
July 2024

Overview of Python and classical ML
optimizations
Stefana Raileanu – AI Software Solutions Engineer

Intel ConfidentialDepartment or Event Name 22

Agenda

• oneAPI Introduction

• Intel® Distribution for Python
• numpy

• Data Parallel Extensions for Python*

• Classical ML
• scikit-learn

• XGBoost

• daal4py

• Modin*

3

XPUs

Low-Level Hardware Interface

oneAPI

A cross-architecture language based on C++
and SYCL standards

Powerful libraries designed for acceleration of
domain-specific functions

A complete set of advanced compilers, libraries,
and porting, analysis and debugger tools

Powered by oneAPI

Frameworks and middleware that are built
using one or more of the oneAPI industry
specification elements, the DPC++ language,
and libraries listed on oneapi.com.

Intel’s oneAPI
Ecosystem

Languages:
Data Parallel C++

Compatibility Tool
Analysis & Debug

Tools

Intel® oneAPI Product

CPU GPU FPGA

Visit software.intel.com/oneapi for more details
Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

Middleware & Frameworks (Powered by oneAPI)

Application Workloads Need Diverse Hardware

...

Available Now

Built on Intel’s Rich Heritage of
CPU Tools Expanded to XPUs

Other accelerators

oneDAL oneDNN oneCCL

Libraries

oneMKL oneTBB oneVPL oneDPL

file:///E:/IHI Creative Dropbox/Jay Jaime/Intel/OneAPI/Gold Deck/Assets/Copy Assets/software.intel.com/oneapi
../../AI Toolkit/Presentations/AI Everywhere/software.intel.com/oneapi

4

Linux Foundation’s
Unified Acceleration Foundation (UXL)

• This cross-industry group is committed to

delivering an open accelerator software

ecosystem to simplify development of

applications for cross-platform deployment.

• Intel will contribute its oneAPI specification to the

UXL Foundation to help drive cross-platform

development across architectures.

UXL is an evolution of the oneAPI initiative

oneAPI elements Intel is donating to UXL

6

Intel® oneAPI Data
Analytics Library

Intel® oneAPI Deep
Neural Network Library

Intel® oneAPI Collective
Communications Library

Intel® oneAPI
Math Kernel Library

Data Analytics at Scale

Open, cross-architecture programming model for CPUs, GPUs, and other accelerators

Try the latest Intel tools and hardware,
and access optimized AI Models

Intel® Tiber Developer Cloud
cloud.intel.com

Engineer Data

Neural Compressor
SigOpt
AutoML

Full stack ML operating system

Write Once
Deploy AnywhereDirectML

Note: components at each layer of the stack are
optimized for targeted components at other
layers based on expected AI usage models, and
not every component is utilized by the solutions
in the rightmost column

CLOUD &
ENTERPRISE

CLIENT &
WORKSTATION

EDGE

Intel optimizations and fine-tuning recipes,
optimized inference models, and model serving

Create Models Optimize & Deploy

Intel AI Software Portfolio

Intel distribution

Machine & Deep Learning Frameworks, Optimization and Deployment Tools

Intel-optimized open-source AI tools and frameworks

Intel® Tiber AI Studio

Partner

*Other names and brands may be claimed as the property of others.

Intel ConfidentialDepartment or Event Name 77

Intel® Distribution For Python*
Optimizations for NumPy and SciPy

Intel ConfidentialDepartment or Event Name 88

Intel® Performance Optimization with NumPy*
and SciPy*

• The Python* language is interpreted and
has many type checks to make it flexible

• Each level has various tradeoffs; NumPy*
value proposition is immediately seen

• For best performance, escaping the
Python* layer early is best method

Intel® oneMKL included with Anaconda standard bundle; is Free for Python

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware vectorization

Gets around the GIL
(multi-thread and multi-core)
BLAS* API can be the bottleneck

*Basic Linear Algebra Subprograms (BLAS) [CBLAS]

Enforces Global Interpreter Lock (GIL)
and is single-threaded, abstraction
overhead. No advanced types.

Python*

NumPy*

Intel® oneAPI
Math Kernel
Library
(oneMKL)

The layers of quantitative Python*

Intel ConfidentialDepartment or Event Name 99

NumPy* and SciPy*
Optimizations

▪ BLAS/LAPACK using oneMKL

▪ oneMKL-based FFT functionality

▪ Vectorized, threaded universal functions

▪ Use of Intel® C Compiler, and Intel®
Fortran Compiler

▪ Aligned memory allocation

▪ Threaded memory copying

Scope

Intel ConfidentialDepartment or Event Name 1010

1 1 1 1 1 1 1 1

1.45

3.20

1.28

2.74

1.99

2.98

1.51

1.86

0

0.5

1

1.5

2

2.5

3

3.5

Cholesky
Decomposition

Matrix Determinant Matrix-Matrix
Multiplication

Matrix Inversion LU Decomposition QR Decomposition SVD Decomposition Eigenvalue Problem

R
el

at
iv

e
Sp

ee
d

-u
p

 (
H

ig
h

er
 is

 B
et

te
r)

Problem Type

Stock NumPy and SciPy (-c conda-forge) Intel Optimized NumPy and SciPy (-c intel)

Intel Optimizations for NumPy* & SciPy* compared to conda-forge channel NumPy* & SciPy* Performance for Linear Algebra on Intel® Xeon® Platform 8480+

Intel Optimized NumPy* and SciPy* Linear Algebra Performance
Performance is Increased up to 3.2x with Intel Optimizations

Testing Date: Performance results are based on testing by Intel as of July 15, 2023. Configuration Details and Workload Setup: System: cloud.intel.com, nodes=1:spr:ppn=2, Intel(R) Xeon(R) Platinum 8480+, 2 sockets, 56 cores per socket, HT

On, Intel Turbo Boost On, Total Memory 528GB, RAM 33 MHz, Ubuntu 20.04.5 LTS, 5.18.15-051815-generic, Microcode: 0x2b000310, benchmarks https://github.com/IntelPython/ (ibench Linear Algebra), -c conda-forge environment

versions: numpy 1.23.5, scipy 1.10.1, numba 0.56.4 modules installed, -c intel environment versions: numpy 1.21.4, scipy 1.7.3, numba 0.56.3, tbb4py 2021.8.0 modules installed

See backup for workloads and configurations. Results may vary.

Intel ConfidentialDepartment or Event Name 1111

Intel Optimized NumPy* Fast Fourier Transform Performance
Performance is Increased up to 140x with Intel Optimizations

Testing Date: Performance results are based on testing by Intel as of March 5, 2023. Configuration Details and Workload Setup: System: cloud.intel.com, nodes=1:spr:ppn=2, Intel(R) Xeon(R) Platinum 8480+, 2 sockets, 56 cores per socket, HT

On, Intel Turbo Boost On, Total Memory 528GB, RAM 33 MHz, Ubuntu 20.04.5 LTS, 5.18.15-051815-generic, Microcode: 0x2b000310, benchmarks https://github.com/IntelPython/ (fft_benchmark, blackscholes_bench, composability_bench),

-c conda-forge environment versions: numpy 1.23.5, scipy 1.10.1, numba 0.56.4 modules installed, -c intel environment versions: numpy 1.21.4, scipy 1.7.3, numba 0.56.3, tbb4py 2021.8.0 modules installed

See backup for workloads and configurations. Results may vary.

1 1 1 1 1 1 1 1 1 1 1 1

64.50

36.24 38.86

121.75

73.26 80.70

32.54

140.08

17.68

7.21

14.99

59.07

1

10

100

1000

complex128 float32 complex64 float64 complex128 float64 complex128 float64 complex64 complex64 float64 float32

fft rfft fftn fftn fftn rfft fft2 fft2 fft fft2 fft fft

R
e

la
ti

v
e

 S
p

e
e

d
u

p
 (

H
ig

h
e

r
is

 B
e

tt
e

r)

Function Type and Data Type

Stock NumPy (-c conda-forge) Intel Optimized NumPy (-c intel)

Fast Fourier Transform NumPy* performance intel vs. conda-forge on Intel® Xeon® Platform 8480+

Intel Confidential 13

2.58

5.60

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Unbalanced, high parallelism Unbalanced, low parallelism

Ex
e

cu
ti

o
n

 T
im

e
(s

e
c)

Workload Type

Without IDP Functionality (Crash) With IDP Functionality

N/A (Crash) N/A (Crash)

P E R F O R M A N C E U S I N G I N T E L ® D I S T R I B U T I O N F O R P Y T H O N * O N I N T E L ® X E O N ® P L A T I N U M 8 4 8 0 + T O A V O I D O V E R S U B S C R I P T I O N P R O B L E M S

Intel® Distribution for Python Oversubscription Performance
Successful Unbalanced Workload Performance with Composable Parallelism Enabled

Testing Date: Performance results are based on testing by Intel as of March 5, 2023. Configuration Details and Workload Setup:System: cloud.intel.com, nodes=1:spr:ppn=2, Intel(R) Xeon(R) Platinum 8480+, 2 sockets, 56 cores per socket, HT On, Intel Turbo Boost On, Total Memory 528GB,

RAM 33 MHz, Ubuntu 20.04.5 LTS, 5.18.15-051815-generic, Microcode: 0x2b000310, benchmarks https://github.com/IntelPython/ (fft_benchmark, blackscholes_bench, composability_bench), -c conda-forge environment versions: numpy 1.23.5, scipy 1.10.1, numba 0.56.4 modules installed, -

c intel environment versions: numpy 1.21.4, scipy 1.7.3, numba 0.56.3, tbb4py 2021.8.0 modules installed. Commands for stock non-IDP functionality: High parallelism: python dask_sh_mt.py, Low parallelism: python numpy_sl_mp.py 4; Commands for IDP functionality: High parallelism: env

KMP_COMPOSABILITY=mode=counting python dask_sh_mt.py, Low parallielsm: python –m tbb numpy_sl_mp.py

See backup for workloads and configurations. Results may vary.

Intel ConfidentialDepartment or Event Name 1414

Data Parallel Extensions for Python*

Current Gaps & Bottlenecks with Python

• No heterogenous computing opportunities for Python developers

• Some frameworks/companies build on CPU but no GPU support for this software

• Vendor lock-in when using certain GPUs and other devices

• Significant development and maintenance costs for codes targeting both GPU and CPU, and/or
other devices

• Developers need to have a different skillset and take extra time to program

CPU

GPU

XPU

???

Not a clear and easy path, different for everyone

Intel ConfidentialDepartment or Event Name 1616

Data Parallel Extensions for Python* language (DPEX)
A Cross-Architecture Experience for Python*

Data Parallel
Extensions for
Python

• Simple, unified offload
programming model

• Standards-based: Python*
Data API Standards +
Khronos* SYCL +
extensions

• Interoperates with vast
Python ecosystem on host

• A free, open-source
solution

XPU-Optimized Libraries Compiler for XPUs

API-Based Programming Direct Programming

XPUs

CPU GPU FPGA Other accel.

Numba Data-
Parallel Extension

(numba-dpex)

Data Parallel
NumPy
(dpnp)

Publicly
Available

Data Parallel
Control
(dpctl)

…

oneAPI + SYCL

PyData Ecosystem

*Other names and brands may be claimed as the property of others. SYCL is a trademark of the Khronos Group Inc.

Intel ConfidentialDepartment or Event Name 1818

dpnp: Data Parallel Extension for NumPy* API

18

import numpy as np

x = np.array([[1, 1], [1, 1]])

y = np.array([[1, 1], [1, 1]])

res = np.matmul(x, y)

import dpnp as np

x = np.array([[1, 1], [1, 1]], device="gpu2")

y = np.array([[1, 1], [1, 1]], device="gpu2")

res = np.matmul(x, y) # res resides on gpu

Original CPU script

Modified XPU script – specify a device to run operations there!

Drop-in replacement for NumPy to allow heterogenous computation on SYCL devices

import dpnp as np

x = np.array([[1, 1], [1, 1]])

y = np.array([[1, 1], [1, 1]])

res = np.matmul(x, y) # res resides on gpu

Same functionality as NumPy, running on GPU*
*default device is SYCL GPU, if available. No specification required

Get started. Documentation

• Documentation:
• Data Parallel Extensions for Python* Language

• Data Parallel Control Library (dpctl)

• Data Parallel Extension for NumPy*

• Data Parallel Extension for Numba*

• Installation:
• The easiest way to install Data Parallel Extensions for Python is to install numba-dpex:

• Pip: pip install numba-dpex

• These commands install numba-dpex along with its dependencies, including dpnp, dpctl, and required
compiler runtimes. Check out the prerequisites here.

https://intelpython.github.io/DPEP/main/
https://intelpython.github.io/dpctl/latest/index.html
https://intelpython.github.io/dpnp/
https://intelpython.github.io/numba-dpex/latest/index.html
https://intelpython.github.io/DPEP/main/prerequisites_and_installation.html

Intel ConfidentialDepartment or Event Name 2020

Intel® Extension for Scikit-learn*

Intel ConfidentialDepartment or Event Name 2121

Intel® Extension for Scikit-learn*

Available through:
▪ conda install scikit-learn-intelex
▪ conda install –c intel scikit-learn-intelex
▪ conda install –c conda-forge scikit-learn-intelex
▪ pip install scikit-learn-intelex

from sklearnex import patch_sklearn

patch_sklearn()

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

▪ scikit-learn*, not scikit-learn*-like

▪ scikit-learn* conformance
(mathematical equivalence)
defined by scikit-learn*
Consortium, continuously vetted
by public CI

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

scikit-learn*
scikit-learn* with

Intel CPU opts
Same Code,

Same Behavior

Intel ConfidentialDepartment or Event Name 2222

Training and Inference Performance Gains with Intel® Extension for Scikit-Learn*

Testing Date: Performance results are based on testing by Intel as of March 21, 2023 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: bare metal (2.0 GHz Intel Xeon Platinum 8480+, two sockets, 56 cores per socket), 512 GB DDR5 4800MT/s, Python 3.10, scikit-learn 1.2.0, scikit-learn-intelex 2023.0.1. Intel
optimizations include use of multi-threading implementation for SKLearn algorithms (which are typically single-threaded), as well as other HW/SW optimizations.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary

http://www.intel.com/PerformanceIndex

Intel ConfidentialDepartment or Event Name 2424

Intel Optimized XGBoost

25

DMLC XGBoost Acceleration

25

▪ Intel® contributed 16 Pull requests into
XGBoost project on GitHub during
2020

▪ Goal: performance optimizations of
‘hist’ mode for Intel® CPUs

26

XGBoost* Fit CPU Acceleration (“hist” method)

1 1 1 1 1
1.8

0.4
1.1

2.1

1.0

5.4

3.7

1.5

3.8

1.4

15.5

5.7

3.1

7.5

3.4

0

2

4

6

8

10

12

14

16

18

higgs1m Letters Airline-ohe MSRank-30K Mortgage

S
p

e
e

d
u

p
 v

s
. 0

.8
1

XGBoost fit - acceleration against baseline (v0.81) on Intel® CPU

XGB 0.81 (CPU) XGB 0.9 (CPU) XGB 1.0 (CPU) XGB master 1.1 (CPU)

+ Reducing memory
consumption

CPU configuration: c5.24xlarge AWS Instance, CLX 8275 @ 3.0GHz, 2 sockets, 24 cores per socket, HT:on, DRAM (12 slots / 32GB / 2933 MHz)

memory, Kb Airline Higgs1m

Before 28311860 1907812

#5334 16218404 1155156

reduced: 1.75 1.65

27

Model Builders for the Gradient Boosting Frameworks

Source: https://intelpython.github.io/daal4py/model-builders.html

Intel ConfidentialDepartment or Event Name 2828

daal4py

29

Fast, Scalable and Easy Machine Learning With daal4py

▪ fast and easy to use

▪ provides highly configurable Machine
Learning kernels, some of which
support streaming input data and/or
can be easily and efficiently scaled out
to clusters of workstations

▪ it uses Intel(R) oneAPI Data Analytics
Library to deliver the best performance

▪ Supported algorithms:
https://intelpython.github.io/daal4py/a
lgorithms.html On a 32-node cluster (1280 cores) daal4py computed linear regression of 2.15 TB of data in 1.18 seconds and

68.66 GB of data in less than 48 milliseconds.

Configuration: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, EIST/Turbo on 2 sockets, 20 cores per
socket, 192 GB RAM, 16 nodes connected with Infiniband, Oracle Linux Server release 7.4, using 64-bit
floating point numbers

https://intelpython.github.io/daal4py/algorithms.html
https://intelpython.github.io/daal4py/algorithms.html

30

Installation and linear regression example

Full documentation: https://intelpython.github.io/daal4py/contents.html

https://intelpython.github.io/daal4py/contents.html

Intel ConfidentialDepartment or Event Name 32How to use Intel-optimized AI software in the cloud 32

Modin*

33

Single Line Code Change for Infinite Scalability
No need to learn a new API to use Modin*

▪ Accelerate your Pandas* workloads across multiple cores and multiple nodes

▪ No upfront cost to learning a new API

• import modin.pandas as pd

▪ Integration with the Python* ecosystem

▪ Integration with Ray/Dask clusters (run on what you have, even on a laptop!)

▪ Installation instructions: https://modin.readthedocs.io/en/stable/getting_started/installation.html

https://modin.readthedocs.io/en/stable/getting_started/installation.html

Intel ConfidentialDepartment or Event Name 34How to use Intel-optimized AI software in the cloud 34

Notices and Disclaimers

Performance varies by use, configuration, and other factors. Learn more at intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel® technologies may require enabled hardware, software, or service activation.

Intel® optimizations, for Intel® compilers or other products, may not optimize to the same degree for non-Intel products.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Results have been estimated or simulated.

Intel is committed to respecting human rights and avoiding complicity in human rights abuses.
See Intel’s Global Human Rights Principles. Intel® products and software are intended only to be used in
applications that do not cause or contribute to a violation of an internationally recognized human right.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex
https://www.intel.com/content/www/us/en/policy/policy-human-rights.html

Intel ConfidentialDepartment or Event Name 35353535

Q&A

Intel ConfidentialDepartment or Event Name 3636

(1) INTEL® XEON BASED SYSTEM CONFIGURATION: Test by Intel as of 07/15/23 and may not reflect all publicly available security updates.. System: cloud.intel.com,
nodes=1:spr:ppn=2, Intel(R) Xeon(R) Platinum 8480+, 2 sockets, 56 cores per socket, HT On, Intel Turbo Boost On, Total Memory 528GB, RAM 33 MHz, Ubuntu 20.04.5 LTS,
5.18.15-051815-generic, Microcode: 0x2b000310, benchmarks https://github.com/IntelPython/ (ibench Linear Algebra), -c conda-forge environment versions: numpy 1.23.5, scipy
1.10.1, numba 0.56.4 modules installed, -c intel environment versions: numpy 1.21.4, scipy 1.7.3, numba 0.56.3, tbb4py 2021.8.0 modules installed

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not
product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary

(2) INTEL® XEON BASED SYSTEM CONFIGURATION: Test by Intel as of 03/05/23 and may not reflect all publicly available security updates. System: cloud.intel.com,
nodes=1:spr:ppn=2, Intel(R) Xeon(R) Platinum 8480+, 2 sockets, 56 cores per socket, HT On, Intel Turbo Boost On, Total Memory 528GB, RAM 33 MHz, Ubuntu 20.04.5 LTS,
5.18.15-051815-generic, Microcode: 0x2b000310, benchmarks https://github.com/IntelPython/ (fft_benchmark, blackscholes_bench, composability_bench), -c conda-forge
environment versions: numpy 1.23.5, scipy 1.10.1, numba 0.56.4 modules installed, -c intel environment versions: numpy 1.21.4, scipy 1.7.3, numba 0.56.3, tbb4py 2021.8.0 modules
installed

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not
product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary

Configuration Details

https://github.com/IntelPython/
http://www.intel.com/PerformanceIndex
https://github.com/IntelPython/
http://www.intel.com/PerformanceIndex

Intel ConfidentialDepartment or Event Name 3737

Configuration Details

Testing Date: Performance results are based on testing by Intel® as of October 13, 2020 and may not reflect all
publicly available updates.

Configurations details and Workload Setup: CPU: c5.18xlarge AWS Instance (2 x Intel® Xeon® Platinum 8124M @ 18
cores. OS: Ubuntu 20.04.2 LTS, 193 GB RAM. GPU: p3.2xlarge AWS Instance (GPU: NVIDIA Tesla V100 16GB, 8
vCPUs, OS: Ubuntu 18.04.2LTS, 61 GB RAM. SW: XGBoost 1.1: build from sources compiler – G++ 7.4, nvcc 9.1 Intel®
DAAL: 2019.4 version: Python env: Python 3.6, Numpy 1.16.4, Pandas 0.25 Scikit-learn 0.21.2.

	Default Section
	Slide 1: Overview of Python and classical ML optimizations
	Slide 2: Agenda

	SW
	Slide 3: Intel’s oneAPI Ecosystem
	Slide 4: Linux Foundation’s Unified Acceleration Foundation (UXL)
	Slide 6: Intel AI Software Portfolio
	Slide 7: Intel® Distribution For Python*
	Slide 8: Intel® Performance Optimization with NumPy* and SciPy*
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14: Data Parallel Extensions for Python*
	Slide 15: Current Gaps & Bottlenecks with Python
	Slide 16: Data Parallel Extensions for Python* language (DPEX) A Cross-Architecture Experience for Python*
	Slide 18: dpnp: Data Parallel Extension for NumPy* API
	Slide 19: Get started. Documentation
	Slide 20: Intel® Extension for Scikit-learn*
	Slide 21: Intel® Extension for Scikit-learn*
	Slide 22: Training and Inference Performance Gains with Intel® Extension for Scikit-Learn*
	Slide 24: Intel Optimized XGBoost
	Slide 25: DMLC XGBoost Acceleration
	Slide 26: XGBoost* Fit CPU Acceleration (“hist” method)
	Slide 27: Model Builders for the Gradient Boosting Frameworks
	Slide 28: daal4py
	Slide 29: Fast, Scalable and Easy Machine Learning With daal4py
	Slide 30: Installation and linear regression example
	Slide 32: Modin*
	Slide 33: Single Line Code Change for Infinite Scalability
	Slide 34: Notices and Disclaimers
	Slide 35: Q&A

	end
	Slide 36: Configuration Details
	Slide 37: Configuration Details
	Slide 38

