Iterative Solvers for Large Linear Systems Part I: Introduction and Basics

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

- **Basics of Iterative Methods**
- **Splitting-schemes**
	- Jacobi- u. Gauß-Seidel-scheme
	- Relaxation methods
- Methods for symmetric, positive definite Matrices
	- Method of steepest descent
	- Method of conjugate directions
	- **CG-scheme**

Outline

- **Multigrid Method**
	- Smoother, Prolongation, Restriction
	- **Twogrid Method and Extension**
- Methods for non-singular Matrices
	- GMRES
	- BiCG, CGS and BiCGSTAB
- Preconditioning
	- ILU, IC, GS, SGS, ...

Numerics for linear systems of equations

Fundamentals of Linear Algebra and classical Iterative Solution Methods

- **•** General problem: Given: $A \in \mathbb{C}^{n \times n}$ non-singular, $b \in \mathbb{C}^n$ Sought after: $x \in \mathbb{C}^n$ with $Ax = b$
- Main ideas of Splitting-schemes
	- A trivial approach
- Consistency, convergence and rate of convergence
- **Special Splitting-schemes**
	- **•** Jacobi-method
	- Gauß-Seidel-method
	- Relaxation schemes
		- **SOR-method**

Definition: Iterative methods

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculate succecively approximations $x_m \in \mathbb{C}^n$ for $x^\star = A^{-1}b$ by means of

$$
x_{m+1}=\phi(x_m,b), m=0,1,\ldots.
$$

The method is called linear, if matrices $M, N \in \mathbb{C}^{n \times n}$ exist, such that

$$
\phi(x,b)=Mx+Nb.
$$

The matrix *M* is called iteration matrix.

Procedure: Split $A \in \mathbb{C}^{n \times n}$ by means of $B \in \mathbb{C}^{n \times n}$ (non-singular) in the form:

$$
A=B+(A-B)
$$

Thus, one can write: $Ax = b$

$$
\Leftrightarrow BX + (A - B)x = b
$$

\n
$$
\Leftrightarrow Bx = (B - A)x + b
$$

\n
$$
\Leftrightarrow x = B^{-1}(B - A)x + B^{-1}b
$$

Definition: Iterative methods

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculate succecively approximations $x_m \in \mathbb{C}^n$ for $x^\star = A^{-1}b$ by means of

$$
x_{m+1}=\phi(x_m,b), m=0,1,\ldots.
$$

The method is called linear, if matrices $M, N \in \mathbb{C}^{n \times n}$ exist, such that

$$
\phi(x,b)=Mx+Nb.
$$

The matrix *M* is called iteration matrix.

Procedure: Split $A \in \mathbb{C}^{n \times n}$ by means of $B \in \mathbb{C}^{n \times n}$ (non-singular) in the form:

$$
\mathcal{A} = B + (\mathcal{A} - B)
$$

Thus, one can write: $Ax = b$

$$
\begin{array}{rcl}\n\Longleftrightarrow & Bx + (A - B)x & = & b \\
\Longleftrightarrow & Bx & = & (B - A)x + b \\
\Longleftrightarrow & x & = & B^{-1}(B - A)x + B^{-1}b\n\end{array}
$$

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

$$
x_{m+1} = B^{-1}(B-A)x_m + B^{-1}b, \ \ m = 0, 1, \ldots
$$

Hence, we get:

$$
x_{m+1} = \phi(x_m, b) = Mx_m + Nb
$$

with

$$
M := B^{-1}(B - A)
$$

$$
N := B^{-1}
$$

Each Splitting scheme is linear

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

$$
x_{m+1} = B^{-1}(B-A)x_m + B^{-1}b, \ \ m = 0, 1, \ldots
$$

Hence, we get:

$$
x_{m+1} = \phi(x_m, b) = Mx_m + Nb
$$

with

$$
M := B^{-1}(B - A)
$$

$$
N := B^{-1}
$$

Conclusion:

Each Splitting scheme is linear

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

 $x_{m+1} = B^{-1}(B - A)x_m + B^{-1}b, m = 0, 1, \ldots$

Desired properties of *B*:

• Good approximation of A (fast convergence) • Example: $B = A$ $\implies x_1 = B^{-1}(B - A)x_0 + B^{-1}b$ $=$ $B^{-1}b$

$$
= P^{\top}D
$$

$$
= A^{-1}D
$$

Easy calculation of the matrix-vector-product $B^{-1}x$ (practicability)

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

 $x_{m+1} = B^{-1}(B - A)x_m + B^{-1}b, m = 0, 1, \ldots$

Desired properties of *B*:

• Good approximation of A (fast convergence) • Example: $B = A$ $\implies x_1 = B^{-1}(B - A)x_0 + B^{-1}b$ $=$ $B^{-1}b$ $=$ $A^{-1}b$

Easy calculation of the matrix-vector-product $B^{-1}x$ (practicability)

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

 $x_{m+1} = B^{-1}(B - A)x_m + B^{-1}b, m = 0, 1, \ldots$

Desired properties of *B*:

- **Good approximation of A (fast convergence)**
	- Example: $B = A$

$$
\Rightarrow x_1 = B^{-1}(B-A)x_0 + B^{-1}b
$$

= B^{-1}b
= A^{-1}b

Easy calculation of the matrix-vector-product $B^{-1}x$ (practicability)

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

 $x_{m+1} = B^{-1}(B - A)x_m + B^{-1}b, m = 0, 1, \ldots$

Desired properties of *B*:

- **Good approximation of A (fast convergence)**
	- Example: $B = A$

$$
\Rightarrow x_1 = B^{-1}(B-A)x_0 + B^{-1}b
$$

= B^{-1}b
= A^{-1}b

Easy calculation of the matrix-vector-product $B^{-1}x$ (practicability)

Choose $x_0 \in \mathbb{C}^n$ arbitrarily and calculated successively

 $x_{m+1} = B^{-1}(B - A)x_m + B^{-1}b, m = 0, 1, \ldots$

Desired properties of *B*:

- **Good approximation of A (fast convergence)**
	- Example: $B = A$

$$
\Rightarrow x_1 = B^{-1}(B-A)x_0 + B^{-1}b
$$

= B^{-1}b
= A^{-1}b

- Easy calculation of the matrix-vector-product $B^{-1}x$ (practicability)
- Less assumptions on *A* (useability)

 \bullet Choose $B = I$

$$
\Rightarrow \quad M = I^{-1}(I - A) = I - A
$$

$$
N = I
$$

$$
\Rightarrow \quad X_{m+1} = (I - A)X_m + b
$$

- "+ " : no assumptions on *A*
- "+ " : *I* −1 *x* is easy to calculate
- "- " : bad approximation of *A* in general

Model problem:

$$
\underbrace{\begin{pmatrix} 0.7 & -0.4 \\ -0.2 & 0.5 \end{pmatrix}}_{A:=} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x:=} = \underbrace{\begin{pmatrix} 0.3 \\ 0.3 \end{pmatrix}}_{b:=}
$$

A is non-singular (det $A = 0.27$) and $x^* = A^{-1}b = 0$ $\left(1\right)$

1

 λ

 \bullet Choose $B = I$

$$
\Rightarrow \quad M = I^{-1}(I - A) = I - A
$$

$$
N = I
$$

$$
\Rightarrow \quad X_{m+1} = (I - A)X_m + b
$$

"+ " : no assumptions on *A* "+ " : *I* −1 *x* is easy to calculate "- " : bad approximation of *A* in general

Model problem:

$$
\underbrace{\left(\begin{array}{cc} 0.7 & -0.4 \\ -0.2 & 0.5 \end{array}\right)}_{A:=} \underbrace{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)}_{x:=} = \underbrace{\left(\begin{array}{c} 0.3 \\ 0.3 \end{array}\right)}_{b:=}
$$

A is non-singular (det $A = 0.27$) and $x^{\star} = A^{-1}b = 0$ $\left(1\right)$ 1

 \setminus

Model problem:

Abbildung: Convergence history log₁₀ ε_m

Definition: Spectral radius

A number $\lambda \in \mathbb{C}$ is called eigenvalue of A, if a vector $x \neq 0$ exists, such that $Ax = \lambda x$. The number

 $\rho(A) := \max\{|\lambda| : \lambda \text{ is eigenvalue of } A\}$

is called spectral radius of *A*.

Model problem:

$$
\underbrace{\left(\begin{array}{cc} 0.7 & -0.4 \\ -0.2 & 0.5 \end{array}\right)}_{A:=} \underbrace{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)}_{x:=} = \underbrace{\left(\begin{array}{c} 0.3 \\ 0.3 \end{array}\right)}_{b:=}
$$

• *A* is non-singular (det $A = 0.27$)

$$
x^* = A^{-1}b = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

• Spectral radius of the iteration matrix:

$$
\rho(M) = \rho(I - A) = \rho \begin{pmatrix} 0.3 & 0.4 \\ 0.2 & 0.5 \end{pmatrix} = 0.7
$$

Model problem:

$$
\underbrace{\left(\begin{array}{cc} 0.7 & -0.4 \\ -0.2 & 0.5 \end{array}\right)}_{A:=} \underbrace{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)}_{x:=} = \underbrace{\left(\begin{array}{c} 0.3 \\ 0.3 \end{array}\right)}_{b:=}
$$

• *A* is non-singular (det $A = 0.27$)

$$
x^* = A^{-1}b = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

• Spectral radius of the iteration matrix:

$$
\rho(M) = \rho(I - A) = \rho \left(\begin{array}{cc} 0.3 & 0.4 \\ 0.2 & 0.5 \end{array} \right) = 0.7
$$

Model problem:

$$
\underbrace{\left(\begin{array}{cc} 0.7 & -0.4 \\ -0.2 & 0.5 \end{array}\right)}_{A:=} \underbrace{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)}_{x:=} = \underbrace{\left(\begin{array}{c} 0.3 \\ 0.3 \end{array}\right)}_{b:=}
$$

• *A* is non-singular (det $A = 0.27$)

$$
x^* = A^{-1}b = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

• Spectral radius of the iteration matrix:

$$
\rho(M) = \rho(I - A) = \rho \left(\begin{array}{cc} 0.3 & 0.4 \\ 0.2 & 0.5 \end{array} \right) = 0.7
$$

1 When does a Splitting scheme converge?

2 Which are the ingredients that determine the rate of convergence?

Consistency:

An iterative solution method $x_{m+1} = \phi(x_m, b)$ is called consistent w.r.t. the matrix A, if the solution $x^\star = A^{-1}b$ represents a fixpoint of ϕ , that means

$$
x^* = \phi(x^*, b)
$$

for each right hand side $b \in \mathbb{C}^n$.

If the iterative solution method yields $x_m = A^{-1}b$, then $x_k = A^{-1}b$ for all $k \ge m$.

Consistency:

An iterative solution method $x_{m+1} = \phi(x_m, b)$ is called consistent w.r.t. the matrix A, if the solution $x^\star = A^{-1}b$ represents a fixpoint of ϕ , that means

$$
x^* = \phi(x^*, b)
$$

for each right hand side $b \in \mathbb{C}^n$.

In other words: Consistency means

If the iterative solution method yields $x_m = A^{-1}b$, then $x_k = A^{-1}b$ for all $k \ge m$.

Part I: The cafeteria

Consistency:

Andreas Meister (University of Kassel) Introduction Iterative Solvers Introduction 17 / 32

An iterative solution method is consistent if and only if

 $M = I - NA$.

Justification: Let *x* ? = *A* −1 *b* " \Longleftarrow "Let $M = I - NA$, then we obtain

$$
x^* = Mx^* + N \underbrace{Ax^*}_{=b} = Mx^* + Nb = \phi(x^*, b).
$$

" \Longrightarrow "Let ϕ be consistent, then

$$
x^* = \phi(x^*, b) = Mx^* + Nb = Mx^* + NAx^*
$$

=
$$
(M + NA)x^*
$$

 $b = Ax^*$ $\implies M = I - NA$.

An iterative solution method is consistent if and only if

 $M = I - N A$

Justification: Let *x** = *A*^{−1}*b* " \Longleftarrow "Let $M = I - NA$, then we obtain $x^* = Mx^* + N Ax^*$ $\sum_{i=0}$ =*b* $= Mx^{*} + Nb = \phi(x^{*}, b).$

" \Longrightarrow "Let ϕ be consistent, then

 $x^* = \phi(x^*, b) = Mx^* + Nb = Mx^* + NAx^*$ $=$ $(M + NA)x^*$

 $b = Ax^*$ $\implies M = I - NA$.

An iterative solution method is consistent if and only if

 $M = I - NA$.

Justification: Let *x** = *A*^{−1}*b* " \Longleftarrow "Let $M = I - NA$, then we obtain

$$
x^* = Mx^* + N \underbrace{Ax^*}_{=b} = Mx^* + Nb = \phi(x^*, b).
$$

" \Longrightarrow "Let ϕ be consistent, then

$$
x^* = \phi(x^*, b) = Mx^* + Nb = Mx^* + NAx^*
$$

=
$$
(M + NA)x^*
$$

 $b = Ax^*$ $\implies M = I - NA$.

An iterative solution method is consistent if and only if

 $M = I - NA$.

Justification: Let *x** = *A*^{−1}*b* " \Longleftarrow "Let $M = I - NA$, then we obtain

$$
x^* = Mx^* + N \underbrace{Ax^*}_{=b} = Mx^* + Nb = \phi(x^*, b).
$$

" \Longrightarrow "Let ϕ be consistent, then

$$
x^* = \phi(x^*, b) = Mx^* + Nb = Mx^* + NAx^*
$$

= $(M + NA)x^*$

 $b = A x^*$ $\implies M = I - NA.$ General form of a Splitting method

$$
x_{m+1} = \underbrace{B^{-1}(B-A)}_{M:=}x_m + \underbrace{B^{-1}}_{N:=}b, \ \ m=0,1,\ldots.
$$

For each Splitting method, one gets:
\n
$$
M = B^{-1}(B - A) = I - B^{-1}A = I - NA
$$

Each Splitting method is linear and consistent.

Andreas Meister (University of Kassel) Iterative Solvers Introduction Introduction 19/32

General form of a Splitting method

$$
x_{m+1} = \underbrace{B^{-1}(B-A)}_{M:=}x_m + \underbrace{B^{-1}}_{N:=}b, \ \ m=0,1,\ldots.
$$

For each Splitting method, one gets:

$$
M = B^{-1}(B - A) = I - B^{-1}A = I - NA
$$

Each Splitting method is linear and consistent.

General form of a Splitting method

$$
x_{m+1} = \underbrace{B^{-1}(B-A)}_{M:=}x_m + \underbrace{B^{-1}}_{N:=}b, \ \ m=0,1,\ldots.
$$

For each Splitting method, one gets:

$$
M = B^{-1}(B - A) = I - B^{-1}A = I - NA
$$

Hence:

Each Splitting method is linear and consistent.

Convergence:

An iterative solution method $x_{m+1} = \phi(x_m, b)$ is called convergent, if there exists a limit

$$
x=\lim_{m\to\infty}x_m=\lim_{m\to\infty}\phi(x_{m-1},b)
$$

for each right hand side $b \in \mathbb{C}^n$, which is independent of the initial guess $x_0 \in \mathbb{C}^n$

The method has a unique destination.

Convergence:

An iterative solution method $x_{m+1} = \phi(x_m, b)$ is called convergent, if there exists a limit

$$
x=\lim_{m\to\infty}x_m=\lim_{m\to\infty}\phi(x_{m-1},b)
$$

for each right hand side $b \in \mathbb{C}^n$, which is independent of the initial guess $x_0 \in \mathbb{C}^n$

In other words: Convergence means:

The method has a unique destination.

Convergence:

Andreas Meister (University of Kassel) Iterative Solvers Introduction 21 / 32

Convergence and Consistency

We obtain:

For a consistent and convergent linear iterative solution method $x_{m+1} = \phi(x_m, b)$ one gets

$$
x^* = A^{-1}b = \lim_{m \to \infty} \phi(x_m, b)
$$

for all $x_0 \in \mathbb{C}^n$.

Justification:

- **Convergence**
	- $x = \lim_{m \to \infty} x_m$ represents a fixpoint of the linear mapping ϕ .
	- There exists exactly one fixpoint.
- **Consistency**
	- $x^* = A^{-1}b$ is a fixpoint.

We obtain:

For a consistent and convergent linear iterative solution method $x_{m+1} = \phi(x_m, b)$ one gets

$$
x^* = A^{-1}b = \lim_{m \to \infty} \phi(x_m, b)
$$

for all $x_0 \in \mathbb{C}^n$.

Justification:

- **Convergence**
	- \bullet *x* = lim_{*m*→∞ *x_m* represents a fixpoint of the linear mapping ϕ .}
	- There exists exactly one fixpoint.
- **Consistency**
	- $x^{\star} = A^{-1}b$ is a fixpoint.

Mathematics and the real life

Consistency and Convergence

Banach fixed point theorem

When does a Splitting scheme converge?

Let *D* be a complete subset of a normed space *X* and let $f : D \longrightarrow D$ be a contracting mapping on *X*, then the sequence

 $x_{m+1} = f(x_m)$, $m = 0, 1, ...$

is convergent independent of the initial guess $x_0 \in D.$ Furthermore the unique limit satisfies the equation $x = f(x) \in D$ and thus represents the unique fixpoint of *f*. Thereby, two inequalities describe the rate of convergence:

a priori: $\|x_m - x\| \leq \frac{q^m}{4}$ 1 − *q* $\|x_1 - x_0\|$ a posteriori: $\|x_m - x\| \leq \frac{q}{4}$ 1 − *q* $\|x_m - x_{m-1}\|$

where $0 \leq q < 1$ represents the Lipschitz constant of f.

Banach fixed point theorem

When does a Splitting scheme converge?

Let *D* be a complete subset of a normed space *X* and let $f : D \longrightarrow D$ be a contracting mapping on *X*, then the sequence

$$
x_{m+1}=f(x_m)\quad , m=0,1,\ldots
$$

is convergent independent of the initial guess $x_0 \in D.$ Furthermore the unique limit satisfies the equation $x = f(x) \in D$ and thus represents the unique fixpoint of *f*. Thereby, two inequalities describe the rate of convergence:

a priori:
$$
||x_m - x|| \le \frac{q^m}{1 - q} ||x_1 - x_0||
$$

a posteriori:
$$
||x_m - x|| \le \frac{q}{1-q} ||x_m - x_{m-1}||
$$

where 0 ≤ *q* < 1 represents the Lipschitz constant of *f*.

Definition

Contractivity means: We have

$$
||f(x) - f(y)|| \leq q||x - y||
$$
 with $0 \leq q < 1$.

for all x, y .

Banach fixed point theorem

Example:

We are looking for an $x \in D = [0, 1]$ which satisfies $x = \cos x$. \implies Consequently, we are looking for a fixpoint of

 $f(x) = \cos x$ in [0, 1]

Properties:

\n- **①**
$$
f : [0, 1] \rightarrow [0, 1]
$$
\n- **②** $[0, 1]$ represents a complete subset of \mathbb{R} w.r.t. $||x|| = |x|$.
\n- **③** $f'(x) = -\sin x$ $\Rightarrow q := \max_{x \in [0, 1]} |f'(x)| < 1$ $\Rightarrow |f(x) - f(y)| \leq q \cdot |x - y|$ with $0 \leq q < 1$
\n

 \longrightarrow The sequence $x_{m+1} = f(x_m)$ will converge to $x = f(x)$ independet of the initial value $x_0 \in [0,1]$.

Banach fixed point theorem

Fig.:Convergence history concerning $x_0 = 0.25$

Convergence

In the context of a Splitting scheme we have:

 $\|\phi(x, b) - \phi(y, b)\| = \|Mx + Nb - (My + Nb)\| = \|M(x - y)\| \le \|M\| \|x - y\|$

Let $\|M\|$ < 1, then the Splitting method

 $\phi(x, b) = Mx + Nb$

convergent.

A-priori error estimate:

$$
||x_m - x^*|| \le \frac{||M||^m}{1 - ||M||} ||x_1 - x_0||
$$

Convergence

In the context of a Splitting scheme we have:

 $\| \phi(x, b) - \phi(y, b) \| = \| Mx + Nb - (My + Nb) \| = \| M(x - y) \| \le \| M \| \| x - y \|$

Thus our fixpoint theorem reads

Let $\|M\|$ < 1, then the Splitting method

$$
\phi(x,b)=Mx+Nb
$$

convergent.

A-priori error estimate:

$$
||x_m - x^*|| \le \frac{||M||^m}{1 - ||M||} ||x_1 - x_0||
$$

There hold:

- $\rho(M) \leq ||M||$ for each matrix norm $|| \cdot ||$.
- For each matrix M and each $\epsilon > 0$ there exists a norm such that

$\|M\| \leq \rho(M) + \epsilon.$

Thus, for each *M* we can write:

- **•** If there exists a norm such that $\|M\| < 1$, then $\rho(M) < 1$
- if $\rho(M)$ < 1, then there exists a norm such that $\|M\|$ < 1.

We obtain:

A Splitting method $\phi(x, b) = Mx + Nb$ is convergent if and only if

 $\rho(M) < 1$

holds.

Definition: Rate of convergence

 $\rho(M)$ is called rate of convergence.

1 When does a Splitting scheme converge?

Method is convergent if and only if $\iff \rho(M) < 1$

2 Which are the ingredients that determine the rate of convergence?

The rate convergence directly depends on ρ(*M*)

 \implies The smaller the merrier

1 When does a Splitting scheme converge? Method is convergent if and only if $\iff \rho(M) < 1$

2 Which are the ingredients that determine the rate of convergence?

The rate convergence directly depends on ρ(*M*)

 \implies The smaller the merrier

1 When does a Splitting scheme converge?

Method is convergent if and only if $\iff \rho(M) < 1$

2 Which are the ingredients that determine the rate of convergence? The rate convergence directly depends on ρ(*M*)

 \implies The smaller the merrier

- Splitting methods are always linear.
- Splitting methods are always consistent.
- Splitting methods converge to $x^* = A^{-1}b$ for each initial guess $x_0\in\mathbb{C}^n$ to $x^\star=A^{-1}b$ if and only if $\rho(\pmb{M})<\pmb{1}.$
- Usually splitting methods are converging

• Rule of thumb for convergent schemes:

Summary

• Splitting methods are always linear.

- Splitting methods are always consistent.
- Splitting methods converge to $x^* = A^{-1}b$ for each initial guess $x_0\in\mathbb{C}^n$ to $x^\star=A^{-1}b$ if and only if $\rho(\pmb{M})<\pmb{1}.$
- Usually splitting methods are converging

faster if the spectral radius $\rho(M)$ is smaller.

• Rule of thumb for convergent schemes:

- Splitting methods are always linear.
- Splitting methods are always consistent.
- Splitting methods converge to $x^* = A^{-1}b$ for each initial guess $x_0\in\mathbb{C}^n$ to $x^\star=A^{-1}b$ if and only if $\rho(\pmb{M})<\pmb{1}.$
- Usually splitting methods are converging

• Rule of thumb for convergent schemes:

- Splitting methods are always linear.
- Splitting methods are always consistent.
- Splitting methods converge to $x^* = A^{-1}b$ for each initial guess $x_0\in\mathbb{C}^n$ to $x^\star=A^{-1}b$ if and only if $\rho(\pmb{M})<\pmb{1}$.
- Usually splitting methods are converging

• Rule of thumb for convergent schemes:

- Splitting methods are always linear.
- **•** Splitting methods are always consistent.
- Splitting methods converge to $x^* = A^{-1}b$ for each initial guess $x_0\in\mathbb{C}^n$ to $x^\star=A^{-1}b$ if and only if $\rho(\pmb{M})<\pmb{1}$.
- Usually splitting methods are converging

• Rule of thumb for convergent schemes:

- **•** Splitting methods are always linear.
- **•** Splitting methods are always consistent.
- Splitting methods converge to $x^* = A^{-1}b$ for each initial guess $x_0\in\mathbb{C}^n$ to $x^\star=A^{-1}b$ if and only if $\rho(\pmb{M})<\pmb{1}$.
- Usually splitting methods are converging

• Rule of thumb for convergent schemes: