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History

* De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++

e 2005: OpenMP 2.5 now includes
both programming languages.

 05/2008: OpenMP 3.0
 07/2011: OpenMP 3.1

* 07/2013: OpenMP 4.0
* 11/2015: OpenMP 4.5

« 11/2018: OpenMP 5.0
« 11/2020: OpenMP 5.1
« 11/2021: OpenMP 5.2

OpenMP Tutorial
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What is OpenMP?

Parallel Region & Worksharing

Tasking

SIMD / Vectorization

Accelerator Programming

a Snake!
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Recent Books About OpenMP

OpenMP

Application Programming Interface
Specification Version 5.1

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.1
specifications, 2020
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USING OPENMP—
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP Simple Again
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OpenMIP

OpenMP‘s machine model

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

p) OpenMP Tutorial
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The OpenMP Memory Model

« All threads have access to private
memory

the same, globally shared
memory

« Datain private memory is
only accessible by the thread
owning this memory

accelerator

Shavee:...$ «
Memory

private

 No other thread sees the private memory

change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory

3 OpenMP Tutorial
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The OpenMP Execution Model

. QpenMP programs start with Master Thread Serial Part
just one thread: The Master.
Parallel
 Worker threads are spawned Region
at Parallel Regions, together Worker

with the Master they form the Threads
Team of threads.

Serial Part

* In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

3

<IIIIIIIIIIIIIIIIIIIII

Parallel
Region

* Concept: Fork-Join.
e Allows for an incremental parallelization!

OpenMP Tutorial
Members of the OpenMP Language Committee



OpenMIP

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.
C/C++ Fortran

#fpragma omp parallel 'Somp parallel
{

... structured block
structured block

!'Somp end parallel

}

e Structured Block Specification of number of threads:
— Exactly one entry point at the top — Environment variable: OMP NUM THREADS=...
— Exactly one exit point at the bottom — Or:Vianum threads clause:
— Branching in or out is not allowed add num t?lreads (num) to the
— Terminating the program is allowed parallel construct
(abort / exit)

5 OpenMP Tutorial
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Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

OpenMP Tutorial
Members of the OpenMP Language Committee



Demo QpenMP

Hello OpenMP World
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Programming OpenMP

Worksharing
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Michael Klemm OpenMP
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For Worksharing

* If only the parallel construct is used, each thread executes the Structured Block.

* Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

C/C++
int 1i;
fpragma omp for

ali] = b[1]

for (1 = 0, 1 < 100;

i++)

+ c[i];

Fortran

INTEGER ::

!'Somp do

DO 1 =0
ali]

END DO

1

;99
= b[1]

+ c[1i]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

* Loops often account for most of a program’s runtime!

p) OpenMP Tutorial
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Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0, 99
a(i) = b(i) + c(i) =l
end do
Thread 3
Thread 4

OpenMP Tutorial
Members of the OpenMP Language Committee

doi=0,24
a(i) = b(i) + c(i)
end do

doi= 25, 49
a(i) = b(i) + c(i)
end do

doi=50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

OpenMIP

Memory

RN

B(0)
L ]
L. ]

B(99)
L. ]

C(99)
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The Barrier Construct

e OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

#fpragma omp barrier

* All worksharing constructs contain an implicit barrier at the end

4 OpenMP Tutorial
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The Single Construct

C/C++

fpragma omp single [clause]
structured block

Fortran

'Somp single [clause]
structured block
'Somp end single

OpenMIP

The single construct specifies that the enclosed structured block is executed by only on thread of the

team.
— Itis up to the runtime which thread that is.

Useful for:
— 1/0

— Memory allocation and deallocation, etc. (in general: setup work)

— Implementation of the single-creator parallel-executor pattern as we will see later...

OpenMP Tutorial
Members of the OpenMP Language Committee



The Master Construct

C/C++

fpragma omp master[clause]
structured block

Fortran

!Somp master[clause]
structured block
'Somp end master

OpenMIP

The master construct specifies that the enclosed structured block is executed only by the master thread of

a team.

Note: The master construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
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Demo QpenMP

Vector Addition
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Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule (static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

 Defaultis schedule (static).

OpenMP Tutorial
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Influencing the For Loop Scheduling / 2

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
Ccons?

- No dynamic workload balancing

OpenMP Tutorial
Members of the OpenMP Language Committee
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OpenMIP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one
— Default chunk size is 1
* Pros?
— Workload distribution
* Cons?
— Runtime Overhead

— Chunk size essential for performance
— No NUMA optimizations possible

10 OpenMP Tutorial
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. | OpenMIP
Synchronization Overview -

Can all loops be parallelized with £or-constructs? No!

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.
BUT: This test alone is not sufficient:

C/C++
int i, int s = 0;

#fpragma omp parallel for
for (i = 0; 1 < 100; i++)
{

s = s + alil;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

11 OpenMP Tutorial
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Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)
{
structured block

}

* Do you think this solution scales well?

C/C++

int 1, s = 0;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#fpragma omp critical
{ s =8 + aflil; }

}

12 OpenMP Tutorial
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Programming OpenMP
Scoping

Christian Terboven RWITH

Michael Klemm OpenMP
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Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private [ ]

— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
* firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to Master

— Static variables are shared

p) OpenMP Tutorial
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Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread
* Before the first parallel region is encountered
* |nstance exists until the program ends
* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword = thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
#fpragma omp threadprivate (i) !'Somp threadprivate (i)

3 OpenMP Tutorial
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Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
-

— Oneinstance is created for each thread '\Q
* Before the first parallel region is encountered 6?‘
* |nstance exists until the program ends ez
* Does not work (well) with nested Parallel Region "“‘

— Based on thread-local storage (TLS) 0& \

* TIsAlloc (Win32-Threads), pthread _key create (P@,ehre%‘@%/\'/vord ___thread (GNU extension)

2 X7\
\
. 6\‘,‘\ “3(
C/C++ 0“ ‘0\,\ Fortran
static int i; \,o S SAVE INTEGER :: i
* ao > (1) !'Somp threadprivate (i)

#pragma S‘
[ J

?&z\\

4 OpenMP Tutorial
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Back to our example
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C/C++

int 1, s = 0;

fpragma omp parallel for
for (i = 0; i < 100; i++)
{

#pragma omp critical
{ s =s + ali]; }

}

OpenMIP




It‘s your turn: Make It Scale!

#pragma omp parallel
{

#pragma omp for
for (i = 0; 1 < 99; i++)
{

} // end parallel

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

doi=0, 99
s=s+a(i)
end do

doi=0, 24
s=s+ali)

end do

doi =25, 49
s=s+a(i)

end do

doi =50, 74
s=s+a(i)

end do

doi=75,99
s=s+a(i)

end do




(done)

#pragma omp parallel

{
double ps = 0.0; // private variable

#pragma omp for
for (1 = 0; 1 < 99; i++)
{
ps = ps + alil;
}

#pragma omp critical

{
S += pPS;

}
} // end parallel

7 OpenMP Tutorial
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doi=0, 24
s, =5, +ali)

end do

S=S+5,

doi=0, 99
s=s+a(i)
end do

doi =25, 49
s, =5, +al(i)

end do

s=s+s,

doi =50, 74
S = S5 + ali)

end do

S=S+S5,

doi=75,99
S, =S, + ali)

end do

S=s+s,




The Reduction Clause

OpenMIP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.
— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int i, s = 0;

fpragma omp parallel for reduction(+:s)
for(i = 0; 1 < 99; i++)
{

s = s + ali]l;

}

— Possible reduction operators with initialization value:

+ (0),

(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial

*

(1), - (0), &

maxXx

(~0), | (0),
(least number)

& &
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Example QpenMP
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Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for (I=0;1<n;it++)
{
fX =fH* ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum:;

}

10 OpenMP Tutorial
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Example: Pi (2/2) QpenMP

double f(double x) )

{ 4
return (4.0 / (1.0 + x*x)); T = j

} 1+ x?

0

double CalcPi (int n)

{ 4t =y T T J4
const doublefH =1.0/(double) n; 3_5/ T lse
double fSum = 0.0; "‘*.,
double fX; °f h, T
int |’ 25¢ ‘“NH.‘ 125

a2l H".. {2

#pragma omp parallel for private(fX,i) reduction(+:fSum) el \_1 .
for (i=0;i<n;i++) ' '
{ 1r 41

fX =fH * ((double)i + 0.5); 05t {05

fSum += f(fX); o ]
} -05 0 0.5 1 15
return fH * fSum;

}
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Demo QpenMP

o

12 OpenMP Tutorial
Members of the OpenMP Language Committee



OpenMIP

Programming OpenMP

Using OpenMP Compilers

Christian Terboven RWTH

Michael Klemm OpenMP

Members of the OpenMP Language Committee



OpenMIP

Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

B [ntel Classic and Next-gen Compilers
B AOCC, AOMP, ROCmCC

H IBM XL

B ... and many more

B See for a list

p) OpenMP Tutorial
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OpenMIP

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp

—> clang: -fopenmp
—> Intel: -fopenmp or -qopenmp (classic) or —-fiopenmp (next-gen)
- AOCC, AOCL, ROCmCC: -fopenmp
= IBM XL: -gsmp=omp
B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time ©.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

OpenMP Tutorial
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Programming OpenMP

Hands-on Exercises
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Webinar Exercises

B We have implemented a series of small hands-on examples that you can use and play with.
- Download: git clone https://github.com/cterboven/OpenMP-tutorial-PRACE-2022.git

-~ Build: make  (in the corresponding subdirectories)
— You can then find the compiled code in the “bin” folder to run it

- We use the GCC compiler mostly, some examples require Intel's Math Kernel Library

B Each hands-on exercise has a folder “solution”

- It shows the OpenMP directive that we have added

—> You can use it to cheat ©, or to check if you came up with the same solution

B Also provided: basic exercises in the openmp-simple-exercises.tar archive

—> Instructions contained in the archive: Exercises OMP_2021.pdf

5 OpenMP Tutorial
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What is a Task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately

M Tasks are composed of

—> code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...
... when reaching a parallel region = implicit tasks are created (per thread)
... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

7 OpenMP Tutorial
Members of the OpenMP Language Committee



OpenMIP

Tasking Execution Model

B Supports unstructured parallelism B Example (unstructured parallelism)

9 unbounded IOOpS #pragma omp parallel

#pragma omp master

while (elem '= NULL) {
Co #pragma omp task

} :
compute (elem) ;

elem = elem->next;

while ( <expr> ) {

- recursive functions

void myfunc( <args> )

{

.; myfunc( <newargs> ); ...;

}

B Several scenarios are possible:

—> single creator, multiple creators, nested tasks (tasks & WS)

B All threads in the team are candidates to execute tasks

OpenMP Tutorial
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OpenMP Tasking Idiom

B OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel master

- OpenMP version 5.0 introduced the parallel master construct

- With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[]) 1 int main(int argc, char* argv[])
2 2 {
3 [...] 3 [...]
4 #pragma omp parallel 4 #pragma omp parallel
5 { 5 {
6 #pragma omp master 6 #pragma omp single
7 { 7 {
9 start_task parallel execution(); 9 start_task parallel execution();
9 } 9 }
10 } 10 }
11 [...] 11 [ ]
12 } 12 }

OpenMP Tutorial
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OpenMP

Fibonacci Numbers (in a Stupid Way ©)

1 int main(int argc, 14 int fib(int n) {
2 char* argv[]) 15 if (n < 2) return n;
3 { 16 int x, y;
4 [...] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {
6 { 19 x = fib(n - 1);
7 #pragma omp master 20 }
8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [ ] 25 #pragma omp taskwait
13 } 26 return x+y;
27 }

B Only one thread enters fib() from main().
B That thread creates the two initial work tasks and starts the parallel recursion.
B The taskwait construct is required to wait for the result for x and y before the task can sum up.

10 OpenMP Tutorial
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T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks
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T1 - T4 execute tasks
Task Queue
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Example: sin-cos

OpenMIP

double do_some computation (int i) {
double t = 0.0; int j;
for (j = 0; j < i*i; j++) {
t += sin((double)j) * cos((double)j) ;
}

return t;

int main(int argc, char* argv[]) {
const int dimension = 500;
int 1i;
double result = 0.0;
double tl = omp get wtime();
#pragma omp parallel for schedule(dynamic) reduction (+:result)
for (i = 0; 1 < dimension; i++) {
result += do_some_ computation (i) ;
}
double t2 = omp get wtime();
printf ("Computation took %.31lf seconds.\n", t2 - tl);
printf ("Result is %.31f.\n", result);
return O;

}
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Example: matmul

OpenMIP

void matmul seq(double * C, double * A, double * B, size t n) {

void matmul par (double * C, double * A, double * B, size t n) {
#pragma omp parallel for shared(A,B,C) firstprivate(n) \
schedule (static) // collapse(2)
for (size t i = < n; ++i) {
for (size_ t k ; k < n; ++k) {

for (size_t j 0; j < n; ++j) {

C[i *n + j] += A[i * n + k] * B[k * n + j];
}

}

void init mat(double * C, double * A, double * B, size t n) {

void dump mat (double * mtx, size t n) { ... }
double sum mat (double * mtx, size t n) { ... }
int main(int argc, char *argv[]) { ... }

}

}
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Example: cholesky

OpenMIP

void cholesky(int ts, int nt, double* Ah[nt] [nt]) ({

for (int k = 0; k < nt; k++) {
LAPACKE dpotrf (LAPACK COL MAJOR, 'L', ts, Ah[k][k], ts);

#pragma omp parallel for
for (int i =k + 1; i < nt; i++) {
cblas dtrsm(CblasColMajor, CblasRight, CblasLower, CblasTrans,
CblasNonUnit, ts, ts, 1.0, Ah[k][k], ts, Ah[k][i], ts):
}

#pragma omp parallel for
for (int 1 =k + 1; 1 < nt; i++) {
for (int j =k + 1; j < i; j++) {
cblas _dgemm(CblasColMajor, CblasNoTrans, CblasTrans, ts, ts, ts,
Ah[k][i], ts, Ah[k][3j], ts, 1.0, Ah[j][i], ts):
}
cblas dsyrk(CblasColMajor, CblasLower, CblasNoTrans, ts, ts, -1.0,
Ah[k][i], ts, 1.0, Ah[i][1i], ts);
} b}

-1.0,
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