OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

1 OpenMP Tutorial
Members of the OpenMP Language Committee

Agenda (tentative — tell us what else you need)

OpenMP Tutorial

OpenMIP

Day 1 Day 2 Day 3
09:00- Introduction to OpenMP |Tasking 1 IGPUs
10:30 CET |1 _
« Tasking Intro e OpenMP for Compute
« Lab1 Accelerators
10:45- Hands-on: Introduction |Tasking 2 Tools for Perf. and Correctness
12:15 CET [to OpenMP
» Taskloop VI-HPS Tools for
« Dependencies Performance
» Cancellation « VI-HPS Tools for Correctness
« Lab2
13:00- Introduction to OpenMP |Host Perf.: SIMD Misc. OpenMP 5.1 Features
14:45 CET |2 o
« Vectorisation « DOACROSS Loops
« Lab3
15:00- ands-on: Introduction |Host Perf.: NUMA Roadmap / Outlook

16:00 CET o OpenMP

If requested

Members of the OpenMP Language Committee

Memory Access

Task Affinity

Memory Management
Lab 4

= Open Discussion
e« OpenMP 5.1 and beyond

Lab: hands-on time

Material et

* You can find all on github.com: eges ¢ _eg 22 s oo
— Slide decks @ voe w0’ woe® o o8 @

— Exercise tasks oo oo ee 222 : '§ ., o2
_ Solutions d gt e L
* https://github.com/cterboven/OpenMP-tutorial-PRACE-2022 S % o33 T Sesise’tee

C)

GitHub

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

An Overview Of OpenMP

Christian Terboven RWITH

Michael Klemm OpenMP

Members of the OpenMP Language Committee

OpenMIP

History

* De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++

e 2005: OpenMP 2.5 now includes
both programming languages.

 05/2008: OpenMP 3.0
 07/2011: OpenMP 3.1

* 07/2013: OpenMP 4.0
* 11/2015: OpenMP 4.5

« 11/2018: OpenMP 5.0
« 11/2020: OpenMP 5.1
« 11/2021: OpenMP 5.2

OpenMP Tutorial
Members of the OpenMP Language Committee

http://www.OpenMP.org

OpenMIP

What is OpenMP?

Parallel Region & Worksharing

Tasking

SIMD / Vectorization

Accelerator Programming

a Snake!

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Get your C/C++ and Fortran Reference Guide!
overs all of OpenMP 5.1/5.2!

OpenMP API 5.1 MP APIS.1 W ™ p.or]
openmp.arg

OpenMP 5.1 API Syntax Reference Guide Directives and Constructs {continued)
pen The OpenMP* AP! s a portable, scalable Fartran. OpenMP is suitable for awide range
madel that gives parallel programmers a p

simple and fexible interface e oo masked construct workshare 210152 for simd and do simd 12115
openmp.or, o e ueTe : SO Divides the ex o the enclased structured block bai the o
PENMP-OTE ortable paralel applications in C/Creand. suc attached to 3 CPU ke RAIR e tht escated by 3
o the threac af the cuerent igam. o

[n.nn] Secticns in 5.1, » Deprecatedin 5.1

nn.n] Secti edn

tSomp do simd (cisuse |, jouse]
lozp-ne
ured o0k 15emp ead dosimd nowait]
onkshare facwalt clouse: Ay of B catas actepted by e simd, b, or
o drecmes.

iy st

omp end wi

may not appea Y i Waorksharing-loop construct

: SRR for and do (2114122
Informational and utility directives e tha tha et o a st sl e
" scope construct el by threads in the team.

scope |

requir

#Somp ervor jcouse [, ¢

o aticomplation | execution| it |
— i s

= s o T

unitied_shared_memory ' il ’.‘) ..(‘A;I:‘

stomic_detauk_mem_ordees ct| 3 1o | i) o2 rallel construct Samp scopa -] fer] concur

dynamic_alocators

t_imp = parallel 252

E

ate ectus threads that

| recfuction e

by e bk
\Somp e snpe nswat

Prodes marantsto o] . Jonae)

oo parpe o s - distribute loop constructs
spragma omp assumes i) e Lo I Worksharing constructs ynamic Each theea distribute 21161

Sompendparsiel sections i iz 1hen requests angtne chisk unci nane rem: E
' it Contans 3 set * guided: Each theead esecutes 3 dhenk of iterations
crg

assumes and assume [25.

‘pragma omp begn asumes cause

praralonl . s :
s v of sucture 5 Tenmequestsanatne chnk i na charke emain

sy mp 2 asumss om pacid o oy the et b angoe, b Al i

£ th each succl Chunk smalker than the lst.

#pragma omp assume e . + st Compiler ancjorrastme deciles

. s default oo sh

firstprivate (s

rotuctin

35cagma omp secare varant
2 s : Each theead o o chus o
R is assgned n incresing £ . chomi_si])
schegule (s

spagma omp end declare wariast

“Samp dedare variaat 1 - _ - concerrest)
vanant groc aome) 2 [e] couse - mpeoddt
¥ e : Chunis are assgned 1o thoeads e unconsiraised
threads amy orier and the behavior of an apy
(o Ty stcture than depends on execution ceder of ihe chunks s
adpt 3 oo . .
3ppend_args ampend pent g teams construct repeciiad
2 - + sim Ignered when the Incp & not associaned with
nothing need_device_ptr ¢ SR teams 12712 2 5D consinect ctherwise the rew. chuni_size
append ce: mterop (nteroo ¢ ‘ ates eague of il t ‘ E: or a8 eaces 1 ’ Spragma cmp dribute s clouae
RS toam execites th region s . e oo ezt

{50mp distribuste simd (clouse] | ki

ha 15 base anguage ereibe. cams [; . o SIMD directives and constructs

shmd p2.115.3) 129
ied tnalogp o distribute parallel for znd
s into a S

Ciise: Ay oF 58 CaUEY 3CCEpHRd Y DI o Fled
dispatch pas)

e curs foe a gaen heidslcolr & . il aiabad sruchured

ceads in the team.

Bpama omp dispatch fciuse [,
cxgression nothing 253
wdicate v

2pragma omp nothing

. 4 clause: cafelen
1Somp nothing ~ o e] T b {$omp diiriuts paralel g couse] [, ouae

loap-nest

185mp ead distribute saraill do

Touse. Ay Sccopied by the AEEAButs, parabel for or
parabel &0 drectves

wedbiock
et ciousei . Jend ciouse]

ot [[arder m
frstprivate (v} :]
copypehate |\s] newalt e uncoestrained
end_ciouse: copyprvate (isf) nowait

© 2000 Oparia? 238 0P1120-01-CMPET © 2020 Open® AR

OpenMP Tutorial
Members of the OpenMP Language Committee

Recent Books About OpenMP

OpenMP

Application Programming Interface
Specification Version 5.1

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.1
specifications, 2020

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

USING OPENMP—
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

e
c
9y
Z
@
(@]
<
z
=
)

I
-
I
m
z
m
x
—
w
-
m
o

|
I
m
o
-
m
Zz
=
o]
0
o
=
<
o)
<
Q
S
™

Ruud van der Pas, Eric Stotzer,

and Christian Terboven
Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

A book that covers all of the A new book about the OpenMP
OpenMP 4.5 features, 2017 Common Core, 2019

OpenMP
Programming OpenMP

Parallel Region

Christian Terboven RWITH

Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

OpenMP‘s machine model

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

p) OpenMP Tutorial
Members of the OpenMP Language Committee

The OpenMP Memory Model

« All threads have access to private
memory

the same, globally shared
memory

« Datain private memory is
only accessible by the thread
owning this memory

accelerator

Shavee:...$ «
Memory

private

 No other thread sees the private memory

change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

The OpenMP Execution Model

. QpenMP programs start with Master Thread Serial Part
just one thread: The Master.
Parallel
 Worker threads are spawned Region
at Parallel Regions, together Worker

with the Master they form the Threads
Team of threads.

Serial Part

* In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

3

<IIIIIIIIIIIIIIIIIIIII

Parallel
Region

* Concept: Fork-Join.
e Allows for an incremental parallelization!

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.
C/C++ Fortran

#fpragma omp parallel 'Somp parallel
{

... structured block
structured block

!'Somp end parallel

}

e Structured Block Specification of number of threads:
— Exactly one entry point at the top — Environment variable: OMP NUM THREADS=...
— Exactly one exit point at the bottom — Or:Vianum threads clause:
— Branching in or out is not allowed add num t?lreads (num) to the
— Terminating the program is allowed parallel construct
(abort / exit)

5 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

OpenMP Tutorial
Members of the OpenMP Language Committee

Demo QpenMP

Hello OpenMP World

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Worksharing
Christian Terboven L
Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

For Worksharing

* If only the parallel construct is used, each thread executes the Structured Block.

* Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

C/C++
int 1i;
fpragma omp for

ali] = b[1]

for (1 = 0, 1 < 100;

i++)

+ c[i];

Fortran

INTEGER ::

!'Somp do

DO 1 =0
ali]

END DO

1

;99
= b[1]

+ c[1i]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

* Loops often account for most of a program’s runtime!

p) OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0, 99
a(i) = b(i) + c(i) =l
end do
Thread 3
Thread 4

OpenMP Tutorial
Members of the OpenMP Language Committee

doi=0,24
a(i) = b(i) + c(i)
end do

doi= 25, 49
a(i) = b(i) + c(i)
end do

doi=50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

OpenMIP

Memory

RN

B(0)
L]
L.]

B(99)
L.]

C(99)

OpenMIP

The Barrier Construct

e OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

#fpragma omp barrier

* All worksharing constructs contain an implicit barrier at the end

4 OpenMP Tutorial
Members of the OpenMP Language Committee

The Single Construct

C/C++

fpragma omp single [clause]
structured block

Fortran

'Somp single [clause]
structured block
'Somp end single

OpenMIP

The single construct specifies that the enclosed structured block is executed by only on thread of the

team.
— Itis up to the runtime which thread that is.

Useful for:
— 1/0

— Memory allocation and deallocation, etc. (in general: setup work)

— Implementation of the single-creator parallel-executor pattern as we will see later...

OpenMP Tutorial
Members of the OpenMP Language Committee

The Master Construct

C/C++

fpragma omp master[clause]
structured block

Fortran

!Somp master[clause]
structured block
'Somp end master

OpenMIP

The master construct specifies that the enclosed structured block is executed only by the master thread of

a team.

Note: The master construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
Members of the OpenMP Language Committee

Demo QpenMP

Vector Addition

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule (static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

 Defaultis schedule (static).

OpenMP Tutorial
Members of the OpenMP Language Committee

Influencing the For Loop Scheduling / 2

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
Ccons?

- No dynamic workload balancing

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

0,8

0,6

04

0,2

0,1 0,2

03

0,4

0,5

0,6

0,7

0,8

0,9

OpenMIP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one
— Default chunk size is 1
* Pros?
— Workload distribution
* Cons?
— Runtime Overhead

— Chunk size essential for performance
— No NUMA optimizations possible

10 OpenMP Tutorial
Members of the OpenMP Language Committee

. | OpenMIP
Synchronization Overview -

Can all loops be parallelized with £or-constructs? No!

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.
BUT: This test alone is not sufficient:

C/C++
int i, int s = 0;

#fpragma omp parallel for
for (i = 0; 1 < 100; i++)
{

s = s + alil;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

11 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)
{
structured block

}

* Do you think this solution scales well?

C/C++

int 1, s = 0;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#fpragma omp critical
{ s =8 + aflil; }

}

12 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP
Scoping

Christian Terboven RWITH

Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private []

— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
* firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to Master

— Static variables are shared

p) OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread
* Before the first parallel region is encountered
* |nstance exists until the program ends
* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword = thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
#fpragma omp threadprivate (i) !'Somp threadprivate (i)

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
-

— Oneinstance is created for each thread '\Q
* Before the first parallel region is encountered 6?‘
* |nstance exists until the program ends ez
* Does not work (well) with nested Parallel Region "“‘

— Based on thread-local storage (TLS) 0& \

* TIsAlloc (Win32-Threads), pthread _key create (P@,ehre%‘@%/\'/vord ___thread (GNU extension)

2 X7\
\
. 6\‘,‘\ “3(
C/C++ 0“ ‘0\,\ Fortran
static int i; \,o S SAVE INTEGER :: i
* ao > (1) !'Somp threadprivate (i)

#pragma S‘
[J

?&z\\

4 OpenMP Tutorial
Members of the OpenMP Language Committee

Back to our example

OpenMP Tutorial
Members of the OpenMP Language Committee

C/C++

int 1, s = 0;

fpragma omp parallel for
for (i = 0; i < 100; i++)
{

#pragma omp critical
{ s =s + ali]; }

}

OpenMIP

It‘s your turn: Make It Scale!

#pragma omp parallel
{

#pragma omp for
for (i = 0; 1 < 99; i++)
{

} // end parallel

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

doi=0, 99
s=s+a(i)
end do

doi=0, 24
s=s+ali)

end do

doi =25, 49
s=s+a(i)

end do

doi =50, 74
s=s+a(i)

end do

doi=75,99
s=s+a(i)

end do

(done)

#pragma omp parallel

{
double ps = 0.0; // private variable

#pragma omp for
for (1 = 0; 1 < 99; i++)
{
ps = ps + alil;
}

#pragma omp critical

{
S += pPS;

}
} // end parallel

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

doi=0, 24
s, =5, +ali)

end do

S=S+5,

doi=0, 99
s=s+a(i)
end do

doi =25, 49
s, =5, +al(i)

end do

s=s+s,

doi =50, 74
S = S5 + ali)

end do

S=S+S5,

doi=75,99
S, =S, + ali)

end do

S=s+s,

The Reduction Clause

OpenMIP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.
— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int i, s = 0;

fpragma omp parallel for reduction(+:s)
for(i = 0; 1 < 99; i++)
{

s = s + ali]l;

}

— Possible reduction operators with initialization value:

+ (0),

(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial

*

(1), - (0), &

maxXx

(~0), | (0),
(least number)

& &

Members of the OpenMP Language Committee

(1),

Example QpenMP

o

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for (I=0;1<n;it++)
{
fX =fH* ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum:;

}

10 OpenMP Tutorial
Members of the OpenMP Language Committee

1
j 1+ x2
0
4F 14
35 / H...‘ 135
.
3t h, 13
h
25| ‘“».H lasg
~
-
al M. 12
15} \'1.5
1t 4
o5l los
0 0
05 05 1 15

Example: Pi (2/2) QpenMP

double f(double x))

{ 4
return (4.0 / (1.0 + x*x)); T = j

} 1+ x?

0

double CalcPi (int n)

{ 4t =y T T J4
const doublefH =1.0/(double) n; 3_5/ T lse
double fSum = 0.0; "‘*.,
double fX; °f h, T
int |’ 25¢ ‘“NH.‘ 125

a2l H".. {2

#pragma omp parallel for private(fX,i) reduction(+:fSum) el _1 .
for (i=0;i<n;i++) ' '
{ 1r 41

fX =fH * ((double)i + 0.5); 05t {05

fSum += f(fX); o]
} -05 0 0.5 1 15
return fH * fSum;

}

11 OpenMP Tutorial
Members of the OpenMP Language Committee

Demo QpenMP

o

12 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Using OpenMP Compilers

Christian Terboven RWTH

Michael Klemm OpenMP

Members of the OpenMP Language Committee

OpenMIP

Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

B [ntel Classic and Next-gen Compilers
B AOCC, AOMP, ROCmCC

H IBM XL

B ... and many more

B See for a list

p) OpenMP Tutorial
Members of the OpenMP Language Committee

https://www.openmp.org/resources/openmp-compilers-tools/

OpenMIP

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp

—> clang: -fopenmp
—> Intel: -fopenmp or -qopenmp (classic) or —-fiopenmp (next-gen)
- AOCC, AOCL, ROCmCC: -fopenmp
= IBM XL: -gsmp=omp
B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time ©.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Hands-on Exercises

Christian Terboven RWTH

Michael Klemm OpenMP

4 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Webinar Exercises

B We have implemented a series of small hands-on examples that you can use and play with.
- Download: git clone https://github.com/cterboven/OpenMP-tutorial-PRACE-2022.git

-~ Build: make (in the corresponding subdirectories)
— You can then find the compiled code in the “bin” folder to run it

- We use the GCC compiler mostly, some examples require Intel's Math Kernel Library

B Each hands-on exercise has a folder “solution”

- It shows the OpenMP directive that we have added

—> You can use it to cheat ©, or to check if you came up with the same solution

B Also provided: basic exercises in the openmp-simple-exercises.tar archive

—> Instructions contained in the archive: Exercises OMP_2021.pdf

5 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

OpenMP Tasking Introduction

Christian Terboven RWTH

Michael Klemm OpenMP

Members of the OpenMP Language Committee

What is a Task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately

M Tasks are composed of

—> code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...
... when reaching a parallel region = implicit tasks are created (per thread)
... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Tasking Execution Model

B Supports unstructured parallelism B Example (unstructured parallelism)

9 unbounded IOOpS #pragma omp parallel

#pragma omp master

while (elem '= NULL) {
Co #pragma omp task

} :
compute (elem) ;

elem = elem->next;

while (<expr>) {

- recursive functions

void myfunc(<args>)

{

.; myfunc(<newargs>); ...;

}

B Several scenarios are possible:

—> single creator, multiple creators, nested tasks (tasks & WS)

B All threads in the team are candidates to execute tasks

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

OpenMP Tasking Idiom

B OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel master

- OpenMP version 5.0 introduced the parallel master construct

- With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[]) 1 int main(int argc, char* argv[])
2 2 {
3 [...] 3 [...]
4 #pragma omp parallel 4 #pragma omp parallel
5 { 5 {
6 #pragma omp master 6 #pragma omp single
7 { 7 {
9 start_task parallel execution(); 9 start_task parallel execution();
9 } 9 }
10 } 10 }
11 [...] 11 []
12 } 12 }

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Fibonacci Numbers (in a Stupid Way ©)

1 int main(int argc, 14 int fib(int n) {
2 char* argv[]) 15 if (n < 2) return n;
3 { 16 int x, y;
4 [...] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {
6 { 19 x = fib(n - 1);
7 #pragma omp master 20 }
8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [] 25 #pragma omp taskwait
13 } 26 return x+y;
27 }

B Only one thread enters fib() from main().
B That thread creates the two initial work tasks and starts the parallel recursion.
B The taskwait construct is required to wait for the result for x and y before the task can sum up.

10 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
Task Queue

11 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks

12 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Hands-on Exercises

Christian Terboven RWITH

Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Solution of Homework Assignments

2 OpenMP Tutorial
Members of the OpenMP Language Committee

Example: sin-cos

OpenMIP

double do_some computation (int i) {
double t = 0.0; int j;
for (j = 0; j < i*i; j++) {
t += sin((double)j) * cos((double)j) ;
}

return t;

int main(int argc, char* argv[]) {
const int dimension = 500;
int 1i;
double result = 0.0;
double tl = omp get wtime();
#pragma omp parallel for schedule(dynamic) reduction (+:result)
for (i = 0; 1 < dimension; i++) {
result += do_some_ computation (i) ;
}
double t2 = omp get wtime();
printf ("Computation took %.31lf seconds.\n", t2 - tl);
printf ("Result is %.31f.\n", result);
return O;

}

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: matmul

OpenMIP

void matmul seq(double * C, double * A, double * B, size t n) {

void matmul par (double * C, double * A, double * B, size t n) {
#pragma omp parallel for shared(A,B,C) firstprivate(n) \
schedule (static) // collapse(2)
for (size t i = < n; ++i) {
for (size_ t k ; k < n; ++k) {

for (size_t j 0; j < n; ++j) {

C[i *n + j] += A[i * n + k] * B[k * n + j];
}

}

void init mat(double * C, double * A, double * B, size t n) {

void dump mat (double * mtx, size t n) { ... }
double sum mat (double * mtx, size t n) { ... }
int main(int argc, char *argv[]) { ... }

}

}

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: cholesky

OpenMIP

void cholesky(int ts, int nt, double* Ah[nt] [nt]) ({

for (int k = 0; k < nt; k++) {
LAPACKE dpotrf (LAPACK COL MAJOR, 'L', ts, Ah[k][k], ts);

#pragma omp parallel for
for (int i =k + 1; i < nt; i++) {
cblas dtrsm(CblasColMajor, CblasRight, CblasLower, CblasTrans,
CblasNonUnit, ts, ts, 1.0, Ah[k][k], ts, Ah[k][i], ts):
}

#pragma omp parallel for
for (int 1 =k + 1; 1 < nt; i++) {
for (int j =k + 1; j < i; j++) {
cblas _dgemm(CblasColMajor, CblasNoTrans, CblasTrans, ts, ts, ts,
Ah[k][i], ts, Ah[k][3j], ts, 1.0, Ah[j][i], ts):
}
cblas dsyrk(CblasColMajor, CblasLower, CblasNoTrans, ts, ts, -1.0,
Ah[k][i], ts, 1.0, Ah[i][1i], ts);
} b}

-1.0,

5 OpenMP Tutorial
Members of the OpenMP Language Committee

