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Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. 

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for 
configuration details.  
No product or component can be absolutely secure. 

Your costs and results may vary. 

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. 

© Intel Corporation.  Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  
Other names and brands may be claimed as the property of others.
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Agenda

• Intel® AI stack

• GenAI @ Intel®
• Intel® Optimization for PyTorch/TF

• Intel® Extension of PyTorch

• Intel® Extension of Tensorflow

• Intel® Neural Compressor

• Intel® Extension for Transformers

• Distributed training @ Intel®
• DistributedDataParallel (DDP)

• Horovod

• FSDP (Fully Shared Data Parallel)

• DeepSpeed

• Performance

• Conclusion
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AI Continuum

AI Compute 
Continuum

Model Creation

Training/Fine-Tuning

Deployment

Edge Inference

Localized 
Inference
(Client)

Data Prep

CLOUD & ENTERPRISE

CLIENT & WORKSTATION

EDGE

AI Models

DirectML
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Open Software
Environment

Intel® AI Portfolio 

Deep Learning
Acceleration

General 
Acceleration

General 
Purpose

Dedicated Deep Learning Training and Inference

Cloud Gaming, VDI, Media Analytics, 
Real-Time Dense Video

Parallel Compute, HPC, AI for HPC  

Real-Time, Medium Throughput, 
Low Latency, and Sparse Inference

Medium to Small Scale 
Training and Fine Tuning

Edge and Network 
AI Inference

Inference on Client
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Intel® oneAPI Data 
Analytics Library

Intel® oneAPI Deep 
Neural Network Library

Intel® oneAPI Collective 
Communications Library

Intel® oneAPI 
Math Kernel Library

Data Analytics at Scale

Open, cross-architecture programming model for CPUs, GPUs, and other accelerators

Try the latest Intel tools and hardware, 
and access  optimized AI Models

Intel® Tiber  Developer Cloud
cloud.intel.com

Engineer Data

Neural Compressor
SigOpt
AutoML

Full stack ML operating system

Write Once 
Deploy AnywhereDirectML

Note: components at each layer of the stack are 
optimized for targeted components at other 
layers based on expected AI usage models, and 
not every component is utilized by the solutions 
in the rightmost column

CLOUD & 
ENTERPRISE

CLIENT & 
WORKSTATION

EDGE

Intel optimizations and fine-tuning recipes, 
optimized inference models, and model serving 

Create Models Optimize & Deploy

Intel AI Software Portfolio

Intel distribution

Machine & Deep Learning Frameworks, Optimization and Deployment Tools

Intel-optimized open-source AI tools and frameworks

Intel® Tiber  AI Studio

Partner

*Other names and brands may be claimed as the property of others.
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Intel AI Software by Platform
Category Software

Open 
Source

Optimizations 
Upstreamed*

Intel 
Extension**

Intel 
Distribution

Intel 
Tool / Kit

Orchestration Cnvrg.io No     

Toolkits
BigDL Yes 

OpenVINO Yes       

Optimization
Neural Compressor Yes   

SigOpt Yes    

DL  
Frameworks

TensorFlow Yes     

PyTorch Yes     

ONNX Yes 

PDPD Yes 

DeepSpeed Yes 

OpenFL Yes 

ML 
Frameworks

XGBoost Yes 

Scikit-Learn Yes   

CatBoost Yes 

LightGBM Yes 

Data 
Preprocessing

Modin (for Pandas) Yes  

Intel® Distribution for Python Yes   

Spark Yes  

AI Compilers
Triton Yes 

OpenXLA Yes 

Intel® Xeon® Scalable Processor

Intel® Data Center GPU

Intel® Gaudi® Processors for DL

* Intel strives to upstream as many optimizations for as many hardware targets as soon as possible
** Access more Intel optimizations and target hardware support through API-compliant extensions

https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://software.intel.com/content/www/us/en/develop/topics/ai/analytics-zoo.html
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.tensorflow.org/install/pip
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-tensorflow
https://www.intel.com/content/www/us/en/developer/articles/technical/get-started-habana-gaudi-deep-learning-training.html#gs.vcj3x3
https://pytorch.org/get-started/locally/
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch
https://onnxruntime.ai/
https://github.com/PaddlePaddle/Paddle
https://github.com/intel/intel-extension-for-deepspeed
https://github.com/securefederatedai/openfl
https://xgboost.readthedocs.io/en/latest/
https://intel.github.io/scikit-learn-intelex/
https://github.com/catboost/catboost
https://github.com/microsoft/LightGBM
https://github.com/modin-project/modin
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/distribution-of-modin.html#gs.cnukpg
https://intel.github.io/scikit-learn-intelex/
https://spark.apache.org/
https://github.com/Intel-bigdata/OAP
https://github.com/intel/intel-xpu-backend-for-triton
https://github.com/intel/intel-extension-for-openxla
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https://github.com/microsoft/LightGBM
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https://github.com/intel/intel-extension-for-openxla
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Generative AI Powered by Intel
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Generative AI 
• End of 2022, ChatGPT was released, and the generative AI 

(genAI) craze started!

• Generative AI is the ability for the AI model to create contents 
(text, image , music, code …)

Image fully generated by Stable Diffusion SDXL, a text-
to-image AI 
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• Transformer architecture is the base for 
NLP and genAI (e.g., BERT, LLM, …)

• Composed of 2 building blocks: encoder and 
decoder

Transformers

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you 
need. Advances in neural information processing systems, 30.

Model keeps growing: Starting with Bert 
was 0.3B in 2018

But Recent trend is to scale down: Models are trained 
on better quality (and smaller) dataset 
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Intel's Optimized SW Stack for Generative AI

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor
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GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/ 

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor
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GenAI Deep Learning Funnel Pipeline
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HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers
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Intel® Neural Compressor

Train Model from
 scratch/ 

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
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https://github.com/intel/neural-compressor
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Intel®-Optimized Deep Learning 
Frameworks – Introduction
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Intel®-Optimized Deep Learning Frameworks

▪ Intel®-optimized DL frameworks are drop-in replacement,

• No front code change for the user

▪ Optimizations are up-streamed automatically (TF) or on a regular basis 
(PyTorch) to stock frameworks

oneDNN



18

Intel®-Optimized Deep Learning Frameworks

▪ Intel® Extension for PyTorch and TensorFlow are additional modules for 
functions not supported in standard frameworks (such as mixed precision and 
dGPU support).

▪ As they offer more aggressive optimizations, they offer bigger speed-ups for 
training and inference.

Intel Extension for 

TensorFlow

Intel Extension for 

PyTorch

oneDNN
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Intel®-Optimized Deep Learning Frameworks

Intel Extension for 

TensorFlow

Intel Extension for 

PyTorch

oneDNN
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Data Precision
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Data Precision

▪ Data precision:

Number of bits used to store numerical values in memory

▪ Commonly found types of precision in Deep Learning:

TP32 S 8 bit exp 10 bit mantissa

Ref. https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o 

https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o
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INT8/BF16 on Artificial intelligence/Machine Learning 

• F32 is the default datatypes used in AI/ML for inference, which 
has a high memory footprint and higher latency.

• Low-precision models are faster in computation. To optimize 
and support these:
• HW needs special features/instructions
• Intel provide those in the form of Intel AMX/Intel XMX.

• SYCL Joint Matrix is the coding abstraction to invoke Intel 
AMX/Intel XMX, which ensures portability and performance of 
the code

Ref. https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o 

https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o
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Introduction to Intel® Advanced Matrix Extension and 
Intel® Xᵉ Matrix Extensions

Both these Instruction Sets require Intel® oneAPI Base Toolkit 2023.0.0 and above for compilation

Ref. https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o 

https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o
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Intel® Extension for PyTorch
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PyTorch* Optimizations from Intel
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Intel® Extension for PyTorch* (IPEX)

• Buffer the PRs for stock PyTorch

• Provide users with the up-to-date Intel 
software/hardware features

• Streamline the work to integrate oneDNN

• Unify user experiences on Intel CPU and GPU

O

perator OP
T

M

ix Precisio

n

In
te

l®

Extension for PyT
o

rc
h

*PyTorch
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Major Optimization Methodologies

Operator Optimization

• Vectorization

• Parallelization

• Memory Layout

• Low Precision

Graph Optimization

• Operator fusion

• Constant folding

Runtime Extension

• Thread affinity

• Memory allocation

• General performance optimization and Intel new feature enabling in 
PyTorch upstream

• Additional performance boost and early adoption of aggressive 
optimizations through  Intel® Extension for PyTorch*
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Building and Deploying with BF16
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Low-precision Optimization – BF16

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

S E E E E E E E E M M M M M M M

FP32

BF16

8 bits 23 bits

7 bits

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf 

BF16 has the same range as FP32 but less precision due to 16 less mantissa bits. 
Running with 16 bits can give significant performance speedup.

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
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Inference w/AMX BF16 on 
Intel® Extension for PyTorch (CPU)

Resnet50 BERT
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Training w/AMP on 
Intel® Extension for PyTorch (GPU)

*The .to(“xpu”) is needed for GPU only
**Use torch.cpu.amp.autocast() for CPU
***Channels last format is automatic

Ref: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html 

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html
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Inference w/AMP on
Intel® Extension for PyTorch (GPU)
Resnet50 BERT

*The .to(“xpu”) is needed for GPU only
**Use torch.cpu.amp.autocast() for CPU
***Channels last format is automatic

Ref: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html 

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html
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Intel Extension for PyTorch Performance

Benchmark data for the Intel® 4th Gen Xeon Scalable Processors can be found here.

Ref: https://venturebeat.com/ai/unlocking-generative-ai-with-ubiquitous-hardware-and-open-software/ 

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/platform.html
https://venturebeat.com/ai/unlocking-generative-ai-with-ubiquitous-hardware-and-open-software/
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PyTorch Benchmark: SPR vs ICX Inference 
(Batch Size = 1)

ICX INT8: 3.33-3.98X
SPR BF16: 4.07-6.15X
SPR INT8: 7.35-7.72X

Inference latency speedup: the higher the better

Benchmark data for the Intel® 4th Gen Xeon Scalable Processors can be found here.
Also check Appendix for test configurations.

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/platform.html
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LLM Optimizations with IPEX (Intel® Extension 
for PyTorch)
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CPU:

GPU:

How to apply LLM optimizations with IPEX?
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Examples
• Examples: 

CPU - https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-
rc0/examples/cpu/inference/python/llm 

GPU - https://github.com/intel/intel-extension-for-pytorch/tree/xpu-
main/examples/gpu/inference/python/llm 

A page dedicated to running LLMs with IPEX

• Several ways to set up environment:
     -Docker based
    - Conda Based
     -Pre-built Wheels
     -Build from Source

• Scripts included that set the appropriate environment variables for best 
performance

https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm


Intel ConfidentialDepartment or Event Name 38LRZ Workshop 38

Verified Models: Single Instance

GPU:

CPU:

CPU - https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-
rc0/examples/cpu/inference/python/llm 

GPU - https://github.com/intel/intel-extension-for-pytorch/tree/xpu-
main/examples/gpu/inference/python/llm 

https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
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Deploying with INT8
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Low-precision Optimization – INT8

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

S M M M M M M M

FP32

INT8

8 bits 23 bits

7 bits

▪ Systematic reduction of the precision of all or 
several layers within the model.

What is Quantization?

▪ Reduces model size. Uses less memory storage and 
bandwidth.

▪ Allows for faster inference.

▪ All with minimal accuracy loss.

Why Quantization?

▪ PyTorch quantization

▪ IPEX quantization (with or w/o INC integration)

▪ Intel Neural Compressor (INC)

How to Quantize?

FP32 FP32 FP32

FP32 FP32

INT8 INT8 INT8

INT8 INT8
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Static vs Dynamic Quantization

▪ Quantizes weights and activations of model
▪ Fuses activations into preceding layers
▪ Requires calibration dataset to determine optimal quantization parameters for activations
▪ Used when both memory bandwidth and compute savings are important
▪ Only works on inputs with fixed sizes; not all models are traceable; typically used for CNNs

• Weights are quantized ahead of time, but activations are quantized during inference
• Used when model execution time is dominated more by memory bandwidth than compute
• Can work on inputs with variable sizes; typically used for LSTM and Transformer models 
     with small batch size

Static (Preferred)

Dynamic
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Quantization Workflow and API

Static Quantization Dynamic Quantization
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TorchScript and torch.compile()

• Converts PyTorch model into a graph for faster 
execution

• torch.jit.trace() traces and records all operations 
in the computational graph; requires a sample 
input

• torch.jit.script() parses the Python source code 
of the model and compiles the code into a 
graph; sample input not required

• Makes PyTorch code run faster by just-in-time (JIT)-compiling PyTorch code into 
optimized kernels

TorchScript

torch.compile() – in BETA
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Verifying That AMX Is Used
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How to Check If AMX Is Enabled

• On bash terminal, enter the following command:
• cat /proc/cpuinfo

• Check the “flags” section for amx_bf16, amx_int8

• Alternatively, you can use:
• lscpu | grep amx

• If you do not see them, upgrade to Linux kernel 5.17 and above
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How to Check AMX Is Actually Used

• Generate oneDNN Verbose logs using guide and parser

• To enable verbosity, set environment variables:
• export DNNL_VERBOSE=1

• export DNNL_VERBOSE_TIMESTAMP=1

• Set a Python breakpoint RIGHT AFTER one iteration of 
training/inference

https://oneapi-src.github.io/oneDNN/dev_guide_verbose.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
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oneDNN Verbose Sample Output

▪ Note the ISA. For AMX, you should see the following:
▪ Intel AMX with bfloat16 and 8-bit integer support

▪ Check for AMX in the primitive implementation:
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How to get the Intel Extension for PyTorch

• pip wheel - CPU:

• pip wheel – GPU: 

Note: Intel® Extension for 
PyTorch* has PyTorch version 
requirement. Check the mapping 
table here.

python -m pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cpu
python -m pip install intel-extension-for-pytorch
python -m pip install oneccl_bind_pt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/cpu/us/ 

python -m pip install torch==2.1.0.post2 torchvision==0.16.0.post2 torchaudio==2.1.0.post2 intel-extension-for-pytorch==2.1.30.post0 
oneccl_bind_pt==2.1.300+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

https://intel.github.io/intel-extension-for-pytorch/#introduction
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PyTorch AMX Training/Inference Code Samples

Training

GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-
Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16

Trains a ResNet50 model with Intel Extension for PyTorch and shows performance speedup 
with AMX BF16

Inference

GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-
Analytics/Features-and-
Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8

Performs inference on ResNet50 and BERT with Intel Extension for PyTorch and shows 
performance speedup with AMX BF16 and INT8 over VNNI INT8

https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8
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Intel® Extension for TensorFlow
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Intel® Extension for TensorFlow* (ITEX)

• Provide users with the up-to-date Intel software/hardware features

• Streamline the work to integrate oneDNN

• Unify user experiences on Intel CPU and GPU
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How to use Intel® Extension for TensorFlow* - FP32

import intel_extension_for_tensorflow as itex 

#CPU, GPU or AUTO
backend = "GPU"
itex.set_backend(backend) 

No code changes, the default backend will be Intel GPU after installing intel-
extension-for-tensorflow[xpu]

OR
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Advanced Auto Mixed Precision - Environment Variable

• export ITEX_AUTO_MIXED_PRECISION=1

• export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE="BFLOAT16" (or "FLOAT16“)
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BF16 API
1. Train with BF16 with AVX-512

2. Train with BF16 with AMX

Turned on by default 
after TF 2.11



Intel ConfidentialDepartment or Event Name 55LRZ Workshop 55

BF16 API (cont.)
3. Inference with BF16 without AMX

4. Inference with BF16 with AMX
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• pip wheel - GPU:

pip install --upgrade intel-extension-for-tensorflow[xpu]

How to get the Intel® Extension for TensorFlow*

▪ pip wheel - CPU (experimental)

pip install --upgrade intel-extension-for-tensorflow[cpu]
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TensorFlow Benchmark: SPR vs ICX Inference 
(Batch Size = 1)

ICX INT8: 1.58-4.01X
SPR BF16: 2.15-6.88X
SPR INT8: 3.42-13.58X

Inference latency speedup: the higher the better

Benchmark data for the Intel® 4th Gen Xeon Scalable Processors can be found here.
Also check Appendix for test configurations.

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/platform.html
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TensorFlow AMX Training/Inference Code Samples

• Training
• GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-

Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Training

• Trains a DistilBERT model using Intel Optimization for TensorFlow and shows 
performance speedup with AMX BF16

• Inference
• GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-

Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Inference

• Performs inference on ResNet50v1.5 with Intel Optimization for TensorFlow 
and shows performance speedup with AMX BF16

https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Training
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Training
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Inference
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Inference
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Optimizations under IPEX & ITEX
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Operator 
optimizations

Memory/data 
layout 

optimizations

Graph 
optimizations

Mixed Precision
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Operator Optimizations

• Replace default kernels by 
highly-optimized kernels (using 
Intel® oneDNN)

• Adapt to available instruction 
sets (AMX, AVX-512, AVX2, 
VNNI)

• Adapt to required precision: 
• Training: FP32, BF16

• Inference: FP32, BF16, FP16, and INT8

Intel® oneDNN

Convolution 2D/3D Direct Convolution/Deconvolution, Depthwise 
separable convolution
2D Winograd convolution

Inner Product 2D/3D Inner Production

Pooling 2D/3D Maximum
2D/3D Average (include/exclude padding)

Normalization 2D/3D LRN across/within channel, 2D/3D Batch normalization

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;
Softmax, Logistic, linear; square, sqrt, abs, exp, gelu, swish

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, bfloat16, s8, u8
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Linear Operator Optimization for LLMs

• Optimization of Linear GEMM Kernels in LLM Inference:

• CPU Optimizations:

• Utilizes Intel® oneDNN and customized linear kernels for efficient weight-only quantization.

• Employs specific block formats to maximize hardware resource utilization.

• GPU Optimizations:

• Incorporates Intel® oneDNN and Intel® Xe Templates for Linear Algebra (XeLTA) to enhance performance.

• Customized linear kernels for weight-only quantization streamline GPU computations.

• Common Strategies:

• Both CPU and GPU optimizations focus on accelerating linear GEMM operations critical for LLM inference.

• Targeted optimizations to meet the specific demands of memory-bound linear weight computations in LLMs.

62
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Operator 
optimizations

Memory/data 
layout 

optimizations

Graph 
optimizations

Mixed Precision
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nChw16c
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Memory Layouts Optimization

• Most popular memory layouts for image recognition 
are NHWC and NCHW
• Challenging for Intel processors both for vectorization or 

for memory accesses 

• Intel oneDNN convolutions use blocked 
layouts
• Most popular oneDNN data format is nChw16c on 

AVX512+ systems and nChw8c on SSE4.1+ systems

More details: https://oneapi-src.github.io/oneDNN/dev_guide_understanding_memory_formats.html
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Data Layouts in PyTorch

• Used in Vision workloads

• NCHW
• Default format

• torch.contiguous_format

• NHWC
• torch.channels_last

• NHWC format yields higher performance with IPEX 

Channels last conversion is now applied automatically with IPEX
 Users do not have to explicitly convert input and weight for CV models. 
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Benefit of NHWC in IPEX

Dot line arrows indicate simple 
memory view, no hard copy.

Solid line arrows indicate 
hard copy is required.

Reorder

Reorder
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Operator 
optimizations

Memory/data 
layout 
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Graph 
optimizations

Mixed Precision
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Conv2D

ReLU

Input Filter

Shape

oneDNN- 
Conv2D

Input Filter

Convert

Convert Convert

oneDNN -
ReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

oneDNN- 
Conv2D

Input Filter

Convert Convert

oneDNN-
ReLU

Convert

Shape

After Layout Propagation

68

Graph Optimizations: Layout Propagation
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Fusing Computations

• On Intel processors a high percentage of time is typically spent in bandwidth-limited ops 
such activation functions

• ~40% of ResNet-50, even higher for inference

• The solution is to fuse BW-limited ops with convolutions or one with another to reduce the 
number of memory accesses

• We fuse patterns:  Conv+ReLU+Sum, BatchNorm+ReLU, etc…

Conv

Conv

Sum ReLU

Conv

Conv+ReLU+Sum
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Conv2D

BiasAdd

Input Filter

Bias Conv2DWithBia
s

Input Filter Bias

Before Merge After Merge

70

Graph Optimizations: Fusion
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Fusing Computations in IPEX

• Intel® Extension for PyTorch in JIT/Torchscript mode can fuse: 
• Multi-head-attention fusion, Conv(2, 3)D+SUM+ReLU, Conv(2, 3)D + Sigmoid,

Concat Linear, Linear+Add, Linear+Gelu, Add+LayerNorm fusion,  etc. 

• Hugging Face reports that ~70% of most popular NLP tasks in question-
answering, text-classification, and token-classification can get performance 
benefits with such fusion patterns [1]
• For both Float32 precision and BFloat16 Mixed precision

71

[1] https://huggingface.co/docs/transformers/perf_infer_cpu
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Fusing Computations in LLMs

• Operator Fusion Strategy:

• Reduces memory footprint on CPUs and decreases memory access and kernel launches on GPUs.

• Specific Fusion Techniques:

• Linear Post Ops Fusion: Combines linear operations with activation functions for improved efficiency.

• Customized Operators for Performance:

• Examples:

• Rotary Position Embedding (RoPE): Enhances positional calculations.

• Root Mean Square Layer Normalization (RMSNorm): Streamlines normalization processes.

• Available for Both CPU and GPU: Tailored to exploit the architectural advantages of both platforms.

72
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Operator 
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optimizations

Mixed Precision
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Auto Mixed Precision (AMP)

• 3 Categories of operators
• lower_precision_fp

• Computation bound operators that 
could get performance boost with 
BFloat16. 

• E.g.: conv, linear
• Fallthrough

• Operators that runs with both 
Float32 and BFloat16 but might not 
get performance boost with 
BFloat16.

• E.g.: relu, max_pool2d
• FP32

• Operators that are not enabled with 
BFloat16 support yet. Inputs of 
them are casted into float32 before 
execution.

• E.g.: max_pool3d, group_norm

conv

relu

group_norm

relu

linear

conv

relu

group_norm

relu

linear

BFloat16

Float32

BFloat16
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Profiling tools
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CPU – PyTorch* Profiler

• Use built-in PyTorch profiler API to gain information about 
operator overhead

Measure time and memory consumption

Example Use Direct Output
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GPU – Legacy Profiler Tool
Experimental

• Extension of PyTorch* legacy profiler for profiling operators’ overhead on XPU 
devices

• Users can get the information in many fields of the run models or code scripts
• Export to Chrome Trace

Example Use Direct Output
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Profilers

• Built-in PyTorch profiler

• You can profile your application via oneDNN 
verbose logs.
• DNN_VERBOSE=1 python application.py
• You can also use profile_utils.py script to parse oneDNN 

verbose logs.
• Code sample on oneDNN profiling can be 

found here: https://github.com/oneapi-src/oneAPI-
samples/tree/master/Libraries/oneDNN/tutorials/profilin
g

• Another famous profiling tool is VTune from Intel 
which provides very deep hardware information 
and show them in easier way on how to optimize the 
performance. You can easily find the hotspots 
using VTune. (most costly functions)

https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/master/Libraries/oneDNN/tutorials/profiling/profile_utils.py
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
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Intel® XPU Manager

• Intel® XPU Manager is a free and open-source tool for monitoring and 
managing Intel data center GPUs.

• XPU Manager can be used standalone through its command line 
interface (CLI) to manage GPUs locally, or through its RESTful APIs 
to manage GPUs remotely.

• Can be downloaded through binary packages or docker image.

• Important Links:
• https://github.com/intel/xpumanager 
• https://www.intel.com/content/www/us/en/software/xpu-manager.html 

• Please note:
• If you want to use XPU Manager, please uninstall XPU-SMI (comes default 

through XPU drivers, subset of XPU manager) and install XPU Manager

https://github.com/intel/xpumanager
https://www.intel.com/content/www/us/en/software/xpu-manager.html
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Recipe for Intel® Optimizations with IPEX
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Easy Recipe for Intel® Optimizations with IPEX

• Add IPEX 

• Add some Warmup steps for oneDNN initialization

• Utilize AMX or XMX instruction sets with efficient bfloat16 data type

• Utilize graph mode with TorchScript

• Quantize model to INT8

• Runtime optimizations with Performance Tuning Guide in case of cpu

• Use Advanced configuration in case of xpu.

• Distributed training with oneCCL/ DDP/Horovod/FSDP/DeepSpeed.

• Profile with oneDNN verbose / Pytorch Profiler / VTune for further 
analysis.

https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/advanced_configuration.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://github.com/microsoft/DeepSpeed/
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GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/ 

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor
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Intel Optimized Hugging Face Libraries & Tools

Optimized Models & Spaces

Transformers Diffusers Accelerate PEFT Optimum

Foundational Stack

Dolly LLAMA2 MPT LDM3D Whisper
Hundreds of 

thousands 
more…

Fine Tuning workflows on Hugging Face Platform optimized OOB for Intel products

https://huggingface.co/Intel 

Fine Tuning  for NLP,CV Generative Use Cases Fine Tuning at Scale Efficient Fine Tuning Performance Optimization

https://huggingface.co/Intel
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GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/ 

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor
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Intel® Neural Compressor 
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Intel® Neural Compressor 

Intel® Neural Compressor is designed to use automatic accuracy-aware tuning strategies to help user 
easily & quickly find out the best optimization methods.

Original 
Model

Quantization

Pruning

ML-Driven Auto-Tuning

Mix Precision

Low Precision 
Model

Optimized ModelDistillation

Graphic 
Optimization

• Reduce accuracy loss:

Automatic accuracy-driven quantization 
strategies

• Collaborate with:

Cloud marketplaces such as Google Cloud 
Platform, Amazon Web Services, 
and Azure

Software platforms such as Alibaba 
Cloud, Tencent TACO and Microsoft Olive

Open AI ecosystem such as Hugging 
Face, PyTorch, ONNX, ONNX Runtime, 
and Lightning AI

https://github.com/intel/neural-compressor
https://github.com/intel/neural-compressor/blob/master/docs/source/design.md#workflow
https://console.cloud.google.com/marketplace/product/bitnami-launchpad/inc-tensorflow-intel?project=verdant-sensor-286207
https://console.cloud.google.com/marketplace/product/bitnami-launchpad/inc-tensorflow-intel?project=verdant-sensor-286207
https://aws.amazon.com/marketplace/pp/prodview-yjyh2xmggbmga#pdp-support
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/bitnami.inc-tensorflow-intel
https://www.intel.com/content/www/us/en/developer/articles/technical/quantize-ai-by-oneapi-analytics-on-alibaba-cloud.html
https://www.intel.com/content/www/us/en/developer/articles/technical/quantize-ai-by-oneapi-analytics-on-alibaba-cloud.html
https://new.qq.com/rain/a/20221202A00B9S00
https://github.com/microsoft/Olive
https://huggingface.co/blog/intel
https://huggingface.co/blog/intel
https://pytorch.org/tutorials/recipes/intel_neural_compressor_for_pytorch.html
https://github.com/onnx/models#models
https://github.com/microsoft/onnxruntime
https://github.com/Lightning-AI/lightning/blob/master/docs/source-pytorch/advanced/post_training_quantization.rst
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Deep Learning Inference Optimization

INC use automatic accuracy-driven tuning 
strategies to help user easily & quickly find out 

the best optimization methods above.

Quantization

Pruning

Knowledge Distillation

FP32 FP32 FP32

FP32FP32

INT8 INT8 INT8

INT8 INT8

Graph Optimization

Conv2D

BatchNorm

Relu

Conv2D
BatchNorm

Relu

Mixed Precision Graph Optimization

FP32 FP32 FP32

FP32FP32

INT8 INT8 INT8

BF16 BF16
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Quantization for LLM and GenAI

• Support Popular LLMs:

Bloom-176B, OPT-6.7B, Stable Diffusion, GPT-
J, BERT-Large from popular model hubs such 
as Hugging Face, Torch Vision, and ONNX 
Model Zoo

• HuggingFace style API

IO IO

• Reduce compute requirement
• Accelerate by:

Intel® Deep Learning Boost 
(Intel® Xeon, Core)
Intel® AMX (Intel® Xeon), 
Intel® XMX (Intel® Arc GPU, 
Intel® Data Center GPU Flex/Max 
Series.

FP32
BF16

INT8

INT4

• Reduce IO requirement

• Reduce memory usage

https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/text-to-image/quantization
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/text-classification/quantization/ptq_static/fx
https://huggingface.co/
https://pytorch.org/vision/stable/index.html
https://github.com/onnx/models#models
https://github.com/onnx/models#models
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Getting Intel® Neural Compressor

• Pip Installation:
# Install 2.X API + Framework extension API + PyTorch dependency
• pip install neural-compressor[pt] 
# Install 2.X API + Framework extension API + TensorFlow 
dependency
• pip install neural-compressor[tf]

• Intel® Neural Compressor is included in the Intel® AI Analytics 
Toolkit (AI Kit):
• https://www.intel.com/content/www/us/en/developer/tools/on

eapi/ai-analytics-toolkit-download.html?operatingsystem=linux

• Download the Stand-Alone Version:
• https://www.intel.com/content/www/us/en/developer/tools/oneap

i/neural-compressor.html  

• Use Intel® Developer Cloud:
• https://www.intel.com/content/www/us/en/secure/forms/devclou

d/enrollment.html?tgt=www.intel.com/content/www/us/en/secure
/forms/devcloud-enrollment/account-provisioning.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html?operatingsystem=linux
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html?operatingsystem=linux
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
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GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/ 

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor


Intel ConfidentialDepartment or Event Name 91Webinar Title Here 91

Intel® Extension for Transformers
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Intel® Extension for Transformers

GenAI

LLM

Intel® Extension for Transformers

Xeon Core Gaudi

Transformers style API

GPU

• Seamless user experience of model 
compressions on Transformer-based 
models by extending Hugging Face 
transformers APIs

• Advanced software optimizations and 
unique compression-aware runtime

• NeuralChat, a customizable chatbot 
framework to create your own chatbot 
within minutes by leveraging a rich set of 
plugins

• Inference of Large Language Model 
(LLM) in pure C/C++ with weight-only 
quantization kernels

Ref: https://github.com/intel/intel-extension-for-transformers 

https://github.com/intel/intel-extension-for-transformers
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Intel® Extension for Transformers Features

Hugging Face Transformers

Model Compression Neural ChatNeural Speed*

• Inference of Large Language Model 
(LLM) in pure C/C++ (llama.cpp inspired) 

• Streaming LLM
• Tensor parallelism

• LLM Compression
• General Compression

• Framework for customizable chatbot
• OpenAI-compatible RESTful API
• LangChain extension API

*Separate installation starting v1.3.1
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Installation & Validated Configurations

Hardware Software

OS: Ubuntu 20.04/22.04, Centos 8.

*With requirement.txt for specific use-cases and features
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Type of GenAI & LLM Models

Stable Diffusion LLAMA3 Baichuan2-13B
OPT

BLOOM-176B LLAMA2 GPT-NEOX Dolly-v2-3B

Qwen-7B
LLAMA

MPT Falcon

Qwen-14B
T5

FALCON GPT-J-6B

ChatGLM2-6B Flan-T5 BLOOM-7B GPT-NEOX

ChatGLM4-6B …

Supported LLM(Large language Model) Model List

Intel® Extension for Transformers

Ref: https://github.com/intel/intel-extension-for-transformers 

https://github.com/intel/intel-extension-for-transformers
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Intel Extension for Transformers

• Intel Extension for Transformers (ITREX): Built on top of INC 
ecosystem and Hugging Face

• Its target is the democratization of NLP and Transformers for 
both training/fine-tuning and inference

• Brings compression and model optimizations in a high-level HF –
like API

• Staging area for all Intel’s transformer feature enhancements:
• Upstream to HF as much as possible (Transformers + Optimum)

• Intel’s differentiation remains, e.g., NAS, MoE, dynamic model, etc., and 
is ready for future upstream
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GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/ 

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor


All information provided in this deck is subject to change without notice. 
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Choose the Best Accelerated Technology

Distributed Training @ Intel Architecture

Akash Dhamasia – AI Software Solutions Engineer
akash.dhamasia@intel.com

July 22nd 2024
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Why Distributed Training?

• Increases the amount of compute

• Helps train model faster.

• with Increasing Model size & 
Dataset size, it makes sense to 
divide them to do computation 
parallelly and faster, Also not 
possible to fit big model on single 
GPU.
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Neural Network Parallelism

Data is processed in increments 
of N. Work on minibatch 
samples and distributed among 
the available resources.

The work is divided according 
to a split of the model. The 
sample minibatch is copied to 
all processors which compute 
part of the DNN.

source: https://arxiv.org/pdf/1802.09941.pdf 

• Types of Multi-worker 
communication

• NCCL

• MPI

• CCL

• Distributed Training 
Methods

• Data Parallel

• Model Parallel

• Data + Model Parallel

https://arxiv.org/pdf/1802.09941.pdf
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Intel® oneAPI Collective Communications Library (oneCCL)

• enables developers and researchers to quickly train DL models

• optimizes communication patterns to distribute model training across multiple nodes

• designed for easy integration into deep learning frameworks, whether they are implemented them from scratch or customizing 
existing ones

• DistributedDataParallel (DDP) with Intel® oneCCL
• E.g mpirun -n 2 -l python Example_DDP.py

• Important links:

• https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html   

• https://github.com/oneapi-src/oneCCL   

• Horovod with Intel® oneCCL & PyTorch
• E.g horovodrun -np 2 python Example_horovod.py 

• Or e.g mpirun -np 2 python Example_horovod.py

• Important links:

• https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html 

• https://github.com/intel/intel-optimization-for-horovod 

• Fully Sharded Data Parallel (FSDP)

• DeepSpeed
• Deep learning optimization software suite that enables scale and speed for Deep Learning Training and inference of models with billions or trillions of 

parameters

• Example to train GPT 3.6B, 20B, 175B 

• https://github.com/intel/intel-extension-for-deepspeed/tree/main/examples  

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://github.com/oneapi-src/oneCCL
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://github.com/intel/intel-optimization-for-horovod
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://github.com/intel/intel-extension-for-deepspeed
https://github.com/intel/intel-extension-for-deepspeed/tree/main/examples
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DistributedDataParallel (DDP)

▪ DDP is a PyTorch module that implements multi-
process data parallelism across multiple GPUs and 
machines.

▪ With DDP, the model is replicated on every process, 
and each model replica is fed a different set of input 
data samples.

▪ To run DDP optimized for Intel hardware, we use Intel® 
oneCCL Bindings for Pytorch*

▪ Important links:
▪ https://intel.github.io/intel-extension-for-

pytorch/xpu/latest/tutorials/features/DDP.html 
▪ https://github.com/oneapi-src/oneCCL   

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://github.com/oneapi-src/oneCCL
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Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU 0 GPU 1 GPU 2 GPU ..…

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU 0 GPU 1 GPU 2 GPU ..…

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg


Intel ConfidentialDepartment or Event Name 106LRZ Workshop 106

GPU 0 GPU 1 GPU 2 GPU ..…

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg


Intel ConfidentialDepartment or Event Name 107LRZ Workshop 107

GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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optimizer

GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg


Intel ConfidentialDepartment or Event Name 111LRZ Workshop 111

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg


Intel ConfidentialDepartment or Event Name 113LRZ Workshop 113

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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optimizer optimizer optimizer optimizer

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU0

optimizer

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

GPU1

optimizer

GPU2

optimizer

GPU3

optimizer

• The model is replicated on all the 
devices; each replica calculates 
gradients and simultaneously 
synchronizes with the others 
using the ring all-reduce algorithm

data model

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU0

optimizer

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

GPU1

optimizer

GPU2

optimizer

GPU3

optimizer

oneCCL

https://www.youtube.com/watch?v=3A8AVsNNHOg
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GPU0

optimizer

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg 

GPU1

optimizer

GPU2

optimizer

GPU3

optimizer

oneCCL
Bindings for 

PyTorch 

https://www.youtube.com/watch?v=3A8AVsNNHOg
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Intel® oneCCL Bindings for Pytorch(Torch-CCL)
• Holds PyTorch bindings for the Intel® oneAPI Collective 

Communications Library (oneCCL).

• Github repository maintained by Intel
• https://github.com/intel/torch-ccl

• Can be easily installed through prebuilt wheel:
• python -m pip install oneccl_bind_pt --extra-index-url https://pytorch-

extension.intel.com/release-whl/stable/xpu/us/ 

pytorch onecclTorch-ccl

https://github.com/intel/torch-ccl
https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
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Initialization Function of DistributedDataParallel

124

• TCP initialization
• IP address and port of rank 0 

node is required.

• init_method='tcp://10.1.1.20:234
56'

• Shared file-system 
initialization
• makes use of a file system that is 

shared and visible from all 
machines in a group.

• init_method='file:///mnt/nfs/shar
edfile'

• Environment variable initialization

• Default method

• init_method='env://'

• MASTER_PORT - required; has to be a 
free port on machine with rank 0

• MASTER_ADDR - required (except for 
rank 0); address of rank 0 node

• WORLD_SIZE - required; can be set either 
here, or in a call to init function

• RANK - required; can be set either here, or 
in a call to init function
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Quick DDP Recipe @Intel® 

125

1. import torch_ccl & DDP

2. Access PMI_* 
environment variables

3. Set backend to ‘ccl’

Only 3-5 changes needed from 
general torch DDP code

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

4. Use Distributed dataset 
sampler

5. Pass model to DDP

e.g import 
torch.utils.data.distributed
 train_sampler = 
torch.utils.data.distributed.
DistributedSampler(train_
dataset)

https://github.com/intel/optimized-models/tree/master/pytorch/distributed
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Usage for Distributed 
Training with DDP
• 4 root devices, 4 GPUs

• 8 ranks and two ranks per GPU

• E.g mpirun -n 8 -l python Example_DDP.py

• Monitor XPU usage using Intel® XPU manager:
• https://www.intel.com/content/www/us/en/software/xpu-manager.html 

• xpumcli dump –d 0 –m 0,1,2,3,4,5
Timestamp, DeviceId, GPU Utilization (%), GPU Power (W), GPU Frequency (MHz), GPU Core Temperature 
(Celsius Degree), GPU Memory Temperature (Celsius Degree), GPU Energy Consumed (J)

08:04:16.000,    0, 53.35, 234.08, 0.00,     ,     , 2018647.97
08:04:17.000,    0, 65.83, 341.15, 1600.00,     ,     , 2018956.02
08:04:18.000,    0, 92.52, 375.21, 900.00,     ,     , 2019332.25
08:04:19.000,    0, 92.54, 384.55, 1500.00,     ,     , 2019715.47
08:04:20.000,    0, 94.21, 387.95, 975.00,     ,     , 2020105.06
08:04:21.000,    0, 93.25, 386.10, 1600.00,     ,     , 2020491.66
08:04:22.000,    0, 94.21, 391.84, 800.00,     ,     , 2020881.66

https://www.intel.com/content/www/us/en/software/xpu-manager.html
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Horovod

▪ Horovod is a distributed deep learning training 
framework for TensorFlow, Keras, PyTorch, 
and Apache MXNet. 

▪ Horovod can be easily installed through:
▪ python -m pip install intel-optimization-

for-horovod 

▪ Important links:
▪ https://intel.github.io/intel-extension-for-

pytorch/xpu/latest/tutorials/features/horovod.html 
▪ https://intel.github.io/intel-extension-for-

tensorflow/latest/examples/train_horovod/mnist/R
EADME.html?highlight=horovod 

▪ https://github.com/intel/intel-optimization-for-
horovod 

▪ https://horovod.readthedocs.io/en/latest/oneccl_in
clude.html#advanced-settings 

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-tensorflow/latest/examples/train_horovod/mnist/README.html?highlight=horovod
https://intel.github.io/intel-extension-for-tensorflow/latest/examples/train_horovod/mnist/README.html?highlight=horovod
https://intel.github.io/intel-extension-for-tensorflow/latest/examples/train_horovod/mnist/README.html?highlight=horovod
https://github.com/intel/intel-optimization-for-horovod
https://github.com/intel/intel-optimization-for-horovod
https://horovod.readthedocs.io/en/latest/oneccl_include.html#advanced-settings
https://horovod.readthedocs.io/en/latest/oneccl_include.html#advanced-settings


Intel ConfidentialDepartment or Event Name 128LRZ Workshop 128

Fully Sharded Data Parallel (FSDP)

▪ Fully Sharded Data Parallel (FSDP) is a 
PyTorch module that provides solution for 
large Model training.

▪ FSDP shards model parameters, optimizer 
states and gradients across DDP ranks to 
reduce the GPU memory footprint used in 
training, unlike DDP, where each 
process/worker maintains a replica of the 
model,

▪ Important links:
▪ https://intel.github.io/intel-extension-for-

pytorch/xpu/latest/tutorials/features/FSDP.html
▪ https://pytorch.org/tutorials/intermediate/FSDP_tu

torial.html 

Some Additions on top of DDP:

from torch.distributed.fsdp import 
FullyShardedDataParallel as FSDP

model = FSDP(model, 
device_id="xpu:{}".format(rank)

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
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DeepSpeed
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DeepSpeed – Introduction

• Deep learning optimization software suite for PyTorch that 
enables scale and speed for Deep Learning training and 
inference

 Train/inference models with billions or trillions of parameters

 Efficiently scale to thousands of computing units

 Train/inference on GPU system with limited GPU memory

 Low latency and high throughput for inference
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DeepSpeed – Inference
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Tensor Parallelism

• The reason to run Transformer based model inference with 
DeepSpeed on multiple device is to get better inference latency 
through Tensor Parallelism

• Tensor Parallelism parallelize Tensor operations in LLMs 
between multiple workers, so each worker does less tensor 
operation; results in less inference latency time

• DeepSpeed offers Tensor Parallelism with two different 
technologies:  AutoTP and Kernel Injection
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Simple DeepSpeed Example (Inference)

DeepSpeed Inference API

PyTorch model Tensor Parallel size

True: use kernel injection
False: use AutoTP

DeepSpeed model
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Simple DeepSpeed Example (Inference) – Single Node

deepspeed --num_gpus 2 run_gptj_ds.py

DeepSpeed lauching command Number of ranks The script on prev screen

deepspeed --num_gpus 2 run_gptj_ds.py

Auto detect
number of ranks
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Simple DeepSpeed Example (Inference) – Summary

• A PyTorch model will be converted to a DeepSpeed model 
through DeepSpeed init_inference() interface

• Converted DeepSpeed model can be further optimized with 
framework optimizations, i.e., ipex.optimize()

• Framework optimization should not go before DeepSpeed 
init_inference(), otherwise DeepSpeed optimizations will be 
blocked (cannot recognize optimized model)

• DeepSpeed model is executed with deepspeed command, 
which would launch multiple workers with multiprocess launcher 
(single node) or mpich/impi launcher (multi node)
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DeepSpeed – Training
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DeepSpeed Training Technology – ZeRO Stage 1/2/3
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DeepSpeed @ Intel

• PyTorch 2.1

• Intel Extension for PyTorch 2.1

• DeepSpeed

• Intel Extension for DeepSpeed / Intel Extension for PyTorch 
DeepSpeed

• oneCCL Bindings (torch-ccl)

• oneAPI 2024
pytorch oneccltorch-ccl

https://pytorch-extension.intel.com/release-whl/stable/xpu/us/intel-extension-for-pytorch/
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Verified Models: Distributed

GPU:

CPU:

CPU - https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-
rc0/examples/cpu/inference/python/llm 

GPU - https://github.com/intel/intel-extension-for-pytorch/tree/xpu-
main/examples/gpu/inference/python/llm 

https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
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Performance
4th Gen Intel® Xeon® (SPR) & Intel® Data Center GPU Max 1550 (PVC)
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Benchmarks: Inference Performance
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Real-Time (BS=1) Inference Performance

2S Intel® Xeon® Platinum 8480+ processor [AMX BF16] 

vs. 2S Intel® Xeon® Platinum 8380 processor [FP32]

Intel® Extension for PyTorch [IPEX]

Higher is better
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Transformer
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Real-Time (BS=1+) Inference Performance

2S Intel® Xeon® Platinum 8480+ processor [IPEX with BF16/FP16]

vs. NVIDIA A10 GPU [TensorRT]

Higher is better 

Nvidia A10 Baseline

1  See [A17, A33] at intel.com/processorclaims: 4th Gen Intel Xeon Scalable processors. Results may vary.
2  See [A218] at intel.com/processorclaims: 4th Gen Intel Xeon Scalable processors. Results may vary. 

Intel® Xeon® Platinum 8380 processor baseline

Object 
Detection

Image Classification NLP
Image

Segmentation

Up to 10x higher gen-to-gen performance
Up to 7.7x higher  gen-to-gen perf/watt1

1.8x higher average* BF16/FP16 inference 
performance vs Nvidia A10 GPU2
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Xeon 8480+ [BF16] Nvidia A100 [FP16]

Real Workloads: Train With Fine Tuning in Less 
than 4 Minutes

6.46

7.64

HuggingFace

BERT-large [IMDB]

>1 min faster 
than A100

Lower is better

Intel® Tensor Processing Primitives (TPP) 
Extension for PyTorchXeon 8480+ [Intel® Extension for PyTorch

NVIDIA A100 [Stock PyTorch]

Xeon 8480+ [Intel® Optimization for TensorFlow]
NVIDIA A100 [Stock TensorFlow]

NVIDIA A100 [Stock PyTorch]

See backup for workloads and configurations. Results may vary.

Fine tuning time-to-train performance 
Intel® Xeon® Platinum 8480+ processor 

vs. Nvidia A100 GPU

In the lab: Intel optimizations to shorten 
TTT for large natural language models



Intel ConfidentialDepartment or Event Name 143LRZ Workshop 143

Llama 2 Inference 
Performance

One 4th Gen Xeon socket delivers latencies under 100ms with 7 billon parameter and 
13 billon parameter size of models. Users can run 2 parallel instances, one on each 
socket, for higher throughput and to serve clients independently

Intel® Data Center GPU Max 1550: Users can run 2 parallel instances, one on each 
tile, for higher throughput and to serve clients independently.

Ref: https://www.intel.com/content/www/us/en/developer/articles/news/llama2.html 

https://www.intel.com/content/www/us/en/developer/articles/news/llama2.html
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Llama 2 – 70B & Bloom-175B Inference Performance

Ref: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/performance.html  

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/performance.html
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Conclusion
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Important Links:
Intel® oneAPI Toolkits

Intel Extension for PyTorch

Intel® Extension for TensorFlow*

Intel Extension for Transformers

VTune Profiler

Key Takeaways & Call to Action

▪ 4th Gen Intel® Xeon®(SPR) & Intel® Data Center GPU Max Series 1550(PVC) 
Enhances DL Workloads on PyTorch and TensorFlow and are accelerated by AMX 
& XMX instruction set respectively.

▪ Minimal code changes are needed in PyTorch and TensorFlow to take advantage 
of AMX & XMX and lower precision datatypes

▪ Intel provides a plethora of AI software tools to optimize GenAI/LLM AI workloads.

▪ Many Code samples are available to get started.

Getting Started Samples

Model Zoo for Intel® Architecture GitHub

Intel oneAPI Powered AI Reference Kit 

OPEA [Open Platform for Enterprise AI]

Intel® Tiber  Developer Cloud

Intel AI Tools Selector

https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html
https://intel.github.io/intel-extension-for-pytorch/
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-transformers
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Getting-Started-Samples
https://github.com/IntelAI/models
https://github.com/opea-project/GenAIExamples
https://www.intel.com/content/www/us/en/developer/tools/devcloud/services.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html#gs.b7fsap
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Thank you for your attention!
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Appendix
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PyTorch Benchmarking Configurations
4th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

• Deep Learning config:

• Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): 2 sockets, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 
memory, BIOS version EGSDCRB1.SYS.8901.P01.2209200243, operating system: CentOS* Stream 8, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and 
bf16 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.7 optimized kernels integrated into Intel® Extension for PyTorch* v1.13, Intel® Extension for 
TensorFlow* v2.12, and Intel® Distribution of OpenVINO  toolkit v2022.3. Measurements may vary.

• Wall power refers to platform power consumption.

• If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

• Transfer Learning config:

• Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): Use DLSA single node fine tuning, Vision Transfer 
Learning using single node, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDREL1.SYS.8612.P03.2208120629, operating system: Ubuntu 
22.04.1 LT, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6 optimized kernels 
integrated into Intel® Extension for PyTorch* v1.12, and Intel® oneAPI Collective Communications Library v2021.5.2. Measurements and some software configurations 
may vary.

3rd Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

• Hardware configuration for Intel® Xeon® Platinum 8380 processor (formerly code named Ice Lake): 2 sockets, 40 cores, 270 watts, 16 x 64 GB DDR5 3200 memory, 
BIOS version SE5C620.86B.01.01.0005.2202160810, operating system: Ubuntu 22.04.1 LTS, int8 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6.0 
optimized kernels integrated into Intel® Extension for PyTorch* v1.12, Intel® Extension for TensorFlow* v2.10, and Intel® oneAPI Data Analytics Library (oneDAL) 2021.2 
optimized kernels integrated into Intel® Extension for Scikit-learn* v2021.2. XGBoost v1.6.2, Intel® Distribution of Modin* v0.16.2, Intel oneAPI Math Kernel Library 
(oneMKL) v2022.2, and Intel® Distribution of OpenVINO  toolkit v2022.3. Measurements may vary.

• If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

*All performance numbers are acquired running with 1 instance of 4 cores per socket



Intel ConfidentialDepartment or Event Name 153LRZ Workshop 153

PyTorch/TensorFlow Benchmarking Configurations
5th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2023):

• Deep Learning configuration:

• Hardware configuration for Intel® Xeon® Platinum 8592+ processor (code named Emerald Rapids): 2 sockets for inference, 1 socket for training, 64 cores, 350 watts, 
1024GB 16 x 64GB DDR5 5600 MT/s memory, operating system CentOS* Stream 9. Using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® 
oneAPI Deep Neural Network Library (oneDNN) optimized kernels integrated into Intel® Extension for PyTorch*, Intel® Extension for TensorFlow*, and Intel® 
Distribution of OpenVINO toolkit. Measurements may vary. If the dataset is not listed, a synthetic dataset was used to measure performance.

• Transfer Learning configuration:

• Hardware configuration for Intel® Xeon® Platinum 8592+ processor (code named Emerald Rapids): 2 sockets, 64 cores, 350 watts, 16 x 64 GB DDR5 5600 memory, 
BIOS version 3B05.TEL4P1, operating system: CentOS stream 8, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® oneAPI Deep Neural 
Network Library (oneDNN) v2.6.0 optimized kernels integrated into Intel® Extension for PyTorch* v2.0.1, Intel® Extension for TensorFlow* v2.14, and Intel® oneAPI Data 
Analytics Library (oneDAL) 2023.1 optimized kernels integrated into Intel® Extension for Scikit-learn* v2023.1. Intel® Distribution of Modin* v2.1.1, and Intel oneAPI Math 
Kernel Library (oneMKL) v2023.1. Measurements may vary.
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