
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Choose the Best Accelerated Technology

Generative AI Powered by Intel

Akash Dhamasia – AI Software Solutions Engineer
akash.dhamasia@intel.com

July 22nd 2024

Intel ConfidentialDepartment or Event Name 2LRZ Beginner Workshop 2

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details.
No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

LRZ Workshop 33

Agenda

• Intel® AI stack

• GenAI @ Intel®
• Intel® Optimization for PyTorch/TF

• Intel® Extension of PyTorch

• Intel® Extension of Tensorflow

• Intel® Neural Compressor

• Intel® Extension for Transformers

• Distributed training @ Intel®
• DistributedDataParallel (DDP)

• Horovod

• FSDP (Fully Shared Data Parallel)

• DeepSpeed

• Performance

• Conclusion

Intel ConfidentialDepartment or Event Name 4LRZ Workshop 4

Data
Encryption

AI Based
Rendering

Personalized
Learning

Autonomous
Vehicles

Recommendation System
Netflix

Video
Conference

Voice
Assistants

Robotics
Vision

Code
Generation

Smart
Doorbell

Purchase
Recommendation

Noise
Cancellation

Facial
Recognition

Inventory
Management

AI is transforming
how we live
everyday

Digital
Assistants

5

AI Continuum

AI Compute
Continuum

Model Creation

Training/Fine-Tuning

Deployment

Edge Inference

Localized
Inference
(Client)

Data Prep

CLOUD & ENTERPRISE

CLIENT & WORKSTATION

EDGE

AI Models

DirectML

6

Open Software
Environment

Intel® AI Portfolio

Deep Learning
Acceleration

General
Acceleration

General
Purpose

Dedicated Deep Learning Training and Inference

Cloud Gaming, VDI, Media Analytics,
Real-Time Dense Video

Parallel Compute, HPC, AI for HPC

Real-Time, Medium Throughput,
Low Latency, and Sparse Inference

Medium to Small Scale
Training and Fine Tuning

Edge and Network
AI Inference

Inference on Client

Intel ConfidentialDepartment or Event Name 7LRZ Beginner Workshop 7

Intel® oneAPI Data
Analytics Library

Intel® oneAPI Deep
Neural Network Library

Intel® oneAPI Collective
Communications Library

Intel® oneAPI
Math Kernel Library

Data Analytics at Scale

Open, cross-architecture programming model for CPUs, GPUs, and other accelerators

Try the latest Intel tools and hardware,
and access optimized AI Models

Intel® Tiber Developer Cloud
cloud.intel.com

Engineer Data

Neural Compressor
SigOpt
AutoML

Full stack ML operating system

Write Once
Deploy AnywhereDirectML

Note: components at each layer of the stack are
optimized for targeted components at other
layers based on expected AI usage models, and
not every component is utilized by the solutions
in the rightmost column

CLOUD &
ENTERPRISE

CLIENT &
WORKSTATION

EDGE

Intel optimizations and fine-tuning recipes,
optimized inference models, and model serving

Create Models Optimize & Deploy

Intel AI Software Portfolio

Intel distribution

Machine & Deep Learning Frameworks, Optimization and Deployment Tools

Intel-optimized open-source AI tools and frameworks

Intel® Tiber AI Studio

Partner

*Other names and brands may be claimed as the property of others.

Intel ConfidentialDepartment or Event Name 8LRZ Beginner Workshop 8

Intel AI Software by Platform
Category Software

Open
Source

Optimizations
Upstreamed*

Intel
Extension**

Intel
Distribution

Intel
Tool / Kit

Orchestration Cnvrg.io No

Toolkits
BigDL Yes

OpenVINO Yes

Optimization
Neural Compressor Yes

SigOpt Yes

DL
Frameworks

TensorFlow Yes

PyTorch Yes

ONNX Yes

PDPD Yes

DeepSpeed Yes

OpenFL Yes

ML
Frameworks

XGBoost Yes

Scikit-Learn Yes

CatBoost Yes

LightGBM Yes

Data
Preprocessing

Modin (for Pandas) Yes

Intel® Distribution for Python Yes

Spark Yes

AI Compilers
Triton Yes

OpenXLA Yes

Intel® Xeon® Scalable Processor

Intel® Data Center GPU

Intel® Gaudi® Processors for DL

* Intel strives to upstream as many optimizations for as many hardware targets as soon as possible
** Access more Intel optimizations and target hardware support through API-compliant extensions

https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://software.intel.com/content/www/us/en/develop/topics/ai/analytics-zoo.html
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.tensorflow.org/install/pip
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-tensorflow
https://www.intel.com/content/www/us/en/developer/articles/technical/get-started-habana-gaudi-deep-learning-training.html#gs.vcj3x3
https://pytorch.org/get-started/locally/
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch
https://onnxruntime.ai/
https://github.com/PaddlePaddle/Paddle
https://github.com/intel/intel-extension-for-deepspeed
https://github.com/securefederatedai/openfl
https://xgboost.readthedocs.io/en/latest/
https://intel.github.io/scikit-learn-intelex/
https://github.com/catboost/catboost
https://github.com/microsoft/LightGBM
https://github.com/modin-project/modin
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/distribution-of-modin.html#gs.cnukpg
https://intel.github.io/scikit-learn-intelex/
https://spark.apache.org/
https://github.com/Intel-bigdata/OAP
https://github.com/intel/intel-xpu-backend-for-triton
https://github.com/intel/intel-extension-for-openxla

Intel ConfidentialDepartment or Event Name 9LRZ Beginner Workshop 9

Intel AI Software by Platform
Category Software

Open
Source

Optimizations
Upstreamed*

Intel
Extension**

Intel
Distribution

Intel
Tool / Kit

Orchestration Cnvrg.io No

Toolkits
BigDL Yes

OpenVINO Yes

Optimization
Neural Compressor Yes

SigOpt Yes

DL
Frameworks

TensorFlow Yes

PyTorch Yes

ONNX Yes

PDPD Yes

DeepSpeed Yes

OpenFL Yes

ML
Frameworks

XGBoost Yes

Scikit-Learn Yes

CatBoost Yes

LightGBM Yes

Data
Preprocessing

Modin (for Pandas) Yes

Intel® Distribution for Python Yes

Spark Yes

AI Compilers
Triton Yes

OpenXLA Yes

Intel® Xeon® Scalable Processor

Intel® Data Center GPU

Intel® Gaudi® Processors for DL

* Intel strives to upstream as many optimizations for as many hardware targets as soon as possible
** Access more Intel optimizations and target hardware support through API-compliant extensions

https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://software.intel.com/content/www/us/en/develop/topics/ai/analytics-zoo.html
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://intel.sharepoint.com/sites/AI-Marketing/Shared%20Documents/Sales%20Enabling/Gold%20decks/Software%20Gold%20Deck/cnvrg.io
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.tensorflow.org/install/pip
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-tensorflow
https://www.intel.com/content/www/us/en/developer/articles/technical/get-started-habana-gaudi-deep-learning-training.html#gs.vcj3x3
https://pytorch.org/get-started/locally/
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch
https://onnxruntime.ai/
https://github.com/PaddlePaddle/Paddle
https://github.com/intel/intel-extension-for-deepspeed
https://github.com/securefederatedai/openfl
https://xgboost.readthedocs.io/en/latest/
https://intel.github.io/scikit-learn-intelex/
https://github.com/catboost/catboost
https://github.com/microsoft/LightGBM
https://github.com/modin-project/modin
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/distribution-of-modin.html#gs.cnukpg
https://intel.github.io/scikit-learn-intelex/
https://spark.apache.org/
https://github.com/Intel-bigdata/OAP
https://github.com/intel/intel-xpu-backend-for-triton
https://github.com/intel/intel-extension-for-openxla

Intel ConfidentialDepartment or Event Name 10LRZ Workshop 10

Generative AI Powered by Intel

Intel ConfidentialDepartment or Event Name 11LRZ Workshop 11

Generative AI
• End of 2022, ChatGPT was released, and the generative AI

(genAI) craze started!

• Generative AI is the ability for the AI model to create contents
(text, image , music, code …)

Image fully generated by Stable Diffusion SDXL, a text-
to-image AI

12

• Transformer architecture is the base for
NLP and genAI (e.g., BERT, LLM, …)

• Composed of 2 building blocks: encoder and
decoder

Transformers

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you
need. Advances in neural information processing systems, 30.

Model keeps growing: Starting with Bert
was 0.3B in 2018

But Recent trend is to scale down: Models are trained
on better quality (and smaller) dataset

Intel ConfidentialDepartment or Event Name 13LRZ Workshop 13

Intel's Optimized SW Stack for Generative AI

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

Intel ConfidentialDepartment or Event Name 14LRZ Workshop 14

GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

Intel ConfidentialDepartment or Event Name 15LRZ Workshop 15

GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

16

Intel®-Optimized Deep Learning
Frameworks – Introduction

17

Intel®-Optimized Deep Learning Frameworks

▪ Intel®-optimized DL frameworks are drop-in replacement,

• No front code change for the user

▪ Optimizations are up-streamed automatically (TF) or on a regular basis
(PyTorch) to stock frameworks

oneDNN

18

Intel®-Optimized Deep Learning Frameworks

▪ Intel® Extension for PyTorch and TensorFlow are additional modules for
functions not supported in standard frameworks (such as mixed precision and
dGPU support).

▪ As they offer more aggressive optimizations, they offer bigger speed-ups for
training and inference.

Intel Extension for

TensorFlow

Intel Extension for

PyTorch

oneDNN

19

Intel®-Optimized Deep Learning Frameworks

Intel Extension for

TensorFlow

Intel Extension for

PyTorch

oneDNN

Intel ConfidentialDepartment or Event Name 20LRZ Workshop 20

Data Precision

21

Data Precision

▪ Data precision:

Number of bits used to store numerical values in memory

▪ Commonly found types of precision in Deep Learning:

TP32 S 8 bit exp 10 bit mantissa

Ref. https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o

https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o

22

INT8/BF16 on Artificial intelligence/Machine Learning

• F32 is the default datatypes used in AI/ML for inference, which
has a high memory footprint and higher latency.

• Low-precision models are faster in computation. To optimize
and support these:
• HW needs special features/instructions
• Intel provide those in the form of Intel AMX/Intel XMX.

• SYCL Joint Matrix is the coding abstraction to invoke Intel
AMX/Intel XMX, which ensures portability and performance of
the code

Ref. https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o

https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o

23

Introduction to Intel® Advanced Matrix Extension and
Intel® Xᵉ Matrix Extensions

Both these Instruction Sets require Intel® oneAPI Base Toolkit 2023.0.0 and above for compilation

Ref. https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o

https://www.intel.com/content/www/us/en/developer/videos/how-to-use-new-built-in-acceleration-engines.html#gs.wige3o

24

Intel® Extension for PyTorch

Intel ConfidentialDepartment or Event Name 25LRZ Workshop 25

PyTorch* Optimizations from Intel

Intel ConfidentialDepartment or Event Name 26LRZ Workshop 26

Intel® Extension for PyTorch* (IPEX)

• Buffer the PRs for stock PyTorch

• Provide users with the up-to-date Intel
software/hardware features

• Streamline the work to integrate oneDNN

• Unify user experiences on Intel CPU and GPU

O

perator OP
T

M

ix Precisio

n

In
te

l®

Extension for PyT
o

rc
h

*PyTorch

Intel ConfidentialDepartment or Event Name 27LRZ Workshop 27

Major Optimization Methodologies

Operator Optimization

• Vectorization

• Parallelization

• Memory Layout

• Low Precision

Graph Optimization

• Operator fusion

• Constant folding

Runtime Extension

• Thread affinity

• Memory allocation

• General performance optimization and Intel new feature enabling in
PyTorch upstream

• Additional performance boost and early adoption of aggressive
optimizations through Intel® Extension for PyTorch*

Intel ConfidentialDepartment or Event Name 28LRZ Workshop 28

Building and Deploying with BF16

Intel ConfidentialDepartment or Event Name 29LRZ Workshop 29

Low-precision Optimization – BF16

S E E E E E E E E M

S E E E E E E E E M M M M M M M

FP32

BF16

8 bits 23 bits

7 bits

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

BF16 has the same range as FP32 but less precision due to 16 less mantissa bits.
Running with 16 bits can give significant performance speedup.

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

Intel ConfidentialDepartment or Event Name 30LRZ Workshop 30

Inference w/AMX BF16 on
Intel® Extension for PyTorch (CPU)

Resnet50 BERT

Intel ConfidentialDepartment or Event Name 31LRZ Workshop 31

Training w/AMP on
Intel® Extension for PyTorch (GPU)

*The .to(“xpu”) is needed for GPU only
**Use torch.cpu.amp.autocast() for CPU
***Channels last format is automatic

Ref: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html

Intel ConfidentialDepartment or Event Name 32LRZ Workshop 32

Inference w/AMP on
Intel® Extension for PyTorch (GPU)
Resnet50 BERT

*The .to(“xpu”) is needed for GPU only
**Use torch.cpu.amp.autocast() for CPU
***Channels last format is automatic

Ref: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/examples.html

Intel ConfidentialDepartment or Event Name 33LRZ Workshop 33

Intel Extension for PyTorch Performance

Benchmark data for the Intel® 4th Gen Xeon Scalable Processors can be found here.

Ref: https://venturebeat.com/ai/unlocking-generative-ai-with-ubiquitous-hardware-and-open-software/

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/platform.html
https://venturebeat.com/ai/unlocking-generative-ai-with-ubiquitous-hardware-and-open-software/

Intel ConfidentialDepartment or Event Name 34LRZ Workshop 34

PyTorch Benchmark: SPR vs ICX Inference
(Batch Size = 1)

ICX INT8: 3.33-3.98X
SPR BF16: 4.07-6.15X
SPR INT8: 7.35-7.72X

Inference latency speedup: the higher the better

Benchmark data for the Intel® 4th Gen Xeon Scalable Processors can be found here.
Also check Appendix for test configurations.

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/platform.html

Intel ConfidentialDepartment or Event Name 35LRZ Workshop 35

LLM Optimizations with IPEX (Intel® Extension
for PyTorch)

Intel ConfidentialDepartment or Event Name 36LRZ Workshop 36

CPU:

GPU:

How to apply LLM optimizations with IPEX?

Intel ConfidentialDepartment or Event Name 37LRZ Workshop 37

Examples
• Examples:

CPU - https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-
rc0/examples/cpu/inference/python/llm

GPU - https://github.com/intel/intel-extension-for-pytorch/tree/xpu-
main/examples/gpu/inference/python/llm

A page dedicated to running LLMs with IPEX

• Several ways to set up environment:
 -Docker based
 - Conda Based
 -Pre-built Wheels
 -Build from Source

• Scripts included that set the appropriate environment variables for best
performance

https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm

Intel ConfidentialDepartment or Event Name 38LRZ Workshop 38

Verified Models: Single Instance

GPU:

CPU:

CPU - https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-
rc0/examples/cpu/inference/python/llm

GPU - https://github.com/intel/intel-extension-for-pytorch/tree/xpu-
main/examples/gpu/inference/python/llm

https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm

Intel ConfidentialDepartment or Event Name 39LRZ Workshop 39

Deploying with INT8

Intel ConfidentialDepartment or Event Name 40LRZ Workshop 40

Low-precision Optimization – INT8

S E E E E E E E E M

S M M M M M M M

FP32

INT8

8 bits 23 bits

7 bits

▪ Systematic reduction of the precision of all or
several layers within the model.

What is Quantization?

▪ Reduces model size. Uses less memory storage and
bandwidth.

▪ Allows for faster inference.

▪ All with minimal accuracy loss.

Why Quantization?

▪ PyTorch quantization

▪ IPEX quantization (with or w/o INC integration)

▪ Intel Neural Compressor (INC)

How to Quantize?

FP32 FP32 FP32

FP32 FP32

INT8 INT8 INT8

INT8 INT8

Intel ConfidentialDepartment or Event Name 41LRZ Workshop 41

Static vs Dynamic Quantization

▪ Quantizes weights and activations of model
▪ Fuses activations into preceding layers
▪ Requires calibration dataset to determine optimal quantization parameters for activations
▪ Used when both memory bandwidth and compute savings are important
▪ Only works on inputs with fixed sizes; not all models are traceable; typically used for CNNs

• Weights are quantized ahead of time, but activations are quantized during inference
• Used when model execution time is dominated more by memory bandwidth than compute
• Can work on inputs with variable sizes; typically used for LSTM and Transformer models
 with small batch size

Static (Preferred)

Dynamic

Intel ConfidentialDepartment or Event Name 42LRZ Workshop 42

Quantization Workflow and API

Static Quantization Dynamic Quantization

Intel ConfidentialDepartment or Event Name 43LRZ Workshop 43

TorchScript and torch.compile()

• Converts PyTorch model into a graph for faster
execution

• torch.jit.trace() traces and records all operations
in the computational graph; requires a sample
input

• torch.jit.script() parses the Python source code
of the model and compiles the code into a
graph; sample input not required

• Makes PyTorch code run faster by just-in-time (JIT)-compiling PyTorch code into
optimized kernels

TorchScript

torch.compile() – in BETA

Intel ConfidentialDepartment or Event Name 44LRZ Workshop 44

Verifying That AMX Is Used

Intel ConfidentialDepartment or Event Name 45LRZ Workshop 45

How to Check If AMX Is Enabled

• On bash terminal, enter the following command:
• cat /proc/cpuinfo

• Check the “flags” section for amx_bf16, amx_int8

• Alternatively, you can use:
• lscpu | grep amx

• If you do not see them, upgrade to Linux kernel 5.17 and above

Intel ConfidentialDepartment or Event Name 46LRZ Workshop 46

How to Check AMX Is Actually Used

• Generate oneDNN Verbose logs using guide and parser

• To enable verbosity, set environment variables:
• export DNNL_VERBOSE=1

• export DNNL_VERBOSE_TIMESTAMP=1

• Set a Python breakpoint RIGHT AFTER one iteration of
training/inference

https://oneapi-src.github.io/oneDNN/dev_guide_verbose.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling

Intel ConfidentialDepartment or Event Name 47LRZ Workshop 47

oneDNN Verbose Sample Output

▪ Note the ISA. For AMX, you should see the following:
▪ Intel AMX with bfloat16 and 8-bit integer support

▪ Check for AMX in the primitive implementation:

Intel ConfidentialDepartment or Event Name 48LRZ Workshop 48

How to get the Intel Extension for PyTorch

• pip wheel - CPU:

• pip wheel – GPU:

Note: Intel® Extension for
PyTorch* has PyTorch version
requirement. Check the mapping
table here.

python -m pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cpu
python -m pip install intel-extension-for-pytorch
python -m pip install oneccl_bind_pt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/cpu/us/

python -m pip install torch==2.1.0.post2 torchvision==0.16.0.post2 torchaudio==2.1.0.post2 intel-extension-for-pytorch==2.1.30.post0
oneccl_bind_pt==2.1.300+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

https://intel.github.io/intel-extension-for-pytorch/#introduction

Intel ConfidentialDepartment or Event Name 49LRZ Workshop 49

PyTorch AMX Training/Inference Code Samples

Training

GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-
Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16

Trains a ResNet50 model with Intel Extension for PyTorch and shows performance speedup
with AMX BF16

Inference

GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-
Analytics/Features-and-
Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8

Performs inference on ResNet50 and BERT with Intel Extension for PyTorch and shows
performance speedup with AMX BF16 and INT8 over VNNI INT8

https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8

50

Intel® Extension for TensorFlow

Intel ConfidentialDepartment or Event Name 51LRZ Workshop 51

Intel® Extension for TensorFlow* (ITEX)

• Provide users with the up-to-date Intel software/hardware features

• Streamline the work to integrate oneDNN

• Unify user experiences on Intel CPU and GPU

Intel ConfidentialDepartment or Event Name 52LRZ Workshop 52

How to use Intel® Extension for TensorFlow* - FP32

import intel_extension_for_tensorflow as itex

#CPU, GPU or AUTO
backend = "GPU"
itex.set_backend(backend)

No code changes, the default backend will be Intel GPU after installing intel-
extension-for-tensorflow[xpu]

OR

Intel ConfidentialDepartment or Event Name 53LRZ Workshop 53

Advanced Auto Mixed Precision - Environment Variable

• export ITEX_AUTO_MIXED_PRECISION=1

• export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE="BFLOAT16" (or "FLOAT16“)

Intel ConfidentialDepartment or Event Name 54LRZ Workshop 54

BF16 API
1. Train with BF16 with AVX-512

2. Train with BF16 with AMX

Turned on by default
after TF 2.11

Intel ConfidentialDepartment or Event Name 55LRZ Workshop 55

BF16 API (cont.)
3. Inference with BF16 without AMX

4. Inference with BF16 with AMX

Intel ConfidentialDepartment or Event Name 56LRZ Workshop 56

• pip wheel - GPU:

pip install --upgrade intel-extension-for-tensorflow[xpu]

How to get the Intel® Extension for TensorFlow*

▪ pip wheel - CPU (experimental)

pip install --upgrade intel-extension-for-tensorflow[cpu]

Intel ConfidentialDepartment or Event Name 57LRZ Workshop 57

TensorFlow Benchmark: SPR vs ICX Inference
(Batch Size = 1)

ICX INT8: 1.58-4.01X
SPR BF16: 2.15-6.88X
SPR INT8: 3.42-13.58X

Inference latency speedup: the higher the better

Benchmark data for the Intel® 4th Gen Xeon Scalable Processors can be found here.
Also check Appendix for test configurations.

https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/platform.html

Intel ConfidentialDepartment or Event Name 58LRZ Workshop 58

TensorFlow AMX Training/Inference Code Samples

• Training
• GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-

Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Training

• Trains a DistilBERT model using Intel Optimization for TensorFlow and shows
performance speedup with AMX BF16

• Inference
• GitHub: https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-

Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Inference

• Performs inference on ResNet50v1.5 with Intel Optimization for TensorFlow
and shows performance speedup with AMX BF16

https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Training
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Training
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Inference
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelTensorFlow_AMX_BF16_Inference

Intel ConfidentialDepartment or Event Name 59LRZ Workshop 59

Optimizations under IPEX & ITEX

Intel ConfidentialDepartment or Event Name 60LRZ Workshop 60

Operator
optimizations

Memory/data
layout

optimizations

Graph
optimizations

Mixed Precision

Intel ConfidentialDepartment or Event Name 61LRZ Workshop 61
61

Operator Optimizations

• Replace default kernels by
highly-optimized kernels (using
Intel® oneDNN)

• Adapt to available instruction
sets (AMX, AVX-512, AVX2,
VNNI)

• Adapt to required precision:
• Training: FP32, BF16

• Inference: FP32, BF16, FP16, and INT8

Intel® oneDNN

Convolution 2D/3D Direct Convolution/Deconvolution, Depthwise
separable convolution
2D Winograd convolution

Inner Product 2D/3D Inner Production

Pooling 2D/3D Maximum
2D/3D Average (include/exclude padding)

Normalization 2D/3D LRN across/within channel, 2D/3D Batch normalization

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;
Softmax, Logistic, linear; square, sqrt, abs, exp, gelu, swish

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, bfloat16, s8, u8

Intel ConfidentialDepartment or Event Name 62LRZ Workshop 62

Linear Operator Optimization for LLMs

• Optimization of Linear GEMM Kernels in LLM Inference:

• CPU Optimizations:

• Utilizes Intel® oneDNN and customized linear kernels for efficient weight-only quantization.

• Employs specific block formats to maximize hardware resource utilization.

• GPU Optimizations:

• Incorporates Intel® oneDNN and Intel® Xe Templates for Linear Algebra (XeLTA) to enhance performance.

• Customized linear kernels for weight-only quantization streamline GPU computations.

• Common Strategies:

• Both CPU and GPU optimizations focus on accelerating linear GEMM operations critical for LLM inference.

• Targeted optimizations to meet the specific demands of memory-bound linear weight computations in LLMs.

62

Intel ConfidentialDepartment or Event Name 63LRZ Workshop 63

Operator
optimizations

Memory/data
layout

optimizations

Graph
optimizations

Mixed Precision

Intel ConfidentialDepartment or Event Name 64LRZ Workshop 64

nchw

R
e

o
rd

e
rs

nChw16c

64

Memory Layouts Optimization

• Most popular memory layouts for image recognition
are NHWC and NCHW
• Challenging for Intel processors both for vectorization or

for memory accesses

• Intel oneDNN convolutions use blocked
layouts
• Most popular oneDNN data format is nChw16c on

AVX512+ systems and nChw8c on SSE4.1+ systems

More details: https://oneapi-src.github.io/oneDNN/dev_guide_understanding_memory_formats.html

Intel ConfidentialDepartment or Event Name 65LRZ Workshop 65

Data Layouts in PyTorch

• Used in Vision workloads

• NCHW
• Default format

• torch.contiguous_format

• NHWC
• torch.channels_last

• NHWC format yields higher performance with IPEX

Channels last conversion is now applied automatically with IPEX
 Users do not have to explicitly convert input and weight for CV models.

Intel ConfidentialDepartment or Event Name 66LRZ Workshop 66

Benefit of NHWC in IPEX

Dot line arrows indicate simple
memory view, no hard copy.

Solid line arrows indicate
hard copy is required.

Reorder

Reorder

Intel ConfidentialDepartment or Event Name 67LRZ Workshop 67

Operator
optimizations

Memory/data
layout

optimizations

Graph
optimizations

Mixed Precision

Intel ConfidentialDepartment or Event Name 68LRZ Workshop 68

Conv2D

ReLU

Input Filter

Shape

oneDNN-
Conv2D

Input Filter

Convert

Convert Convert

oneDNN -
ReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

oneDNN-
Conv2D

Input Filter

Convert Convert

oneDNN-
ReLU

Convert

Shape

After Layout Propagation

68

Graph Optimizations: Layout Propagation

Intel ConfidentialDepartment or Event Name 69LRZ Workshop 69

Fusing Computations

• On Intel processors a high percentage of time is typically spent in bandwidth-limited ops
such activation functions

• ~40% of ResNet-50, even higher for inference

• The solution is to fuse BW-limited ops with convolutions or one with another to reduce the
number of memory accesses

• We fuse patterns: Conv+ReLU+Sum, BatchNorm+ReLU, etc…

Conv

Conv

Sum ReLU

Conv

Conv+ReLU+Sum

Intel ConfidentialDepartment or Event Name 70LRZ Workshop 70

Conv2D

BiasAdd

Input Filter

Bias Conv2DWithBia
s

Input Filter Bias

Before Merge After Merge

70

Graph Optimizations: Fusion

Intel ConfidentialDepartment or Event Name 71LRZ Workshop 71

Fusing Computations in IPEX

• Intel® Extension for PyTorch in JIT/Torchscript mode can fuse:
• Multi-head-attention fusion, Conv(2, 3)D+SUM+ReLU, Conv(2, 3)D + Sigmoid,

Concat Linear, Linear+Add, Linear+Gelu, Add+LayerNorm fusion, etc.

• Hugging Face reports that ~70% of most popular NLP tasks in question-
answering, text-classification, and token-classification can get performance
benefits with such fusion patterns [1]
• For both Float32 precision and BFloat16 Mixed precision

71

[1] https://huggingface.co/docs/transformers/perf_infer_cpu

Intel ConfidentialDepartment or Event Name 72LRZ Workshop 72

Fusing Computations in LLMs

• Operator Fusion Strategy:

• Reduces memory footprint on CPUs and decreases memory access and kernel launches on GPUs.

• Specific Fusion Techniques:

• Linear Post Ops Fusion: Combines linear operations with activation functions for improved efficiency.

• Customized Operators for Performance:

• Examples:

• Rotary Position Embedding (RoPE): Enhances positional calculations.

• Root Mean Square Layer Normalization (RMSNorm): Streamlines normalization processes.

• Available for Both CPU and GPU: Tailored to exploit the architectural advantages of both platforms.

72

Intel ConfidentialDepartment or Event Name 73LRZ Workshop 73

Operator
optimizations

Memory/data
layout

optimizations

Graph
optimizations

Mixed Precision

Intel ConfidentialDepartment or Event Name 74LRZ Workshop 74

Auto Mixed Precision (AMP)

• 3 Categories of operators
• lower_precision_fp

• Computation bound operators that
could get performance boost with
BFloat16.

• E.g.: conv, linear
• Fallthrough

• Operators that runs with both
Float32 and BFloat16 but might not
get performance boost with
BFloat16.

• E.g.: relu, max_pool2d
• FP32

• Operators that are not enabled with
BFloat16 support yet. Inputs of
them are casted into float32 before
execution.

• E.g.: max_pool3d, group_norm

conv

relu

group_norm

relu

linear

conv

relu

group_norm

relu

linear

BFloat16

Float32

BFloat16

Intel ConfidentialDepartment or Event Name 75LRZ Workshop 75

Profiling tools

Intel ConfidentialDepartment or Event Name 76LRZ Workshop 76

CPU – PyTorch* Profiler

• Use built-in PyTorch profiler API to gain information about
operator overhead

Measure time and memory consumption

Example Use Direct Output

Intel ConfidentialDepartment or Event Name 77LRZ Workshop 77

GPU – Legacy Profiler Tool
Experimental

• Extension of PyTorch* legacy profiler for profiling operators’ overhead on XPU
devices

• Users can get the information in many fields of the run models or code scripts
• Export to Chrome Trace

Example Use Direct Output

Intel ConfidentialDepartment or Event Name 78LRZ Workshop 78

Profilers

• Built-in PyTorch profiler

• You can profile your application via oneDNN
verbose logs.
• DNN_VERBOSE=1 python application.py
• You can also use profile_utils.py script to parse oneDNN

verbose logs.
• Code sample on oneDNN profiling can be

found here: https://github.com/oneapi-src/oneAPI-
samples/tree/master/Libraries/oneDNN/tutorials/profilin
g

• Another famous profiling tool is VTune from Intel
which provides very deep hardware information
and show them in easier way on how to optimize the
performance. You can easily find the hotspots
using VTune. (most costly functions)

https://raw.githubusercontent.com/oneapi-src/oneAPI-samples/master/Libraries/oneDNN/tutorials/profiling/profile_utils.py
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/profiling
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Intel ConfidentialDepartment or Event Name 79LRZ Workshop 79

Intel® XPU Manager

• Intel® XPU Manager is a free and open-source tool for monitoring and
managing Intel data center GPUs.

• XPU Manager can be used standalone through its command line
interface (CLI) to manage GPUs locally, or through its RESTful APIs
to manage GPUs remotely.

• Can be downloaded through binary packages or docker image.

• Important Links:
• https://github.com/intel/xpumanager
• https://www.intel.com/content/www/us/en/software/xpu-manager.html

• Please note:
• If you want to use XPU Manager, please uninstall XPU-SMI (comes default

through XPU drivers, subset of XPU manager) and install XPU Manager

https://github.com/intel/xpumanager
https://www.intel.com/content/www/us/en/software/xpu-manager.html

Intel ConfidentialDepartment or Event Name 80LRZ Workshop 80

Recipe for Intel® Optimizations with IPEX

Intel ConfidentialDepartment or Event Name 81LRZ Workshop 81

Easy Recipe for Intel® Optimizations with IPEX

• Add IPEX

• Add some Warmup steps for oneDNN initialization

• Utilize AMX or XMX instruction sets with efficient bfloat16 data type

• Utilize graph mode with TorchScript

• Quantize model to INT8

• Runtime optimizations with Performance Tuning Guide in case of cpu

• Use Advanced configuration in case of xpu.

• Distributed training with oneCCL/ DDP/Horovod/FSDP/DeepSpeed.

• Profile with oneDNN verbose / Pytorch Profiler / VTune for further
analysis.

https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/advanced_configuration.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://github.com/microsoft/DeepSpeed/

Intel ConfidentialDepartment or Event Name 82LRZ Workshop 82

GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

Intel ConfidentialDepartment or Event Name 83LRZ Workshop 83

Intel Optimized Hugging Face Libraries & Tools

Optimized Models & Spaces

Transformers Diffusers Accelerate PEFT Optimum

Foundational Stack

Dolly LLAMA2 MPT LDM3D Whisper
Hundreds of

thousands
more…

Fine Tuning workflows on Hugging Face Platform optimized OOB for Intel products

https://huggingface.co/Intel

Fine Tuning for NLP,CV Generative Use Cases Fine Tuning at Scale Efficient Fine Tuning Performance Optimization

https://huggingface.co/Intel

Intel ConfidentialDepartment or Event Name 84LRZ Workshop 84

GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

Intel ConfidentialDepartment or Event Name 85LRZ Workshop 85

Intel® Neural Compressor

Intel ConfidentialDepartment or Event Name 86LRZ Workshop 86

Intel® Neural Compressor

Intel® Neural Compressor is designed to use automatic accuracy-aware tuning strategies to help user
easily & quickly find out the best optimization methods.

Original
Model

Quantization

Pruning

ML-Driven Auto-Tuning

Mix Precision

Low Precision
Model

Optimized ModelDistillation

Graphic
Optimization

• Reduce accuracy loss:

Automatic accuracy-driven quantization
strategies

• Collaborate with:

Cloud marketplaces such as Google Cloud
Platform, Amazon Web Services,
and Azure

Software platforms such as Alibaba
Cloud, Tencent TACO and Microsoft Olive

Open AI ecosystem such as Hugging
Face, PyTorch, ONNX, ONNX Runtime,
and Lightning AI

https://github.com/intel/neural-compressor
https://github.com/intel/neural-compressor/blob/master/docs/source/design.md#workflow
https://console.cloud.google.com/marketplace/product/bitnami-launchpad/inc-tensorflow-intel?project=verdant-sensor-286207
https://console.cloud.google.com/marketplace/product/bitnami-launchpad/inc-tensorflow-intel?project=verdant-sensor-286207
https://aws.amazon.com/marketplace/pp/prodview-yjyh2xmggbmga#pdp-support
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/bitnami.inc-tensorflow-intel
https://www.intel.com/content/www/us/en/developer/articles/technical/quantize-ai-by-oneapi-analytics-on-alibaba-cloud.html
https://www.intel.com/content/www/us/en/developer/articles/technical/quantize-ai-by-oneapi-analytics-on-alibaba-cloud.html
https://new.qq.com/rain/a/20221202A00B9S00
https://github.com/microsoft/Olive
https://huggingface.co/blog/intel
https://huggingface.co/blog/intel
https://pytorch.org/tutorials/recipes/intel_neural_compressor_for_pytorch.html
https://github.com/onnx/models#models
https://github.com/microsoft/onnxruntime
https://github.com/Lightning-AI/lightning/blob/master/docs/source-pytorch/advanced/post_training_quantization.rst

Intel ConfidentialDepartment or Event Name 87LRZ Workshop 87

Deep Learning Inference Optimization

INC use automatic accuracy-driven tuning
strategies to help user easily & quickly find out

the best optimization methods above.

Quantization

Pruning

Knowledge Distillation

FP32 FP32 FP32

FP32FP32

INT8 INT8 INT8

INT8 INT8

Graph Optimization

Conv2D

BatchNorm

Relu

Conv2D
BatchNorm

Relu

Mixed Precision Graph Optimization

FP32 FP32 FP32

FP32FP32

INT8 INT8 INT8

BF16 BF16

Intel ConfidentialDepartment or Event Name 88LRZ Workshop 88

Quantization for LLM and GenAI

• Support Popular LLMs:

Bloom-176B, OPT-6.7B, Stable Diffusion, GPT-
J, BERT-Large from popular model hubs such
as Hugging Face, Torch Vision, and ONNX
Model Zoo

• HuggingFace style API

IO IO

• Reduce compute requirement
• Accelerate by:

Intel® Deep Learning Boost
(Intel® Xeon, Core)
Intel® AMX (Intel® Xeon),
Intel® XMX (Intel® Arc GPU,
Intel® Data Center GPU Flex/Max
Series.

FP32
BF16

INT8

INT4

• Reduce IO requirement

• Reduce memory usage

https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/ipex/smooth_quant
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/text-to-image/quantization
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/language-modeling/quantization/ptq_static/fx
https://github.com/intel/neural-compressor/blob/master/examples/pytorch/nlp/huggingface_models/text-classification/quantization/ptq_static/fx
https://huggingface.co/
https://pytorch.org/vision/stable/index.html
https://github.com/onnx/models#models
https://github.com/onnx/models#models

Intel ConfidentialDepartment or Event Name 89LRZ Workshop 89

Getting Intel® Neural Compressor

• Pip Installation:
Install 2.X API + Framework extension API + PyTorch dependency
• pip install neural-compressor[pt]
Install 2.X API + Framework extension API + TensorFlow
dependency
• pip install neural-compressor[tf]

• Intel® Neural Compressor is included in the Intel® AI Analytics
Toolkit (AI Kit):
• https://www.intel.com/content/www/us/en/developer/tools/on

eapi/ai-analytics-toolkit-download.html?operatingsystem=linux

• Download the Stand-Alone Version:
• https://www.intel.com/content/www/us/en/developer/tools/oneap

i/neural-compressor.html

• Use Intel® Developer Cloud:
• https://www.intel.com/content/www/us/en/secure/forms/devclou

d/enrollment.html?tgt=www.intel.com/content/www/us/en/secure
/forms/devcloud-enrollment/account-provisioning.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html?operatingsystem=linux
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html?operatingsystem=linux
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html

Intel ConfidentialDepartment or Event Name 90LRZ Workshop 90

GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

Intel ConfidentialDepartment or Event Name 91Webinar Title Here 91

Intel® Extension for Transformers

Intel ConfidentialDepartment or Event Name 92LRZ Workshop 92

Intel® Extension for Transformers

GenAI

LLM

Intel® Extension for Transformers

Xeon Core Gaudi

Transformers style API

GPU

• Seamless user experience of model
compressions on Transformer-based
models by extending Hugging Face
transformers APIs

• Advanced software optimizations and
unique compression-aware runtime

• NeuralChat, a customizable chatbot
framework to create your own chatbot
within minutes by leveraging a rich set of
plugins

• Inference of Large Language Model
(LLM) in pure C/C++ with weight-only
quantization kernels

Ref: https://github.com/intel/intel-extension-for-transformers

https://github.com/intel/intel-extension-for-transformers

Intel ConfidentialDepartment or Event Name 93LRZ Workshop 93

Intel® Extension for Transformers Features

Hugging Face Transformers

Model Compression Neural ChatNeural Speed*

• Inference of Large Language Model
(LLM) in pure C/C++ (llama.cpp inspired)

• Streaming LLM
• Tensor parallelism

• LLM Compression
• General Compression

• Framework for customizable chatbot
• OpenAI-compatible RESTful API
• LangChain extension API

*Separate installation starting v1.3.1

Intel ConfidentialDepartment or Event Name 94LRZ Workshop 94

Installation & Validated Configurations

Hardware Software

OS: Ubuntu 20.04/22.04, Centos 8.

*With requirement.txt for specific use-cases and features

Intel ConfidentialDepartment or Event Name 95LRZ Workshop 95

Type of GenAI & LLM Models

Stable Diffusion LLAMA3 Baichuan2-13B
OPT

BLOOM-176B LLAMA2 GPT-NEOX Dolly-v2-3B

Qwen-7B
LLAMA

MPT Falcon

Qwen-14B
T5

FALCON GPT-J-6B

ChatGLM2-6B Flan-T5 BLOOM-7B GPT-NEOX

ChatGLM4-6B …

Supported LLM(Large language Model) Model List

Intel® Extension for Transformers

Ref: https://github.com/intel/intel-extension-for-transformers

https://github.com/intel/intel-extension-for-transformers

Intel ConfidentialDepartment or Event Name 96LRZ Workshop 96

Intel Extension for Transformers

• Intel Extension for Transformers (ITREX): Built on top of INC
ecosystem and Hugging Face

• Its target is the democratization of NLP and Transformers for
both training/fine-tuning and inference

• Brings compression and model optimizations in a high-level HF –
like API

• Staging area for all Intel’s transformer feature enhancements:
• Upstream to HF as much as possible (Transformers + Optimum)

• Intel’s differentiation remains, e.g., NAS, MoE, dynamic model, etc., and
is ready for future upstream

Intel ConfidentialDepartment or Event Name 97LRZ Workshop 97

GenAI Deep Learning Funnel Pipeline

Frameworks Tools

HF Optimum Intel

Intel® Extension for PyTorch Intel® Extension for Transformers

Intel® Extension for Tensorflow

Intel® Neural Compressor

Train Model from
 scratch/

Pre-Training
Fine-Tuning InferenceCompression

https://intel.github.io/intel-extension-for-pytorch/#introduction
https://github.com/intel/intel-extension-for-transformers
https://intel.github.io/intel-extension-for-tensorflow/latest/get_started.html
https://github.com/intel/neural-compressor

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Choose the Best Accelerated Technology

Distributed Training @ Intel Architecture

Akash Dhamasia – AI Software Solutions Engineer
akash.dhamasia@intel.com

July 22nd 2024

Intel ConfidentialDepartment or Event Name 99LRZ Workshop 99

Why Distributed Training?

• Increases the amount of compute

• Helps train model faster.

• with Increasing Model size &
Dataset size, it makes sense to
divide them to do computation
parallelly and faster, Also not
possible to fit big model on single
GPU.

Intel ConfidentialDepartment or Event Name 100LRZ Workshop 100

Neural Network Parallelism

Data is processed in increments
of N. Work on minibatch
samples and distributed among
the available resources.

The work is divided according
to a split of the model. The
sample minibatch is copied to
all processors which compute
part of the DNN.

source: https://arxiv.org/pdf/1802.09941.pdf

• Types of Multi-worker
communication

• NCCL

• MPI

• CCL

• Distributed Training
Methods

• Data Parallel

• Model Parallel

• Data + Model Parallel

https://arxiv.org/pdf/1802.09941.pdf

Intel ConfidentialDepartment or Event Name 101LRZ Workshop 101

Intel® oneAPI Collective Communications Library (oneCCL)

• enables developers and researchers to quickly train DL models

• optimizes communication patterns to distribute model training across multiple nodes

• designed for easy integration into deep learning frameworks, whether they are implemented them from scratch or customizing
existing ones

• DistributedDataParallel (DDP) with Intel® oneCCL
• E.g mpirun -n 2 -l python Example_DDP.py

• Important links:

• https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html

• https://github.com/oneapi-src/oneCCL

• Horovod with Intel® oneCCL & PyTorch
• E.g horovodrun -np 2 python Example_horovod.py

• Or e.g mpirun -np 2 python Example_horovod.py

• Important links:

• https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html

• https://github.com/intel/intel-optimization-for-horovod

• Fully Sharded Data Parallel (FSDP)

• DeepSpeed
• Deep learning optimization software suite that enables scale and speed for Deep Learning Training and inference of models with billions or trillions of

parameters

• Example to train GPT 3.6B, 20B, 175B

• https://github.com/intel/intel-extension-for-deepspeed/tree/main/examples

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://github.com/oneapi-src/oneCCL
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://github.com/intel/intel-optimization-for-horovod
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://github.com/intel/intel-extension-for-deepspeed
https://github.com/intel/intel-extension-for-deepspeed/tree/main/examples

Intel ConfidentialDepartment or Event Name 102LRZ Workshop 102

DistributedDataParallel (DDP)

▪ DDP is a PyTorch module that implements multi-
process data parallelism across multiple GPUs and
machines.

▪ With DDP, the model is replicated on every process,
and each model replica is fed a different set of input
data samples.

▪ To run DDP optimized for Intel hardware, we use Intel®
oneCCL Bindings for Pytorch*

▪ Important links:
▪ https://intel.github.io/intel-extension-for-

pytorch/xpu/latest/tutorials/features/DDP.html
▪ https://github.com/oneapi-src/oneCCL

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/DDP.html
https://github.com/oneapi-src/oneCCL

Intel ConfidentialDepartment or Event Name 103LRZ Workshop 103
Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 104LRZ Workshop 104

GPU 0 GPU 1 GPU 2 GPU ..…

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 105LRZ Workshop 105

GPU 0 GPU 1 GPU 2 GPU ..…

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 106LRZ Workshop 106

GPU 0 GPU 1 GPU 2 GPU ..…

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 107LRZ Workshop 107

GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 108LRZ Workshop 108

GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 109LRZ Workshop 109

GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 110LRZ Workshop 110

optimizer

GPU 0

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 111LRZ Workshop 111

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 112LRZ Workshop 112

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 113LRZ Workshop 113

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 114LRZ Workshop 114

optimizer optimizer optimizer optimizer

GPU 0 GPU 1 GPU 2 GPU 3

data model

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 116LRZ Workshop 116

GPU0

optimizer

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

GPU1

optimizer

GPU2

optimizer

GPU3

optimizer

• The model is replicated on all the
devices; each replica calculates
gradients and simultaneously
synchronizes with the others
using the ring all-reduce algorithm

data model

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 117LRZ Workshop 117

GPU0

optimizer

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

GPU1

optimizer

GPU2

optimizer

GPU3

optimizer

oneCCL

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 118LRZ Workshop 118

GPU0

optimizer

Credits: https://www.youtube.com/watch?v=3A8AVsNNHOg

GPU1

optimizer

GPU2

optimizer

GPU3

optimizer

oneCCL
Bindings for

PyTorch

https://www.youtube.com/watch?v=3A8AVsNNHOg

Intel ConfidentialDepartment or Event Name 119LRZ Workshop 119

Intel® oneCCL Bindings for Pytorch(Torch-CCL)
• Holds PyTorch bindings for the Intel® oneAPI Collective

Communications Library (oneCCL).

• Github repository maintained by Intel
• https://github.com/intel/torch-ccl

• Can be easily installed through prebuilt wheel:
• python -m pip install oneccl_bind_pt --extra-index-url https://pytorch-

extension.intel.com/release-whl/stable/xpu/us/

pytorch onecclTorch-ccl

https://github.com/intel/torch-ccl
https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

Intel ConfidentialDepartment or Event Name 120LRZ Workshop 120

Intel ConfidentialDepartment or Event Name 121LRZ Workshop 121

Intel ConfidentialDepartment or Event Name 122LRZ Workshop 122

Intel ConfidentialDepartment or Event Name 123LRZ Workshop 123

Intel ConfidentialDepartment or Event Name 124LRZ Workshop 124

Initialization Function of DistributedDataParallel

124

• TCP initialization
• IP address and port of rank 0

node is required.

• init_method='tcp://10.1.1.20:234
56'

• Shared file-system
initialization
• makes use of a file system that is

shared and visible from all
machines in a group.

• init_method='file:///mnt/nfs/shar
edfile'

• Environment variable initialization

• Default method

• init_method='env://'

• MASTER_PORT - required; has to be a
free port on machine with rank 0

• MASTER_ADDR - required (except for
rank 0); address of rank 0 node

• WORLD_SIZE - required; can be set either
here, or in a call to init function

• RANK - required; can be set either here, or
in a call to init function

Intel ConfidentialDepartment or Event Name 125LRZ Workshop 125

Quick DDP Recipe @Intel®

125

1. import torch_ccl & DDP

2. Access PMI_*
environment variables

3. Set backend to ‘ccl’

Only 3-5 changes needed from
general torch DDP code

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

4. Use Distributed dataset
sampler

5. Pass model to DDP

e.g import
torch.utils.data.distributed
 train_sampler =
torch.utils.data.distributed.
DistributedSampler(train_
dataset)

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Intel ConfidentialDepartment or Event Name 126LRZ Workshop 126

Usage for Distributed
Training with DDP
• 4 root devices, 4 GPUs

• 8 ranks and two ranks per GPU

• E.g mpirun -n 8 -l python Example_DDP.py

• Monitor XPU usage using Intel® XPU manager:
• https://www.intel.com/content/www/us/en/software/xpu-manager.html

• xpumcli dump –d 0 –m 0,1,2,3,4,5
Timestamp, DeviceId, GPU Utilization (%), GPU Power (W), GPU Frequency (MHz), GPU Core Temperature
(Celsius Degree), GPU Memory Temperature (Celsius Degree), GPU Energy Consumed (J)

08:04:16.000, 0, 53.35, 234.08, 0.00, , , 2018647.97
08:04:17.000, 0, 65.83, 341.15, 1600.00, , , 2018956.02
08:04:18.000, 0, 92.52, 375.21, 900.00, , , 2019332.25
08:04:19.000, 0, 92.54, 384.55, 1500.00, , , 2019715.47
08:04:20.000, 0, 94.21, 387.95, 975.00, , , 2020105.06
08:04:21.000, 0, 93.25, 386.10, 1600.00, , , 2020491.66
08:04:22.000, 0, 94.21, 391.84, 800.00, , , 2020881.66

https://www.intel.com/content/www/us/en/software/xpu-manager.html

Intel ConfidentialDepartment or Event Name 127LRZ Workshop 127

Horovod

▪ Horovod is a distributed deep learning training
framework for TensorFlow, Keras, PyTorch,
and Apache MXNet.

▪ Horovod can be easily installed through:
▪ python -m pip install intel-optimization-

for-horovod

▪ Important links:
▪ https://intel.github.io/intel-extension-for-

pytorch/xpu/latest/tutorials/features/horovod.html
▪ https://intel.github.io/intel-extension-for-

tensorflow/latest/examples/train_horovod/mnist/R
EADME.html?highlight=horovod

▪ https://github.com/intel/intel-optimization-for-
horovod

▪ https://horovod.readthedocs.io/en/latest/oneccl_in
clude.html#advanced-settings

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/horovod.html
https://intel.github.io/intel-extension-for-tensorflow/latest/examples/train_horovod/mnist/README.html?highlight=horovod
https://intel.github.io/intel-extension-for-tensorflow/latest/examples/train_horovod/mnist/README.html?highlight=horovod
https://intel.github.io/intel-extension-for-tensorflow/latest/examples/train_horovod/mnist/README.html?highlight=horovod
https://github.com/intel/intel-optimization-for-horovod
https://github.com/intel/intel-optimization-for-horovod
https://horovod.readthedocs.io/en/latest/oneccl_include.html#advanced-settings
https://horovod.readthedocs.io/en/latest/oneccl_include.html#advanced-settings

Intel ConfidentialDepartment or Event Name 128LRZ Workshop 128

Fully Sharded Data Parallel (FSDP)

▪ Fully Sharded Data Parallel (FSDP) is a
PyTorch module that provides solution for
large Model training.

▪ FSDP shards model parameters, optimizer
states and gradients across DDP ranks to
reduce the GPU memory footprint used in
training, unlike DDP, where each
process/worker maintains a replica of the
model,

▪ Important links:
▪ https://intel.github.io/intel-extension-for-

pytorch/xpu/latest/tutorials/features/FSDP.html
▪ https://pytorch.org/tutorials/intermediate/FSDP_tu

torial.html

Some Additions on top of DDP:

from torch.distributed.fsdp import
FullyShardedDataParallel as FSDP

model = FSDP(model,
device_id="xpu:{}".format(rank)

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/features/FSDP.html
https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html

12
9

DeepSpeed

Intel ConfidentialDepartment or Event Name 130LRZ Workshop 130

DeepSpeed – Introduction

• Deep learning optimization software suite for PyTorch that
enables scale and speed for Deep Learning training and
inference

 Train/inference models with billions or trillions of parameters

 Efficiently scale to thousands of computing units

 Train/inference on GPU system with limited GPU memory

 Low latency and high throughput for inference

13
1

DeepSpeed – Inference

Intel ConfidentialDepartment or Event Name 132LRZ Workshop 132

Tensor Parallelism

• The reason to run Transformer based model inference with
DeepSpeed on multiple device is to get better inference latency
through Tensor Parallelism

• Tensor Parallelism parallelize Tensor operations in LLMs
between multiple workers, so each worker does less tensor
operation; results in less inference latency time

• DeepSpeed offers Tensor Parallelism with two different
technologies: AutoTP and Kernel Injection

Intel ConfidentialDepartment or Event Name 133LRZ Workshop 133

Simple DeepSpeed Example (Inference)

DeepSpeed Inference API

PyTorch model Tensor Parallel size

True: use kernel injection
False: use AutoTP

DeepSpeed model

Intel ConfidentialDepartment or Event Name 134LRZ Workshop 134

Simple DeepSpeed Example (Inference) – Single Node

deepspeed --num_gpus 2 run_gptj_ds.py

DeepSpeed lauching command Number of ranks The script on prev screen

deepspeed --num_gpus 2 run_gptj_ds.py

Auto detect
number of ranks

Intel ConfidentialDepartment or Event Name 135LRZ Workshop 135

Simple DeepSpeed Example (Inference) – Summary

• A PyTorch model will be converted to a DeepSpeed model
through DeepSpeed init_inference() interface

• Converted DeepSpeed model can be further optimized with
framework optimizations, i.e., ipex.optimize()

• Framework optimization should not go before DeepSpeed
init_inference(), otherwise DeepSpeed optimizations will be
blocked (cannot recognize optimized model)

• DeepSpeed model is executed with deepspeed command,
which would launch multiple workers with multiprocess launcher
(single node) or mpich/impi launcher (multi node)

13
6

DeepSpeed – Training

Intel ConfidentialDepartment or Event Name 137LRZ Workshop 137

DeepSpeed Training Technology – ZeRO Stage 1/2/3

Intel ConfidentialDepartment or Event Name 138LRZ Workshop 138

DeepSpeed @ Intel

• PyTorch 2.1

• Intel Extension for PyTorch 2.1

• DeepSpeed

• Intel Extension for DeepSpeed / Intel Extension for PyTorch
DeepSpeed

• oneCCL Bindings (torch-ccl)

• oneAPI 2024
pytorch oneccltorch-ccl

https://pytorch-extension.intel.com/release-whl/stable/xpu/us/intel-extension-for-pytorch/

Intel ConfidentialDepartment or Event Name 139LRZ Workshop 139

Verified Models: Distributed

GPU:

CPU:

CPU - https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-
rc0/examples/cpu/inference/python/llm

GPU - https://github.com/intel/intel-extension-for-pytorch/tree/xpu-
main/examples/gpu/inference/python/llm

https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0%2Bcpu-rc0/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main/examples/gpu/inference/python/llm

Intel ConfidentialDepartment or Event Name 140LRZ Workshop 140

Performance
4th Gen Intel® Xeon® (SPR) & Intel® Data Center GPU Max 1550 (PVC)

Intel ConfidentialDepartment or Event Name 141LRZ Workshop 141

Benchmarks: Inference Performance

5.70
6.19 6.25 6.24

8.61

10.01

0

2

4

6

8

10

12

Resnext101 32x16d ResNet50 v15 Bert Large MaskRCNN RNN_T SSD RN34

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

Real-Time (BS=1) Inference Performance

2S Intel® Xeon® Platinum 8480+ processor [AMX BF16]

vs. 2S Intel® Xeon® Platinum 8380 processor [FP32]

Intel® Extension for PyTorch [IPEX]

Higher is better

Object
DetectionImage Classification NLP

Image
Segmentation

Transformer

3.46

1.47

0.90

2.46

1.71

0.00

1.00

2.00

3.00

4.00

NVIDIA A10 ResNet50 v1.5 ResNext101 BERT-Large Mask RCNN SSD ResNet34

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

Real-Time (BS=1+) Inference Performance

2S Intel® Xeon® Platinum 8480+ processor [IPEX with BF16/FP16]

vs. NVIDIA A10 GPU [TensorRT]

Higher is better

Nvidia A10 Baseline

1 See [A17, A33] at intel.com/processorclaims: 4th Gen Intel Xeon Scalable processors. Results may vary.
2 See [A218] at intel.com/processorclaims: 4th Gen Intel Xeon Scalable processors. Results may vary.

Intel® Xeon® Platinum 8380 processor baseline

Object
Detection

Image Classification NLP
Image

Segmentation

Up to 10x higher gen-to-gen performance
Up to 7.7x higher gen-to-gen perf/watt1

1.8x higher average* BF16/FP16 inference
performance vs Nvidia A10 GPU2

Intel ConfidentialDepartment or Event Name 142LRZ Workshop 142

3.61

0.7

3.22

1.49

0.45

3.52

HuggingFace

DistilBert [IMDB]

HuggingFace

DistilBert [SST-2]

Vision Transfer Learning

[Colorectal]

T
im

e
-t

o
-t

ra
in

 (
m

in
u

te
s

)

Xeon 8480+ [BF16] Nvidia A100 [FP16]

Real Workloads: Train With Fine Tuning in Less
than 4 Minutes

6.46

7.64

HuggingFace

BERT-large [IMDB]

>1 min faster
than A100

Lower is better

Intel® Tensor Processing Primitives (TPP)
Extension for PyTorchXeon 8480+ [Intel® Extension for PyTorch

NVIDIA A100 [Stock PyTorch]

Xeon 8480+ [Intel® Optimization for TensorFlow]
NVIDIA A100 [Stock TensorFlow]

NVIDIA A100 [Stock PyTorch]

See backup for workloads and configurations. Results may vary.

Fine tuning time-to-train performance
Intel® Xeon® Platinum 8480+ processor

vs. Nvidia A100 GPU

In the lab: Intel optimizations to shorten
TTT for large natural language models

Intel ConfidentialDepartment or Event Name 143LRZ Workshop 143

Llama 2 Inference
Performance

One 4th Gen Xeon socket delivers latencies under 100ms with 7 billon parameter and
13 billon parameter size of models. Users can run 2 parallel instances, one on each
socket, for higher throughput and to serve clients independently

Intel® Data Center GPU Max 1550: Users can run 2 parallel instances, one on each
tile, for higher throughput and to serve clients independently.

Ref: https://www.intel.com/content/www/us/en/developer/articles/news/llama2.html

https://www.intel.com/content/www/us/en/developer/articles/news/llama2.html

Intel ConfidentialDepartment or Event Name 144LRZ Workshop 144

Llama 2 – 70B & Bloom-175B Inference Performance

Ref: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/performance.html

https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/performance.html

Intel ConfidentialDepartment or Event Name 145LRZ Workshop 145

Conclusion

Intel ConfidentialDepartment or Event Name 146LRZ Workshop 146

Important Links:
Intel® oneAPI Toolkits

Intel Extension for PyTorch

Intel® Extension for TensorFlow*

Intel Extension for Transformers

VTune Profiler

Key Takeaways & Call to Action

▪ 4th Gen Intel® Xeon®(SPR) & Intel® Data Center GPU Max Series 1550(PVC)
Enhances DL Workloads on PyTorch and TensorFlow and are accelerated by AMX
& XMX instruction set respectively.

▪ Minimal code changes are needed in PyTorch and TensorFlow to take advantage
of AMX & XMX and lower precision datatypes

▪ Intel provides a plethora of AI software tools to optimize GenAI/LLM AI workloads.

▪ Many Code samples are available to get started.

Getting Started Samples

Model Zoo for Intel® Architecture GitHub

Intel oneAPI Powered AI Reference Kit

OPEA [Open Platform for Enterprise AI]

Intel® Tiber Developer Cloud

Intel AI Tools Selector

https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html
https://intel.github.io/intel-extension-for-pytorch/
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/intel-extension-for-transformers
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Getting-Started-Samples
https://github.com/IntelAI/models
https://github.com/opea-project/GenAIExamples
https://www.intel.com/content/www/us/en/developer/tools/devcloud/services.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html#gs.b7fsap

Intel ConfidentialDepartment or Event Name 147LRZ Workshop 147

Intel ConfidentialDepartment or Event Name 148LRZ Workshop 148

Intel ConfidentialDepartment or Event Name 149LRZ Workshop 149

Intel ConfidentialDepartment or Event Name 150LRZ Beginner Workshop 150

Thank you for your attention!

Intel ConfidentialDepartment or Event Name 151LRZ Workshop 151

Appendix

Intel ConfidentialDepartment or Event Name 152LRZ Workshop 152

PyTorch Benchmarking Configurations
4th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

• Deep Learning config:

• Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): 2 sockets, 56 cores, 350 watts, 16 x 64 GB DDR5 4800
memory, BIOS version EGSDCRB1.SYS.8901.P01.2209200243, operating system: CentOS* Stream 8, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and
bf16 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.7 optimized kernels integrated into Intel® Extension for PyTorch* v1.13, Intel® Extension for
TensorFlow* v2.12, and Intel® Distribution of OpenVINO toolkit v2022.3. Measurements may vary.

• Wall power refers to platform power consumption.

• If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

• Transfer Learning config:

• Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): Use DLSA single node fine tuning, Vision Transfer
Learning using single node, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDREL1.SYS.8612.P03.2208120629, operating system: Ubuntu
22.04.1 LT, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6 optimized kernels
integrated into Intel® Extension for PyTorch* v1.12, and Intel® oneAPI Collective Communications Library v2021.5.2. Measurements and some software configurations
may vary.

3rd Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

• Hardware configuration for Intel® Xeon® Platinum 8380 processor (formerly code named Ice Lake): 2 sockets, 40 cores, 270 watts, 16 x 64 GB DDR5 3200 memory,
BIOS version SE5C620.86B.01.01.0005.2202160810, operating system: Ubuntu 22.04.1 LTS, int8 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6.0
optimized kernels integrated into Intel® Extension for PyTorch* v1.12, Intel® Extension for TensorFlow* v2.10, and Intel® oneAPI Data Analytics Library (oneDAL) 2021.2
optimized kernels integrated into Intel® Extension for Scikit-learn* v2021.2. XGBoost v1.6.2, Intel® Distribution of Modin* v0.16.2, Intel oneAPI Math Kernel Library
(oneMKL) v2022.2, and Intel® Distribution of OpenVINO toolkit v2022.3. Measurements may vary.

• If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

*All performance numbers are acquired running with 1 instance of 4 cores per socket

Intel ConfidentialDepartment or Event Name 153LRZ Workshop 153

PyTorch/TensorFlow Benchmarking Configurations
5th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2023):

• Deep Learning configuration:

• Hardware configuration for Intel® Xeon® Platinum 8592+ processor (code named Emerald Rapids): 2 sockets for inference, 1 socket for training, 64 cores, 350 watts,
1024GB 16 x 64GB DDR5 5600 MT/s memory, operating system CentOS* Stream 9. Using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel®
oneAPI Deep Neural Network Library (oneDNN) optimized kernels integrated into Intel® Extension for PyTorch*, Intel® Extension for TensorFlow*, and Intel®
Distribution of OpenVINO toolkit. Measurements may vary. If the dataset is not listed, a synthetic dataset was used to measure performance.

• Transfer Learning configuration:

• Hardware configuration for Intel® Xeon® Platinum 8592+ processor (code named Emerald Rapids): 2 sockets, 64 cores, 350 watts, 16 x 64 GB DDR5 5600 memory,
BIOS version 3B05.TEL4P1, operating system: CentOS stream 8, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® oneAPI Deep Neural
Network Library (oneDNN) v2.6.0 optimized kernels integrated into Intel® Extension for PyTorch* v2.0.1, Intel® Extension for TensorFlow* v2.14, and Intel® oneAPI Data
Analytics Library (oneDAL) 2023.1 optimized kernels integrated into Intel® Extension for Scikit-learn* v2023.1. Intel® Distribution of Modin* v2.1.1, and Intel oneAPI Math
Kernel Library (oneMKL) v2023.1. Measurements may vary.

	Slide 1: Generative AI Powered by Intel
	Slide 2: Notices & Disclaimers
	Slide 3: Agenda
	Slide 4
	Slide 5: AI Continuum
	Slide 6: Intel® AI Portfolio
	Slide 7: Intel AI Software Portfolio
	Slide 8: Intel AI Software by Platform
	Slide 9: Intel AI Software by Platform
	Slide 10: Generative AI Powered by Intel
	Slide 11: Generative AI
	Slide 12: Transformers
	Slide 13: Intel's Optimized SW Stack for Generative AI
	Slide 14: GenAI Deep Learning Funnel Pipeline
	Slide 15: GenAI Deep Learning Funnel Pipeline
	Slide 16: Intel®-Optimized Deep Learning Frameworks – Introduction
	Slide 17: Intel®-Optimized Deep Learning Frameworks
	Slide 18: Intel®-Optimized Deep Learning Frameworks
	Slide 19: Intel®-Optimized Deep Learning Frameworks
	Slide 20: Data Precision
	Slide 21: Data Precision
	Slide 22: INT8/BF16 on Artificial intelligence/Machine Learning
	Slide 23: Introduction to Intel® Advanced Matrix Extension and Intel® Xᵉ Matrix Extensions
	Slide 24: Intel® Extension for PyTorch
	Slide 25: PyTorch* Optimizations from Intel
	Slide 26: Intel® Extension for PyTorch* (IPEX)
	Slide 27: Major Optimization Methodologies
	Slide 28: Building and Deploying with BF16
	Slide 29: Low-precision Optimization – BF16
	Slide 30: Inference w/AMX BF16 on Intel® Extension for PyTorch (CPU)
	Slide 31: Training w/AMP on Intel® Extension for PyTorch (GPU)
	Slide 32: Inference w/AMP on Intel® Extension for PyTorch (GPU)
	Slide 33: Intel Extension for PyTorch Performance
	Slide 34: PyTorch Benchmark: SPR vs ICX Inference (Batch Size = 1)
	Slide 35: LLM Optimizations with IPEX (Intel® Extension for PyTorch)
	Slide 36: How to apply LLM optimizations with IPEX?
	Slide 37: Examples
	Slide 38: Verified Models: Single Instance
	Slide 39: Deploying with INT8
	Slide 40: Low-precision Optimization – INT8
	Slide 41: Static vs Dynamic Quantization
	Slide 42: Quantization Workflow and API
	Slide 43: TorchScript and torch.compile()
	Slide 44: Verifying That AMX Is Used
	Slide 45: How to Check If AMX Is Enabled
	Slide 46: How to Check AMX Is Actually Used
	Slide 47: oneDNN Verbose Sample Output
	Slide 48: How to get the Intel Extension for PyTorch
	Slide 49: PyTorch AMX Training/Inference Code Samples
	Slide 50: Intel® Extension for TensorFlow
	Slide 51: Intel® Extension for TensorFlow* (ITEX)
	Slide 52: How to use Intel® Extension for TensorFlow* - FP32
	Slide 53: Advanced Auto Mixed Precision - Environment Variable
	Slide 54: BF16 API
	Slide 55: BF16 API (cont.)
	Slide 56
	Slide 57: TensorFlow Benchmark: SPR vs ICX Inference (Batch Size = 1)
	Slide 58: TensorFlow AMX Training/Inference Code Samples
	Slide 59: Optimizations under IPEX & ITEX
	Slide 60
	Slide 61: Operator Optimizations
	Slide 62: Linear Operator Optimization for LLMs
	Slide 63
	Slide 64: Memory Layouts Optimization
	Slide 65: Data Layouts in PyTorch
	Slide 66: Benefit of NHWC in IPEX
	Slide 67
	Slide 68: Graph Optimizations: Layout Propagation
	Slide 69: Fusing Computations
	Slide 70: Graph Optimizations: Fusion
	Slide 71: Fusing Computations in IPEX
	Slide 72: Fusing Computations in LLMs
	Slide 73
	Slide 74: Auto Mixed Precision (AMP)
	Slide 75: Profiling tools
	Slide 76: CPU – PyTorch* Profiler
	Slide 77: GPU – Legacy Profiler Tool
	Slide 78: Profilers
	Slide 79: Intel® XPU Manager
	Slide 80: Recipe for Intel® Optimizations with IPEX
	Slide 81: Easy Recipe for Intel® Optimizations with IPEX
	Slide 82: GenAI Deep Learning Funnel Pipeline
	Slide 83
	Slide 84: GenAI Deep Learning Funnel Pipeline
	Slide 85: Intel® Neural Compressor
	Slide 86: Intel® Neural Compressor
	Slide 87: Deep Learning Inference Optimization
	Slide 88: Quantization for LLM and GenAI
	Slide 89: Getting Intel® Neural Compressor
	Slide 90: GenAI Deep Learning Funnel Pipeline
	Slide 91: Intel® Extension for Transformers
	Slide 92: Intel® Extension for Transformers
	Slide 93: Intel® Extension for Transformers Features
	Slide 94: Installation & Validated Configurations
	Slide 95
	Slide 96: Intel Extension for Transformers
	Slide 97: GenAI Deep Learning Funnel Pipeline
	Slide 98: Distributed Training @ Intel Architecture
	Slide 99: Why Distributed Training?
	Slide 100: Neural Network Parallelism
	Slide 101: Intel® oneAPI Collective Communications Library (oneCCL)
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 116
	Slide 117
	Slide 118
	Slide 119: Intel® oneCCL Bindings for Pytorch(Torch-CCL)
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124: Initialization Function of DistributedDataParallel
	Slide 125: Quick DDP Recipe @Intel®
	Slide 126: Usage for Distributed Training with DDP
	Slide 127
	Slide 128
	Slide 129: DeepSpeed
	Slide 130: DeepSpeed – Introduction
	Slide 131: DeepSpeed – Inference
	Slide 132: Tensor Parallelism
	Slide 133: Simple DeepSpeed Example (Inference)
	Slide 134: Simple DeepSpeed Example (Inference) – Single Node
	Slide 135: Simple DeepSpeed Example (Inference) – Summary
	Slide 136: DeepSpeed – Training
	Slide 137: DeepSpeed Training Technology – ZeRO Stage 1/2/3
	Slide 138: DeepSpeed @ Intel
	Slide 139: Verified Models: Distributed
	Slide 140: Performance
	Slide 141: Benchmarks: Inference Performance
	Slide 142: Real Workloads: Train With Fine Tuning in Less than 4 Minutes
	Slide 143: Llama 2 Inference Performance
	Slide 144: Llama 2 – 70B & Bloom-175B Inference Performance
	Slide 145: Conclusion
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151: Appendix
	Slide 152: PyTorch Benchmarking Configurations
	Slide 153: PyTorch/TensorFlow Benchmarking Configurations

