the Mach number distribution

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 23 / 31

NACA0012-profil

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 24 / 31

Laminar flow about a flat plate

Re= 6 · 106, Ma= 5.0, Angle of attack 0◦

Triangulation: 7350 points

Fig.: Isolines of the Mach number distribution

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 25 / 31

Laminar flow about a flat plate

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 26 / 31

RAE 2822-profil

Ma= 0.75, Angle of attack 3◦, inviscid
Triangulation: 9974 triangles, 5071 points

Fig.: Density and Cp-distribution

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 27 / 31

RAE 2822-profil

Explicit scheme Implicit scheme

Scaling Incomplete LU(5)

3497% 852% 100%

Tab.: Percentage comparison of the CPU-time

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 28 / 31

SKF1.1-profil

Ma= 0.65, Angle of attack 3◦, inviscid
Triangulation: 46914 triangles, 23751 points

Fig.: Density and Cp-distribution

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 29 / 31

RAE 2822-profil

Explicit scheme Implicit scheme

Scaling Incomplete LU(5)

1003% 688% 100%

Tab.: Percentage comparison of the CPU-time

Andreas Meister (University Kassel) Iterative Solvers Preconditioning 30 / 31

Summary

Preconditioning: General procedure

A x = b ⇐⇒

{
PL A PR y = PL b

x = PRy

Goal: Convergence acceleration and stabilization
Alternatives:

Scaling
Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
Incomplete Factorization (ILU, IC)

PCG-scheme:

PR = PT
L =⇒ PLAPR symm. pos. def., if A symm. pos. def.

Symmetric Gauß-Seidel-scheme, IC

Results for FVM: Acceleration up to a factor of 10 by using ILU
Andreas Meister (University Kassel) Iterative Solvers Preconditioning 31 / 31

Summary

Preconditioning: General procedure

A x = b ⇐⇒

{
PL A PR y = PL b

x = PRy

Goal: Convergence acceleration and stabilization
Alternatives:

Scaling
Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
Incomplete Factorization (ILU, IC)

PCG-scheme:

PR = PT
L =⇒ PLAPR symm. pos. def., if A symm. pos. def.

Symmetric Gauß-Seidel-scheme, IC

Results for FVM: Acceleration up to a factor of 10 by using ILU
Andreas Meister (University Kassel) Iterative Solvers Preconditioning 31 / 31

Summary

Preconditioning: General procedure

A x = b ⇐⇒

{
PL A PR y = PL b

x = PRy

Goal: Convergence acceleration and stabilization
Alternatives:

Scaling
Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
Incomplete Factorization (ILU, IC)

PCG-scheme:

PR = PT
L =⇒ PLAPR symm. pos. def., if A symm. pos. def.

Symmetric Gauß-Seidel-scheme, IC

Results for FVM: Acceleration up to a factor of 10 by using ILU
Andreas Meister (University Kassel) Iterative Solvers Preconditioning 31 / 31

Summary

Preconditioning: General procedure

A x = b ⇐⇒

{
PL A PR y = PL b

x = PRy

Goal: Convergence acceleration and stabilization
Alternatives:

Scaling
Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
Incomplete Factorization (ILU, IC)

PCG-scheme:

PR = PT
L =⇒ PLAPR symm. pos. def., if A symm. pos. def.

Symmetric Gauß-Seidel-scheme, IC

Results for FVM: Acceleration up to a factor of 10 by using ILU
Andreas Meister (University Kassel) Iterative Solvers Preconditioning 31 / 31

Summary

Preconditioning: General procedure

A x = b ⇐⇒

{
PL A PR y = PL b

x = PRy

Goal: Convergence acceleration and stabilization
Alternatives:

Scaling
Splitting-associated preconditioners (Gauß-Seidel, SOR, ...)
Incomplete Factorization (ILU, IC)

PCG-scheme:

PR = PT
L =⇒ PLAPR symm. pos. def., if A symm. pos. def.

Symmetric Gauß-Seidel-scheme, IC

Results for FVM: Acceleration up to a factor of 10 by using ILU
Andreas Meister (University Kassel) Iterative Solvers Preconditioning 31 / 31

