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Outline

Basics of Iterative Methods

Splitting-schemes

Jacobi- u. Gauß-Seidel-scheme
Relaxation methods

Methods for symmetric, positive definite Matrices

Method of steepest descent
Method of conjugate directions
CG-scheme
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Outline

Multigrid Method

Smoother, Prolongation, Restriction

Twogrid Method and Extension

Methods for non-singular Matrices
GMRES
BiCG, CGS and BiCGSTAB

Preconditioning
ILU, IC, GS, SGS, ...
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Numerics for linear systems of equations
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Fundamentals of Linear Algebra
and classical Iterative Solution Methods

General problem:
Given: A ∈ Cn×n non-singular, b ∈ Cn

Sought after: x ∈ Cn with Ax = b

Main ideas of Splitting-schemes
A trivial approach

Consistency, convergence and rate of convergence

Special Splitting-schemes
Jacobi-method
Gauß-Seidel-method
Relaxation schemes

SOR-method
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Main ideas of Splitting-schemes

Definition: Iterative methods
Choose x0 ∈ Cn arbitrarily and calculate succecively approximations
xm ∈ Cn for x? = A−1b by means of

xm+1 = φ(xm,b), m = 0,1, . . . .

The method is called linear, if matrices M,N ∈ Cn×n exist, such that

φ(x ,b) = Mx + Nb.

The matrix M is called iteration matrix.

Procedure: Split A ∈ Cn×n by means of B ∈ Cn×n (non-singular) in the
form:

A = B + (A− B)
Thus, one can write: Ax = b

⇐⇒ Bx + (A− B)x = b
⇐⇒ Bx = (B − A)x + b
⇐⇒ x = B−1(B − A)x + B−1b
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Main ideas of Splitting-schemes

Choose x0 ∈ Cn arbitrarily and calculated successively

xm+1 = B−1(B − A)xm + B−1b, m = 0,1, . . . .

Hence, we get:
xm+1 = φ(xm,b) = Mxm + Nb

with
M := B−1(B − A)
N := B−1

Conclusion:
Each Splitting scheme is linear
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Main ideas of Splitting-schemes

Choose x0 ∈ Cn arbitrarily and calculated successively

xm+1 = B−1(B − A)xm + B−1b, m = 0,1, . . . .

Desired properties of B:

Good approximation of A (fast convergence)
Example: B = A

=⇒ x1 = B−1(B − A)x0 + B−1b
= B−1b
= A−1b

Easy calculation of the matrix-vector-product B−1x (practicability)

Less assumptions on A (useability)
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A trivial scheme

Choose B = I
=⇒ M = I−1(I − A) = I − A

N = I
=⇒ xm+1 = (I − A)xm + b

"+ " : no assumptions on A
"+ " : I−1x is easy to calculate
"- " : bad approximation of A in general

Model problem: (
0.7 −0.4
−0.2 0.5

)
︸ ︷︷ ︸

A:=

(
x1
x2

)
︸ ︷︷ ︸

x :=

=
(

0.3
0.3

)
︸ ︷︷ ︸

b:=

A is non-singular (det A = 0.27) and x? = A−1b =
(

1
1

)
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A trivial scheme

Trivial scheme

m xm,1 xm,2 εm := ‖xm − x∗‖∞ εm/εm−1
0 2.100000e+01 -1.900000e+01 2.000000e+01
1 -1.000000e+00 -5.000000e+00 6.000000e+00 3.000000e-01
2 -2.000000e+00 -2.400000e+00 3.400000e+00 5.666667e-01
3 -1.260000e+00 -1.300000e+00 2.300000e+00 6.764706e-01
4 -5.980000e-01 -6.020000e-01 1.602000e+00 6.965217e-01
5 -1.202000e-01 -1.206000e-01 1.120600e+00 6.995006e-01
6 2.157000e-01 2.156600e-01 7.843400e-01 6.999286e-01
7 4.509740e-01 4.509700e-01 5.490300e-01 6.999898e-01
8 6.156802e-01 6.156798e-01 3.843202e-01 6.999985e-01
9 7.309760e-01 7.309759e-01 2.690241e-01 6.999998e-01

10 8.116832e-01 8.116832e-01 1.883168e-01 7.000000e-01
11 8.681782e-01 8.681782e-01 1.318218e-01 7.000000e-01
12 9.077248e-01 9.077248e-01 9.227525e-02 7.000000e-01
13 9.354073e-01 9.354073e-01 6.459267e-02 7.000000e-01
14 9.547851e-01 9.547851e-01 4.521487e-02 7.000000e-01
15 9.683496e-01 9.683496e-01 3.165041e-02 7.000000e-01
20 9.946805e-01 9.946805e-01 5.319484e-03 7.000000e-01
25 9.991060e-01 9.991060e-01 8.940457e-04 7.000000e-01
30 9.998497e-01 9.998497e-01 1.502623e-04 7.000000e-01
40 9.999958e-01 9.999958e-01 4.244537e-06 7.000000e-01
55 1.000000e-00 1.000000e-00 2.015120e-08 7.000000e-01
70 1.000000e-00 1.000000e-00 9.566903e-11 7.000002e-01
85 1.000000e-00 1.000000e-00 4.540812e-13 6.998631e-01
96 1.000000e-00 1.000000e-00 8.881784e-15 6.956522e-01
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A trivial scheme

Model problem:

Abbildung: Convergence history log10 εm
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A trivial scheme

Definition: Spectral radius
A number λ ∈ C is called eigenvalue of A, if a vector x 6= 0 exists, such
that Ax = λx . The number

ρ(A) := max{|λ| : λ is eigenvalue of A}

is called spectral radius of A.
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A trivial scheme

Model problem: (
0.7 −0.4
−0.2 0.5

)
︸ ︷︷ ︸

A:=

(
x1
x2

)
︸ ︷︷ ︸

x :=

=
(

0.3
0.3

)
︸ ︷︷ ︸

b:=

A is non-singular (detA = 0.27)

x? = A−1b =
(

1
1

)
Spectral radius of the iteration matrix:

ρ(M) = ρ(I − A) = ρ

(
0.3 0.4
0.2 0.5

)
= 0.7
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Consistency, convergence and rate of convergence

Aim: Find an answer to each of the following questions

1 When does a Splitting scheme converge?

2 Which are the ingredients that determine the rate of convergence?

Andreas Meister (University of Kassel) Iterative Solvers Introduction 14 / 32



Consistency, convergence and rate of convergence

Consistency:
An iterative solution method xm+1 = φ(xm,b) is called consistent w.r.t.
the matrix A, if the solution x? = A−1b represents a fixpoint of φ, that
means

x? = φ(x?,b)

for each right hand side b ∈ Cn.

In other words: Consistency means

If the iterative solution method yields xm = A−1b,
then xk = A−1b for all k ≥ m.
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Mathematics and the real life

Part I: The cafeteria
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Mathematics and the real life

Consistency:
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Consistency

Statement for consistency
An iterative solution method is consistent if and only if

M = I − NA.

Justification: Let x? = A−1b
"⇐= "Let M = I − NA, then we obtain

x? = Mx? + N Ax?︸︷︷︸
=b

= Mx? + Nb = φ(x?,b).

"=⇒ "Let φ be consistent, then

x? = φ(x?,b) = Mx? + Nb = Mx? + NAx?

= (M + NA)x?

b=Ax?

=⇒ M = I − NA.

Andreas Meister (University of Kassel) Iterative Solvers Introduction 18 / 32



Consistency

Statement for consistency
An iterative solution method is consistent if and only if

M = I − NA.

Justification: Let x? = A−1b
"⇐= "Let M = I − NA, then we obtain

x? = Mx? + N Ax?︸︷︷︸
=b

= Mx? + Nb = φ(x?,b).

"=⇒ "Let φ be consistent, then

x? = φ(x?,b) = Mx? + Nb = Mx? + NAx?

= (M + NA)x?

b=Ax?

=⇒ M = I − NA.

Andreas Meister (University of Kassel) Iterative Solvers Introduction 18 / 32



Consistency

Statement for consistency
An iterative solution method is consistent if and only if

M = I − NA.

Justification: Let x? = A−1b
"⇐= "Let M = I − NA, then we obtain

x? = Mx? + N Ax?︸︷︷︸
=b

= Mx? + Nb = φ(x?,b).

"=⇒ "Let φ be consistent, then

x? = φ(x?,b) = Mx? + Nb = Mx? + NAx?

= (M + NA)x?

b=Ax?

=⇒ M = I − NA.

Andreas Meister (University of Kassel) Iterative Solvers Introduction 18 / 32



Consistency

Statement for consistency
An iterative solution method is consistent if and only if

M = I − NA.

Justification: Let x? = A−1b
"⇐= "Let M = I − NA, then we obtain

x? = Mx? + N Ax?︸︷︷︸
=b

= Mx? + Nb = φ(x?,b).

"=⇒ "Let φ be consistent, then

x? = φ(x?,b) = Mx? + Nb = Mx? + NAx?

= (M + NA)x?

b=Ax?

=⇒ M = I − NA.

Andreas Meister (University of Kassel) Iterative Solvers Introduction 18 / 32



Consistency

General form of a Splitting method

xm+1 = B−1(B − A)︸ ︷︷ ︸
M:=

xm + B−1︸︷︷︸
N:=

b, m = 0,1, . . . .

For each Splitting method, one gets:

M = B−1(B − A) = I − B−1A = I − NA

Hence:
Each Splitting method is linear and consistent.
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Convergence

Convergence:
An iterative solution method xm+1 = φ(xm,b) is called convergent, if
there exists a limit

x = lim
m→∞

xm = lim
m→∞

φ(xm−1,b)

for each right hand side b ∈ Cn, which is independent of the initial
guess x0 ∈ Cn

In other words: Convergence means:
The method has a unique destination.
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Mathematics and the real life

Convergence:
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Convergence and Consistency

We obtain:
For a consistent and convergent linear iterative solution method
xm+1 = φ(xm,b) one gets

x? = A−1b = lim
m→∞

φ(xm,b)

for all x0 ∈ Cn.

Justification:

Convergence
x = limm→∞ xm represents a fixpoint of the linear mapping φ.
There exists exactly one fixpoint.

Consistency
x? = A−1b is a fixpoint.
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Mathematics and the real life

Consistency and Convergence
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Banach fixed point theorem

When does a Splitting scheme converge?

Banach fixed point theorem:
Let D be a complete subset of a normed space X and let f : D −→ D
be a contracting mapping on X , then the sequence

xm+1 = f (xm) ,m = 0,1, . . .

is convergent independent of the initial guess x0 ∈ D. Furthermore the
unique limit satisfies the equation x = f (x) ∈ D and thus represents
the unique fixpoint of f . Thereby, two inequalities describe the rate of
convergence:

a priori: ‖xm − x‖ ≤ qm

1− q
‖x1 − x0‖

a posteriori: ‖xm − x‖ ≤ q
1− q

‖xm − xm−1‖

where 0 ≤ q < 1 represents the Lipschitz constant of f .
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Banach fixed point theorem

Definition
Contractivity means:
We have

‖f (x)− f (y)‖ ≤ q‖x − y‖ with 0 ≤ q < 1.

for all x , y .
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Banach fixed point theorem

Example:

We are looking for an x ∈ D = [0,1] which satisfies x = cos x .
=⇒ Consequently, we are looking for a fixpoint of

f (x) = cos x in [0,1]

Properties:

1 f : [0,1] −→ [0,1]
2 [0,1] represents a complete subset of R w.r.t. ‖x‖ = |x |.
3 f ′(x) = − sin x

=⇒ q := maxx∈[0,1] |f ′(x)| < 1
=⇒ |f (x)− f (y)| ≤ q · |x − y | with 0 ≤ q < 1

−→ The sequence xm+1 = f (xm) will converge to x = f (x)
independet of the initial value x0 ∈ [0,1].
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Banach fixed point theorem

Fig.:Convergence history concerning x0 = 0.25
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Convergence

In the context of a Splitting scheme we have:

‖φ(x ,b)−φ(y ,b)‖ = ‖Mx+Nb−(My+Nb)‖ = ‖M(x−y)‖ ≤ ‖M‖‖x−y‖

Thus our fixpoint theorem reads

Let ‖M‖ < 1, then the Splitting method

φ(x ,b) = Mx + Nb

convergent.

A-priori error estimate:

‖xm − x?‖ ≤ ‖M‖m

1− ‖M‖
‖x1 − x0‖
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Conjuction between norm und spectral radius

There hold:
ρ(M) ≤ ‖M‖ for each matrix norm ‖ · ‖.
For each matrix M and each ε > 0 there exists a norm such that

‖M‖ ≤ ρ(M) + ε.

Thus, for each M we can write:

If there exists a norm such that ‖M‖ < 1, then ρ(M) < 1

if ρ(M) < 1, then there exists a norm such that ‖M‖ < 1.
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Convergence

We obtain:
A Splitting method φ(x ,b) = Mx + Nb is convergent if and only if

ρ(M) < 1

holds.

Definition: Rate of convergence
ρ(M) is called rate of convergence.
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Consistency, convergence and rate of convergence

Aim: Find an answer to each of the following questions

1 When does a Splitting scheme converge?

Method is convergent if and only if⇐⇒ ρ(M) < 1

2 Which are the ingredients that determine the rate of convergence?

The rate convergence directly depends on ρ(M)

=⇒ The smaller the merrier
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Summary

Splitting methods are always linear.

Splitting methods are always consistent.

Splitting methods converge to x? = A−1b for each initial guess
x0 ∈ Cn to x? = A−1b if and only if ρ(M) < 1.

Usually splitting methods are converging

faster if the spectral radius ρ(M) is smaller.

Rule of thumb for convergent schemes:

Squaring down the spectral radius leads to an iterative solution
method, which requires only half of the iteration to reach the same
error bound.
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