OpenMP

OpenMP Offload
Programming

OpenMP

Introduction to
OpenMP Offload Features

OpenMP

Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];

double t = 0.0; M)

double tb, te; Timing code (not needed, just to have

tb = omp_get wtime(); a bit more code to show ©)
#pragma omp parallel for firstprivate(a) <

for (int i = @; i < SZ; i++) { X This is the code we want to execute on a
y[i] = a * x[1] + y[i]; target device (i.e., GPU)

J !
te = omp_get wtime(); . :
t = te - tb; Timing code (not needed, just to have

a bit more code to show ©)

printf("Time of kernel: %1f\n", t);

Don’t do this at home!
Use a BLAS library for this!

OpenMP

Device Model

m As of version 4.0 the OpenMP API supports accelerators/coprocessors

m Device model:
" One host for “traditional” multi-threading
= Multiple accelerators/coprocessors of the same kind for offloading

Accelerators

OpenMP

Execution Model

m Offload region and data environment is lexically scoped
= Data environment is destroyed at closing curly brace
= Allocated buffers/data are automatically released

Host Device
PA | am alloc
EET LR ©
HoD -

HEEEEAg@Es / #pragma omp target \
@ map (alloc:...) \

from map (to:...) \

— map (from:...)

{ ... 1} @

OpenMP for Devices - Constructs

m Transfer control and data from the host to the device

m Syntax (C/C++)
#pragma omp target [clause[[,] clause],..]
structured-blocR

m Syntax (Fortran)
I$omp target [clause[[,] clause],..]
structured-blocRk
I$omp end target

m Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] List)
if(scalar-expr)

OpenMP

OpenMP

Example: saxpy

The compiler identifies variables that are
used in the target region.

void saxpy() {
float a, Xx[SZ] , ' All accessed arrays are copied from
double t = 0.0; host to device and back
double tb, te;
tb = omp_get wtime();
#pragma omp target “map(tofrom:y[0:SZ])”
for (int i = @0; 1 < SZ; i++) {
a * x[1] + y[il;
} Presence check: only transfer
te = omp_get_wtime(); if not yet allocated on the
t = te - tb; device.
printf("Time of kernel: %1f\n", t);

Copying x back is not necessary: it
was not changed.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

OpenMP

Example: saxpy

The compiler identifies variables that are
used in the target region.

subroutine saxpy(a, X, y, n)
use iso fortran_env
integer :: n, i
real(kind=real32) :: a
real(kind=real32), dimensio
real(kind=real32), dimension(n)

All accessed arrays are copied from

host to device and back

x(1l:n)
y(1l:n)

l$omp target “map(tofrom:y(1:n))”

do i=1,n Presence check: only transfer
a * x(i) + y(i) if not yet allocated on the
end do device.

I$omp end target
end subroutine

Copying x back is not necessary: it
was not changed.

flang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

Example: saxpy

void saxpy() {
double a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp_get wtime();
#pragma omp target map(to:x[0:5SZ]) \
map(tofrom:y[0:SZ])
for (int i = 0; 1 < SZ; i++) {
yl[i] = a * x[1] + y[1i];

}
te = omp _get wtime();
t = te - tb;

printf("Time of kernel: %1f\n", t);

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

y[0:SZ]

OpenMP

OpenMP

Example: saxpy

The compiler cannot determine the size

of memory behind the pointer.
void saxpy(float a, float* xf{ float* vy, / b

int sz) {
double t = 0.0;
double tb, te;
tb = omp _get wtime();
#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[@:sz])

for (int i = 0; 1 < sz; i++) {
(y[i13 a * x[i] + y[il;

}
te = omp _get wtime();
t = te - tb;

PRALERC T G LEFNELE Zlmt, e Programmers have to help the compiler

with the size of the data transfer needed.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

10

OpenMP

Creating Parallelism on the Target Device

mThe target construct transfers the control flow to the target device
" Transfer of control is sequential and synchronous
" This is intentional!

m OpenMP separates offload and parallelism
" Programmers need to explicitly create parallel regions on the target device
" |In theory, this can be combined with any OpenMP construct

" |[n practice, there is only a useful subset of OpenMP features for a target device such
as a GPU, e.g., no I/0, limited use of base language features.

11

OpenMP

Example: saxpy

void saxpy(float a, float* x, float* vy,
int sz) {
#pragma omp target map(to:x[0:sz]) \
map (tofrom(y[0@:sz])
#pragma omp parallel for simd
for (int i = 0; 1 ¥sz; i++) {
y[i] = a * x[i]

¥

} GPUs are multi-level devices:
SIMD, threads, thread blocks

Create a team of threads to execute the loop in
parallel using SIMD instructions.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

12

OpenMP

teams Construct

m Support multi-level parallel devices
mSyntax (C/C++):

#pragma omp teams [clause[[,] clause],..]
structured-blocR

m Syntax (Fortran):

I$omp teams [clause[[,] clause],..]
structured-blocRk

mClauses

num_teams(integer-expression), thread limit(integer-expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list), reduction(operator:list)

13

OpenMP

Multi-level Parallel saxpy

® Manual code transformation
" Tile the loops into an outer loop and an inner loop

= Assign the outer loop to “teams” (OpenCL: work groups)
" Assign the inner looo to the “threads” (OonenClL: work items)

14

OpenMP

Multi-level Parallel saxpy

m For convenience, OpenMP defines composite constructs to implement the
required code transformations

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams distribute parallel for simd \

num_teams(num_blocks) map(to:x[0:sz]) map(tofrom:y[@:sz])
for (int 1 = 0; i < sz; i++) {
yl[i] = a * x[i] + y[i];
}

}

subroutine saxpy(a, X, y, n)

I$omp omp target teams distribute parallel do simd &

1$omp& num_teams(num_blocks) map(to:x) map(tofrom:y)
do i=1,n
y(i) = a * x(1) + y(i)
end do

I$omp end target teams distribute parallel do simd
end subroutine

15

OpenMP

Optimize Data Transfers

mReduce the amount of time spent transferring data
= Use map clauses to enforce direction of data transfer.

= Use target data, target enter data, target exit data constructs to keep
data environment on the target device.

void example() { void zeros(float* a, int n) {
float tmp[N], data_in[N], float data out[N]; #pragma omp target teams distribute parallel for
#pragma omp target data map(alloc:tmp[:N]) \ for (int i = 0; i < n; i++)
map(to:a[:N],b[:N]) \ a[i] = o.ef;
map (tofrom:c[:N]) }
{
zeros(tmp, N);
compute_kernel 1(tmp, a, N); void saxpy(float a, float* y, float* x, int n) {
saxpy(2.0f, tmp, b, N); #pragma omp target teams distribute parallel for
compute_kernel 2(tmp, b, N); for (int i = 0; i < n; i++)
saxpy(2.0f, c, tmp, N); y[i] = a * x[i] + y[i];
P} }

16

OpenMP

target data Construct Syntax

m Create scoped data environment and transfer data from the host to the device and back

m Syntax (C/C++)
#pragma omp target data [clause[[,] clause],..]
structured-blocR

m Syntax (Fortran)

I$omp target data [clause[[,] clause],..]
structured-blocRk
I$omp end target data

m Clauses

device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] List)
if(scalar-expr)

17

OpenMP

target update Construct Syntax

m Issue data transfers to or from existing data device environment

m Syntax (C/C++)
#pragma omp target update [clause[[,] clause],..]

m Syntax (Fortran)
I$omp target update [clause[[,] clause],..]

m Clauses
device(scalar-integer-expression)
to(Llist)
from(List)
if(scalar-expr)

18

OpenMP

Example: target data and target update

#pragma omp target data device(©) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(9)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_ computation(input[i], 1i);

update_input_array on_the host(input);
#pragma omp target update device(©) to(input[:N])
#pragma omp target device(9)
#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)
res += final computation(input[i], tmp[i], i)

19

OpenMP

Asynchronous Offloads

m OpenMP target constructs are synchronous by default
* The encountering host thread awaits the end of the target region before continuing

* The nowait clause makes the target constructs asynchronous (in OpenMP speak: they become
an OpenMP task)

#pragma omp task depend(out:a)
init_data(a);

#pragma omp target map(to:a[:N]) map(from:x[:N]) nowait depend(in:a) depend(out:x)
compute 1(a, x, N);

#pragma omp target map(to:b[:N]) map(from:z[:N]) nowait depend(out:y)
compute 3(b, z, N);

#pragma omp target map(to:y[:N]) map(to:z[:N]) nowait depend(in:x) depend(in:y)
compute _4(z, X, y, N);

#pragma omp taskwait

OpenMP

Advanced Task Synchronization

OpenMP

Asynchronous APl Interaction

m Some APIs are based on asynchronous operations
= MPI asynchronous send and receive
= Asynchronous I/O
= HIP, CUDA and OpenCL stream-based offloading
= |n general: any other API/model that executes asynchronously with OpenMP (tasks)

m Example: CUDA memory transfers

do_something();

cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);
do_something else();

cudaStreamSynchronize(stream);

do_other_important stuff(dst);

m Programmers need a mechanism to marry asynchronous APls with the parallel task model of
OpenMP

= How to synchronize completions events with task execution?

22

OpenMP

Try 1: Use just OpenMP Tasks

void cuda_example() {
#pragma omp task // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);

}
#pragma omp task // task B Race condition between the tasks A & C,
{ task C may start execution before
do_something_else(); task A enqueues memory transfer.
}
#pragma omp task // task C
{
cudaStreamSynchronize(stream);
do_other_important stuff(dst);
}

m This solution does not work!
23

OpenMP

Try 2: Use just OpenMP Tasks Dependences

void cuda_example() {

#pragma omp task depend(out:stream) // task A
{
do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMe
}
#pragma omp task // task B
{
do_something else();
}
#pragma omp task depend(in:stream) // task C
{
cudaStreamSynchronize(stream);
do_other_important stuff(dst);
}

}

m This solution may work, but

pyDeviceToHost, stream);

Synchronize execution of tasks through dependence.

May work, but task C will be blocked waiting for
the data transfer to finish

= takes a thread away from execution while the system is handling the data transfer.

* may be problematic if called interface is not thread-safe

24

OpenMP

OpenMP Detachable Tasks

mOpenMP 5.0 introduces the concept of a detachable task
» Task can detach from executing thread without being “completed”

= Regular task synchronization mechanisms can be applied to await completion of a
detached task

" Runtime APl to complete a task

mDetached task events: omp_event t datatype
m Detached task clause: detach(event)
mRuntime API: void omp fulfill event(omp _event t *event)

25

OpenMP

Detaching Tasks

omp_event_t *event;
void detach_example() {
#pragma omp task detach(event)

{
important_code();
}@ Some other thread/task:
. omp_fulfill event(event); @
#pragma omp taskwait <:> (:)
}

1. Task detaches 3. Signal event for completion

2. taskwait construct cannot 4. Task completes and taskwait
complete can continue

26

OpenMP

Putting It All Together

void CUDART_CB callback(cudaStream_t stream, cudaError_t status, void *cb dat) {
(:)omp_fulfill_event((omp_event_t *) cb_data);

}
void cuda_example() {
omp_event_t *cuda_event;
#pragma omp task detach(cuda_event) // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceTpHost, stream);
cudaStreamAddCallback(stream, callback, cuda event,0);

®y

#pragma omp task // task B
do_something else();

1. Task A detaches

taskwait does not continue

When memory transfer completes, callback is
{ . invoked to signal the event for task completion

S ol GEER_AMPOrERE S EUAAESE) 4. taskwait continues, task C executes

S

#pragma omp taskwait(Z)(Z)
#pragma omp task // task C

o

27

OpenMP

Removing the taskwalt Construct

void CUDART_CB callback(cudaStream_t stream, cudaError_t status, void *cb_dat) {
(:>omp_Fu1fill_event((omp_event_t *) cb_data);
}

void cuda_example() {
omp_event t *cuda_event;
#pragma omp task depend(out:dst) detach(cuda event) // tasl@d A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceTpHost, stream);
(:) cudaStreamAddCallback(stream, callback, cuda event,®9);

}
#pragma omp task // task B
do_something else(); .
1. Task A detaches and task C will not execute because
#pragma omp task depend(in:dst) /] task C of its unfulfilled dependency on A
{ @ 2. When memory transfer completes, callback is
do_other important stuff(dst); invoked to signal the event for task completion
oo} 3. Task A completes and C’s dependency is fulfilled

28

OpenMP

summary

m OpenMP APl is ready to use Intel discrete GPUs for offloading compute
= Mature offload model w/ support for asynchronous offload/transfer
= Tightly integrates with OpenMP multi-threading on the host

m More, advanced features (not covered here)
= Memory management API

" |[nteroperability with native data
management

" |Interoperability with native streaming
interfaces

= Unified shared memory support

29

OpenivVIP

Enabling HPC since 1997

Visit www.openmp.org for more information

OpenMP
Programming OpenMP

Tools for OpenMP Programming

Christian Terboven RWITH

Michael Klemm OpenMP

PRACE

OpenMP Tools OpenMP

B Correctness Tools
- ThreadSanitizer

—>Intel Inspector XE (or whatever the current name is)

B Performance Analysis

- Performance Analysis basics

- Overview on available tools

PRACE

Advanced OpenMP

Data Race OpenMP

M Data Race: the typical OpenMP programming error, when:

—>two or more threads access the same memory location, and
—>at least one of these accesses Is a write, and
—>the accesses are not protected by locks or critical regions, and

—>the accesses are not synchronized, e.g. by a batrrier.

B Non-deterministic occurrence: e.g. the sequence of the execution of
parallel loop iterations is non-deterministic

—In many cases private clauses, barriers or critical regions are missing

M Data races are hard to find using a traditional debugger

Advanced OpenMP

PRACE

ThreadSanitizer: Overview OpenMP

B Correctness checking for threaded applications
M Integrated in clang and gcc compiler
B Low runtime overhead: 2x — 15x

B Used to find data races in browsers like Chrome and Firefox

PRACE

n Advanced OpenMP

OpenMP

ThreadSanitizer: Usage

module load clang

Module in Aachen.

ECompile the program with clang compiler:

clang -fsanitize=thread -fopenmp -g myprog.c -0 myprog

clang++ -fsanitize=thread -fopenmp -g myprog.cpp
-0 myprog
gfortran -fsanitize=thread -fopenmp -g myprog.f -c
clang -fsanitize=thread -fopenmp -lgfortran myprog.o
-0 myprog

* Execute:
OMP_NUM_ THREADS=4 ./myprog

 Understand and correct the detected threading errors .

Advanced OpenMP

https://pruners.github.io/

ThreadSanitizer: Example

1 #include <stdio.h>

WARNING: ThreadSanitizer: data race

T* Read of size 4 at Ox7fffffffdcdc by thread T2:

#0 .omp_outlined. race.c:7
(race+0x0000004a6dce)

#1 _kmp_invoke microtask <null>
(libomp_tsan.so)

« Previous write of size 4 at Ox7fffffffdcdc by

2
3 int main(int argc, char **argv) {
4 inta=0;
5 #pragma omp parallel
6
7/ if (a <100){ <
8 #pragma omp critical
9 at++; <
10 }
11 }
12 }

n Advanced OpenMP

main thread:

#0 .omp_outlined. race.c:9
(race+0x0000004a6e2c)

#1 _kmp_invoke microtask <null>
(libomp_tsan.so)

OpenMP

PRACE

Intel Inspector XE OpenMP

B Detection of

—->Memory Errors
- Deadlocks

- Data Races
W Support for

—->WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP
B Features

- Binary instrumentation gives full functionality

—Independent stand-alone GUI for Windows and Linux

Advanced OpenMP

PRACE

Pl example / 1 OpenMP

double f(double x)

1 il n i

return (4.0 / (1.0 + x*x)); . j 4 35/ Ny 35

} 1+ x?2 I "-.h E
0 25| “».H lag

double CalcPi (int n) Al s
const doublefH =1.0/(double) n; =l \-15
double fSum = 0.0; o)
dOUbIe fX, 05} {05
int i; ol D | | |

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (1=0;1<n;i++)

fX=fH * ((double)i + 0.5);
fSum += f(fX);

return fH * fSum;

}

PRACE

n Advanced OpenMP

Pl example / 2 OpenMP

double f(double x)

\ return (4.0 / (1.0 + x*x));

double CalcPi (int n)

const doublefH =1.0/(double) n;
double fSum = 0.0;

double fX; @ D
int i;

#pragma omp parallel for private(fX,i) reduction{+fSum)

for (I=0;1<n;i++)

fX=fH* ((double)i + 0.5);
fSum +:$((f)c())l? e 09) < <

return fH * fSum;

}

PRACE

n Advanced OpenMP

Inspector XE: create project / 1 OpenMP

$ module load Inspector ; inspxe-gui

<no current project> - Intel Inspector (as hpclab99) vl (a)(x
ile View Help

Project... Shift+Ctri+N

Open i Analysis

4

Project Properties Ctri+#

Memory Error Analysis / Detect Leaks

Close Project e ;
ROS LIOIEE Memory Error Analysis / Locate Memory Problems

Import Result.. Ctri+Alt+N] Threading Error Analysis / Locate Deadlocks and Data Races
Recent Projects 4 Project Properties
r =
Recent Results »
Options...
Exit ctri+Q

A Z (@ Getting Started
Welcome to Intel Inspector 2018
Memory and Thread Debugging

<no current project> New Project...
Open Project...
& Open Result

Recent Projects: Recent Results:

. paacE -

Advanced OpenMP

OpenMP

Inspector XE: create project / 2

- ensure that multiple threads are used
- choose a small dataset (really!), | e coee smsmmicn oo *‘

Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

execution time can increase e T —_—

Application parameters: [< input | Modify... |

1 OX 1 O O OX [Use application directory as working directory

Working directory: [1hor

User-defined environment variables: i y
|OMP_NUM_THREADS=2 | Modify... |

@® Store result in the project directory: ',fhomefhpclabggﬁntelfinspxefprojects,fpi
() Store result in (and create link file to) another directory

/home/hpclab99/intel/inspxe/projects/p

Result location:
fhome/hpclab89/intel/inspxe/projects/pifr@@@ {at}

[- ® Advanced]

Ok | | Cancel

PRACE

11 Advanced OpenMP

Inspector XE: configure analysis

Threading Error Analysis Modes .
1. Detect Deadlocks

2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races \ 4

more details,
more overhead

Configure Analysis Type ~ INTEL INSPEI:I[IRZUIS

4 A Analysis Type

o 10x-40x | Detect Deadlocks
[:I 20x-80x [RISFV== " || \[I Step
40x 160x : ..||||| (x —]
[Threadmg Error Analysi| ¥ #lysis Time Overheat Memory Overhead
Ep Reset Growth Tracklng]

\ Memopy ELOV aHSIE Locate Deadlocks and Data Races | Copy

Threadlng Error Analysis !I 4?’ Measure Growth

Widest scope threading error analysis type. Maximizes the load on the system

| Custom Analysis Types ' and the time and resources required to perform analys:s however, detects the
widest set of errors and provides context and maximum detail for those errors. !9 Reset Leak Tracking. |
Press F1 for more details. —
¥ Find Leaks
[] Terminate on deadlock
Stack frame depth: | 16 E2
Scope: |Normal v

Advanced OpenMP

OpenMP

PRACE

Inspector XE: results / 1 OpenMP

1 detected problems
2 filters

3 code location File View Help
i i s bE @ @
4 Timeline

/home/hpclab99/intel/inspxe/projects/pi - Intel Inspector (as hpclab99) viiAalix

ID a ’QL ‘Type \ Sources ‘ Modules | State Severity 2
s Data race pi.c pi.exe * New Error 1 item(s)
Data race pi.c:72 pi.exe R New Type
Data race pi.c:72 pi.exe R New Data race 1 item(s)
Source
pi.c 1 item(s)
Module
1 pi.exe 1 item(s)
.4
State
New 1 item(s)

Suppressed

1of2 b Al

Description | Source | Function |Module |Variable ko
Read pi.c:72 CalcPi pi.exe OMP Worker Thread #1 (23717) I

70 { pi.exe!CalcPi - pi.c:72

71 fX = fH * ((double)i + 0 ||pi.exe!CalcPi - pi.c:68

12 fSum += f(fX); pi.exe! start

73

74 return fH * fSum; et
Write pi.c:72 CalcPi pi.exe

70 { pi.exe!CalcPi - pi.c:72 4

71 fX = fH * ((double)i + ©

72 fsum += f(fX); 3

73 }

74 return fH * fSum; v =2

- PRACE
13 Advanced OpenMP /

Inspector XE: results / 2

1 Source Code producing the issue — double click opens an editor
2 Corresponding Call Stack

Read - Thread OMP Master Thread #0 (23581) (pi.exe!CalcPi - pi.c:72)
R4 Disassembly (pi.exe!0x111f) Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 W pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX) pi.exe!CalcPi - pi.c:68
for (i = iRank; i < n; i += iNumProcs) pi.exe! start
{
fX = fH * ((double)i + 0.5);

Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 W pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX)
for (i = iRank; i < n; i += iNumProcs)

ouble)i + 0.5);

Advanced OpenMP

OpenMP

Rl

 PRAGE *1

Inspector XE: results / 3

1 Source Code producing the issue — double click opens an editor
2 Corresponding Call Stack

Call Stack
//#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 @ pi.exe!CalcPi - pi.c:72
#pragma omp parallel for private(i, fX) pi.exe!CalcPi - pi.c:68
for (i = iRank; i < n; i += iNumProcs) pi.exe!_start e
{
fX = fH * ((double)i + 0.5);

Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 W pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX)
for (i = iRank; i < n; i += iNumProcs)

fH * ((double)i + 0.5);

)

Advanced OpenMP

OpenMP

)4'"‘*

 PRAGE ,}

Sampling vs. Instrumentation OpenMP

Sampling

B Running program is periodically interrupted to take measurement
B Statistical inference of program behavior

B Works with unmodified executables

| YRR VR W YRR “HN N 2N U
—== W\ I nmEr rrrr ri=s ~

Time

Instrumentation

B Every event of interest is captured directly
B More detailed and exact information

B Typically: recompile for instrumentation

b b kb ok bkl b ho bbb b
—= B 1 | [|

Advanced OpenMP

Time
PRACE

Tracing vs. Profiling OpenMP

Trace

B Chronologically ordered sequence of event records
— N |] —

Time

- foo bar baz

Profile from instrumentation

B Aggregated information
L]

Profile from sampling
L3 [t2 [t5 [t8 t4 [t7 t6 | t9
| VR Z SN N YRR SN S YA R
—= W I e rr i e —

PRACE

Advanced OpenMP

OMPT support for sampling OpenMP

B OMPT defines states like barrier-wait, work-serial or work-parallel

—> Allows to collect OMPT state statistics in the profile void foo() {}

void bar() {foo();}
void baz() {bar();}
int main()

B OMPT provides frame information {foo();bar();baz();
return 0;}

- Profile break down for different OMPT states

—> Allows to identify OpenMP runtime frames.

- Runtime frames can be eliminated from call trees

| YRR 7SN RN RN R W (A SR

N

Time

Advanced OpenMP

PRACE

OMPT support for instrumentation OpenMP

B OMPT provides event callbacks

— Parallel begin / end

void foo() {}

- Implicit task begin / end void bar() {
_ _ #pragma omp task
—> Barrier / taskwait foo();}

void baz() {
#pragma omp task

— Task create / schedule

bar();}
B Tool can instrument those callbacks int main() {
#pragma omp parallel sections
_ _ _ {foo();bar();baz();}
B OpenMP-only instrumentation might return 0;}

be sufficient for some use-cases

PRACE

Advanced OpenMP

VI-HPS Tools / 1 OpenMP

® Virtual institute — high productivity supercomputing
B Tool development

B Training:
- VI-HPS/PRACE tuning workshop series
- SC/ISC tutorials

B Many performance tools available under vi-hps.org
- =2 tools - VI-HPS Tools Guide

- Tools-Guide: flyer with a 2 page summary for each tool

PRACE

Advanced OpenMP

VI-HPS Tools / 2 OpenMP

Data collection
B Score-P : instrumentation based profiling / tracing
B Extrae : instrumentation based profiling / tracing

Data processing
B Scalasca : trace-based analysis

Data presentation

B ARM Map, ARM performance report
B CUBE : display for profile information

B Vampir : display for trace data (commercial/test)
B Paraver : display for extrae data

B Tau : visualization

PRACE

Advanced OpenMP

Performance tools GUI

[T —
Trace View - /g/g0/blaise/vampir/Small/wrf.otf - Vampi e e
Bile Ed Chart Filter Window Help .Tracevwew‘ Qe et > 43 00 HE=0hcaran =8

=
3
a
il
i

[0.05 ,0.474s] Rank Range: [36,48] Cross Hair: (0.214s, 43) 9 5

=EvRALE®

W main
Timeline Function Summary W MAIN_
[All Processes, Accumulated Exclusi 1 pmpi_bcast_
M PMPI_Bcast
50s Os

Mintra_shmem_Bce

Mintra_Bcast

M PMPI_Recv

M MPID_RecvDatat
MPID_PSM_Recv(

MPID_PSM_Wait

B psmi_timer_cance

Process 0
Process 1
Process 2
Process 3

Process 4 TN

| MODULE.._FIELD
MODULE.. DRIVER

5
[BEEETE v ocast

NIRRT YL}

Context View

[e fo X [TR BUTIAITT LRI 1T
-
Process 5 S T + g e o
rocess 5 S N | (ropety | v BN S TSI] EOSy
rocess 7 5T I | - IR 0 T b
3l fa/gofblaise/va = psm_timer._cance
rocess s v INNRERMRI—— [T T e e
e —— - 0 I LRI UNRIRTIE UL LI
Function Legend
T — [: IS A 11011 Y Y
Process 11 g TR un vedvd2: scarep-20120913_1740_ 5574436552
L] =g8 Mini Map
Process 12 o 1THENNNNNNS ——— prvs B
WRF Absolute ~| Absalute - Absolute -
| I 10_NFTCPF B Metric tree | B Call tree [Flat view System tree [l Box Plot

£+ I 0.01 MAIN__ =]]

'} [l 0.82 mpi_setup_ (& [- i06r01c20

M 0.00 MPI_Bcast L1 _J - MPIRank 0

7+ [l 0.00 env_setup_ 3.81 CPU thread 0
0.00 zone_setup_ .70 CPU thread 1

-+ [l 0.00 map_zones_ (@ 3.64 CPU thread 2

- [0.00 zone_starts_ (M 3.16 CPU thread 3

0.00 set_constants_ -+ []- MPIRank 1

1 M 5.02 initia

mum Inclusive Time
Bl 48.58 Maximum Inclusive Time
I 5.27e8 bytes_sent =
B 5.27e8 bytes_received

‘ 7M of 38M i}

22

Advanced OpenMP

M 1.11 exact_rhs_
- [0.00 timer_clear_
1 [l 3.67 exch_gbc_
't [0.04 adi_
[B 39.91 compute_rhs_
) L 233.49 x_solve_
7 L 239.34 y_solve_
= Il 0.07 z_solve_
= M 0.04 !$omp parallel @z_solve.£43
£ O 100.67 !$omp do @z_solve f:52
M 2.89 Ihsinit_

[l 27.24 matvec_sub_

ze (& 3.83 CPU thread 0

.29 CPU thread 1
3,72 CPU thread 2
3,62 CPU thread 3

(B 3,58 CPU thread 1
3,66 CPU thread 2
3,33 CPU thread 3
=+ 1 - MPI Rank 3

[3.87 CPU thread 0
[3.66 CPU thread 1
(B 253 CPU thread 2
Bl 2.41 CPU thread 3

10.00 767.48 (100.00%) 767.48

- T
57.70 (7.52%) 767.48] 0.00 57.70|
- @

cube™®

scalasca

HPC Toolkit

Summary OpenMP

Correctness:

B Data Races are very hard to find, since they do not show up every program run.
B Intel Inspector XE or ThreadSanitizer help a lot in finding these errors.

B Use really small datasets, since the runtime increases significantly.

Performance:

B Start with simple performance measurements like hotspots analyses and then focus
on these hot spots.

B [n OpenMP applications analyze the waiting time of threads. Is the waiting time
balanced?

B Hardware counters might help for a better understanding of an application, but they
might be hard to interpret.

Advanced OpenMP

PRACE

OpenMP

Programming OpenMP

OpenMP and MPI

Christian Terboven RWIH
Michael Klemm OpenMP

OpenMP

Motivation

OpenMP Tutorial
Members of the OpenMP Language Committee

Motivation for hybrid programming

B Increasing number of cores per node

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Hybrid programming

* (Hierarchical) mixing of different programming paradigms

CUDA / OpenMP
GPGPU

CUDA / OpenMP
GPGPU

OpenMP

Shared memory

OpenMP

Shared memory

O |1 |2 |3 |4 O |1 |2 |3

MPI

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

MPI and OpenMP

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

MPI — threads interaction

 MPI needs special initialization in a threaded environment
« Use MPI_Init_ thread to communicate thread support level

» Four levels of threading support

Level identifier

MPI_THREAD_SINGLE Only one thread may execute
MPI_THREAD FUNNELED Only the main thread may make
MPI calls

MPI_THREAD_SERIALIZED Any one thread may make MPI
calls at a time

MPI_THREAD MULTIPLE Multiple threads may call MPI
concurrently with no restrictions

« MPI_THREAD MULTIPLE may incur significant overhead inside an MPI implementation

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

MPI — Threading support levels

« MPI_THREAD_SINGLE

- Only one thread per MPI rank MPI Communication

——— Thread Synchronization

MPI_Init MPI_Init

MPI_Send MPI_Recv

MPI_Recv MPI_Send

MPI_Barrier MPI_Barrier

MPI_Finalize MPI_Finalize

OpenMP Tutorial
Members of the OpenMP Language Committee

MPI — Threading support levels

 MPI_THREAD FUNNELED
* Only one thread communicates

(NS
MPI_Init

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

MPI Communication

——— Thread Synchronization

[NN———
MPI_Init

OpenMP

MPI — Threading support levels

« MPI_THREAD_SERIALIZED

. : MPI Communication
* Only one thread communicates at a time

——— Thread Synchronization

[NN———
MPI_Init

(NS
MPI_Init

MPI_Send MPI_Recv

OpenMP Tutorial
Members of the OpenMP Language Committee

MPI — Threading support levels

« MPI_THREAD_MULTIPLE

» All threads communicate concurrently without synchronizatio

(NS
MPI_Init
HEN

MI\'I' [QIR |

MDT Darv

—_— MRT .2

Mnr Cmnmad ° Darcvvg

-V
MDT Darv

— MRT € aad

Mr\'l' Cnnd " Darmvv
DT Darvwv

OpenMP

MPI Communication

——— Thread Synchronization

[NN———
MPI_Init

M
N
H
MPI_Finalize

[

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP
Programming OpenMP

Misc Advanced OpenMP Topics

Christian Terboven RWITH

Michael Klemm OpenMP

PRACE

OpenMP

OpenMP Parallel Loops

PRACE

Advance d OpenMP

loop Construct OpenMP

B Existing loop constructs are tightly bound to execution model:

#pragma omp parallel for #pragma omp simd #pragma omp taskloop
for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..}

III)I HEEE generate tasks
HEEEEEEN

1

HEEEEEEN taskwait

B The loop construct is meant to tell OpenMP about truly parallel
semantics of a loop.

PRACE

Advanced OpenMP

OpenMP Fully Parallel Loops OpenMP

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof (float));
float *y = (float*) malloc(n * sizeof (float));

// Define scalars n, a, b & initialize x, vy

fpragma omp parallel
#pragma omp loop
for (int 1 = 0; 1 < n; ++1) {

yv[i] = a*x[1] + yI[1];

PRACE

Advanced OpenMP

loop Constructs, Syntax OpenMP

B Syntax (C/C++)
fprragma omp loop [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp loop [clause[[,] clause],..]
do—-loops
[!Somp end loop]

PRACE

Advanced OpenMP

loop Constructs, Clauses OpenMP

B bind(binding)

—> Binding region the loop construct should bind to
- One of: teams, parallel, thread

B order (concurrent)

- Tell the OpenMP compiler that the loop can be executed in any order.
— Default!

collapse (n)
private (list)

lastprivate (list)

reduction (reduction-id:11ist)

- Advanced OpenMP

PRACE

Extensions to Existing Constructs OpenMP

B Existing loop constructs have been extended to also have truly parallel
semantics.

B C/C++ Worksharing:

#fpragma omp [for|simd] order (concurrent) \
[clause[[,] clause],..]

for-1loops

B Fortran Worksharing:

'Somp [do|simd] order (concurrent) &
[clause[[,] clause],..]

do-loops

[!Somp end [do|simd}]

Advanced OpenMP

PRACE

OpenMP

DOACROSS Loops

PRACE

DOACROSS Loops OpenMIP

B "DOACROSS’ loops are loops with special loop schedules
- Restricted form of loop-carried dependencies
- Require fine-grained synchronization protocol for parallelism

B Loop-carried dependency:
—> Loop iterations depend on each other
—> Source of dependency must be scheduled before sink of the dependency

B DOACROSS loop:

— Data dependency is an invariant for the execution of the whole loop nest

PRACE

- Advanced OpenMP Tutorial

Parallelizable Loops OpenMP

B A parallel loop cannot not have any loop-carried dependencies (simplified just a
little bit!)

for (int 1 = 1; 1 < N; ++1i) {
for (int J = 1; j < M; ++73) {

b[i]l[3] = £([1i]([3],
bli][J], ali1][3]);

~ Thread 1 Thread 2
J ¢ : : : : :

s e i il i i i e > execution order
E B 2 B : — dependency

i PRACE

Advanced OpenMP Tutorial

Non-parallelizable Loops

OpenMP

M |f there is a loop-carried dependency, a loop cannot be parallelized anymore

(“easily” that is)

for

Advanced OpenMP Tutorial

bli][3]

~ Thread 1

(int 1 = 1; 1 < N; ++1i) {
(int 3 = 1; jJ < M; ++3) {
= f(b[i-1]11[31,
b[i] [j-1],

alil[3])7

Thread 2

QT error

T T [S * execution order
v v v

— dependency

i PRACE

Wavefront-Parallel Loops

OpenMP

B |f the data dependency is invariant, then skewing the loop helps remove the data

dependency

for

Advanced OpenMP Tutorial

= 1; 1 < Ny

i+l; j < i+N;

f(oli-1]1[3-11,
b[i][j-1-11, alill3]);

b[i] []-1]

Thread 1 Thread 2

Q
Q
O . O * 0"
O o o . o *
R o o o
o LR o
e g RO R
——" D —
o °*
* *
* *
a* .

A 4

error

* execution order
— dependency

PRACE

OpenMP

DOACROSS Loops with OpenMP

B OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried
dependencies
B Syntax (C/C++):

fpragma omp for ordered(d) [clause[[,] clause],..]

for-1loops

and
fpragma omp ordered [clause[[,] clause],..]

where clause is one of the following:

depend (source)
depend (sink:vector)

B Syntax (Fortran):
!'Somp do ordered(d) [clause[[,] clause],..]

do-loops
!'Somp ordered [clause[[,] clause],..] PRACE

Advanced OpenMP Tutorial

Example OpenMP

B The ordered clause tells the compiler about loop-carried dependencies and their
distances

#pragma omp parallel for ordered(2)
for (int i = 1; 1 < N; ++1i) {
for (int J = 1; j < M; ++73) {
#fpragma omp ordered depend(sink:i-1,7j) depend(sink:i,j-1)
b[1][3] = £(b[1-11[31,
b[i] [J-1], alil([3]1);
}

#fpragma omp ordered depend (source)

}

PRACE

Advanced OpenMP Tutorial

Example: 3D Gauss-Seidel OpenMP

#pragma omp for ordered(2) private (7, k)
for (1 = 1; 1 < N-1; ++1i) {
for (J = 1; jJ < N-1; ++73) {
#pragma omp ordered depend(sink: i-1,j-1) depend(sink: i-1,73) \
depend (sink: i-1,j+1) depend(sink: i, j-1)
for (k = 1; k < N-1; ++k) {
double tmpl (pli-1]1[3-1
1]

[1 []
[1-111
double tmp2 = (p[i][j-1]
[1]
n

1 Tk-1] + p[i-1]1[3-1]
1[k-1]1 + p[i-11[31I[k
+1] [k=-1] + pli- +

[k] + p[1i-1][J-1][k+1]
] + pli-1][J] [k+1]
] 1] [J+1]1[k] + p[i-1][J+1][k+1]);
[k=1] + p[1][J-1]1[k] + pl[i]([3-1][k+1]
1031 [k-1] + p[i][J] [K] pli] [J] [k+1]
pli] [J+1][k-1]1 + pli][J+1][k] + p[i][3+1][k+1]);
] [[[k] + p[1i+1][J-1] [k+1]
[] + pl[i+1][J] [k+1]
1

1[k] + p[i+1][J+1] [k+1]);

+]
double tmp3 = (p[i+1][]j-1]1[k-1]1 + pl[i+1]I[]
+ pli+1]1[3][k-1] + pl[i+1][7]
+ pli+1] [jJ+1] [k-1] + pl[i+1]]
plil[J]1[k] = (tmpl + tmp2 + tmp3) / 27.0;

-1
[
J
]

+
[k
—1]

[k
J+

}
fpragma omp ordered depend (source)
}
}

Advanced OpenMP Tutorial

PRACE

OpenMP

OpenMP Meta-Programming

PRACE

Advanced OpenMP Tutorial

The metadirective Directive OpenMP

B Construct OpenMP directives for different OpenMP contexts
B Limited form of meta-programming for OpenMP directives and clauses

#pragma omp target map(to:vi,v2) map(from:v3)
#pragma omp metadirective \
when(device={arch(nvptx)}: teams loop) \
default(parallel loop)
for (i = 1b; i < ub; i++)
v3[i] = vi1[i] * v2[i];

I$omp begin metadirective &
when(implementation={unified_shared memory}: target) &
default(target map(mapper(vec_map),tofrom: vec))

I$omp teams distribute simd

do i=1, vec%size()

call vec(i)%work()

end do

I$omp end teams distribute simd

I$omp end metadirective

PRACE

Advanced OpenMP Tutorial

OpenMP

Nothing Directive

PRACE

Advanced OpenMP Tutorial

The nothing Directive OpenMP

B The nothing directive makes meta programming a bit clearer and more flexible.

M [f a certain criterion matches, the nothing directive can stand to indicate that no
(other) OpenMP directive should be used.
- The nothing directive is implicitly added if no condition matches

I$omp begin metadirective &

when(implementation={unified shared memory}: &
target teams distribute parallel do simd) &

default(nothing)

do i=1, vecksize()

call vec(i)%work()
end do
I$omp end metadirective

PRACE

Advanced OpenMP Tutorial

OpenMP

Error Directive

PRACE

Advanced OpenMP Tutorial

Error Directive Syntax OpenMP

B Syntax (C/C++)
fpragma omp error [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp error [clause[[,] clause],..]

do—-loops
[!Somp end loop]

B Clauses
one of: at (compilation), at (runtime)

one of. severity (fatal), severity(warning)
message (msg-string)

Advanced OpenMP Tutorial

PRACE

Error Directive OpenMP

B Can be used to issue a warning or an error at compile time and runtime.
B Consider this a “directive version” of assert(), but with a bit more flexibility.

#pragma omp parallel

{
if (omp_get num threads() % 2) {

#pragma omp error at(runtime) severity(warning) \
message(“Running on odd number of threads\n”);
}

do_stuff that works best with even thread count();

PRACE

Advanced OpenMP Tutorial

Error Directive OpenMP

B Can be used to issue a warning or an error at compile time and runtime.
B Consider this a “directive version” of assert(), but with a bit more flexibility.
B More useful in combination with OpenMP metadirective

I$omp begin metadirective &
when(arch={fancy_processor}: parallel) &
default(error severity(fatal) at(compilation) &
message(“No implementation available”)
call fancy_impl for_ fancy processor()
I$omp end metadirective

PRACE

Advanced OpenMP Tutorial

OpenMP

Advanced OpenMP Tutorial

OpenMP 5.2 and Beyond
Christian Terboven RWTH
Michael Klemm OpenMP
Ruud van der Pas E

B Lawrence Livermore
National Laboratory

Bronis R. de Supinski

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond e ouis, | science

Bronis R. de Supinski -.‘& bbbbbb _

OpenMP

Future Directions

2 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond { St.Lonig‘gcti)enced
Bronis R. de Supinski eyond.

Topics

® Final Review of OpenMP 4.0, 4.5, 5.0 and 5.1
B OpenMP Organizational Overview
® Current OpenMP Language Committee Activities

3 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

OpenMP

OpenMP

Final Review of OpenMP 4.0, 4.5, 5.0 and 5.1

4 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond {‘\ St.Louis.‘science
Bronis R.de Supinski s ojbedend .

Ratified OpenMP 4.0 in July 2013,

Ratified OpenMP 4.5 in November 2015
B OpenMP 4.0

—~>Addressed several major open issues for OpenMP
—Included 106 passed tickets

- Did not break existing code
B OpenMP 4.5

—Includes many refinements to 4.0 additions
—Included 130 passed tickets

- Did not break existing code unnecessarily

5 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

OpenMP

Overview of major 4.0 additions

B Device constructs
B SIMD constructs
B Cancellation

B Task dependences and task groups

M Thread affinity control

B User-defined reductions

M Initial support for Fortran 2003

B Support for array sections (including in C and C++)
B Sequentially consistent atomics

B Display of initial OpenMP internal control variables

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

OpenMP

Overview of major OpenMP 4.5 additions OpenMP

B Many changes focused on device support

—> Unstructured data mapping

- Asynchronous execution

- Device runtime routines: allocation, copy, etc.

- Clauses to support device pointers, ability to map structure elements
—->New combined constructs

B Several other significant enhancements

— Support for doacross loops

- Divide loop into tasks with taskloop construct

—>Hints for locks and critical sections

—> Task priorities

- Addition of schedule modifiers: simd, monotonic, nonmonotonic
—>Support for 1 £ clause on combined/composite constructs t

i~ SLC21

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
Bronis R. de Supinski

& beyond.

Ratified OpenMP 5.0 in November 2018, OpenMP

Ratified OpenMP 5.1 in November 2020
B OpenMP 5.0

— Addressed several major open issues for OpenMP

- Included 293 passed tickets

—> Did not break existing code

- One possible issue: nonmonotonic default

B OpenMP 5.1
- Includes many refinements to 5.0 additions
- Included 254 passed GitHub issues

- Did not break (most?) existing code

— Deprecated several keywords and symbols

t
i~ SLC21

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

Major new features in OpenMP 5.0 OpenMP

B Significant extensions to improve usability

- 0penMP contexts, metadirective and declare variant

- Addition of requires directive, including support for unified shared memory
—->Memory allocators and support for deep memory hierarchies

- Descriptive 1oop construct

- Abllity to quiesce OpenMP threads

—> Support to print/inspect affinity state

-~ Release/acquire semantics added to memory model

- Support for C/C++ array shaping
® First (OMPT) and third (OMPD) party tool support

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
. . . & beyond :
Bronis R. de Supinski

Major new features in OpenMP 5.0 OpenMP

B Some significant extensions to existing functionality

- Verbosity reducing changes such as implicit declare target directives
- User defined mappers provide deep copy support for map clauses
- Support for reverse offload

—> Support for task reductions , including on taskloop construct, task affinity, new
dependence types, depend objects and detachable tasks

- Allows teams construct outside of target construct (i.e., on host)
— Supports collapse of non-rectangular loops

- Scan extension of reductions
B Major advances for base language normative references

- Completed support for Fortran 2003
- Added Fortran 2008, C11, C++11, C++14 and C++17

10 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
Bronis R. de Supinski &beyond.

OpenMP 5.0 clarifications and enhancements OpenMP

W Supports collapse of imperfectly nested loops

W Supports !=on C/C++ loops

B Adds conditional modifierto lastprivate

W Support use of any C/C++ Ivalue in depend clauses

B Permits declare target on C++ classes with virtual members
B Clarification of declare target C++ Initializations

B Adds task modifier on many reduction clauses

B Adds depend clause to taskwait construct

11 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
Bronis R. de Supinski &beyond ‘

OpenMP 5.1 refines existing functionality OpenMP

B Adds full support for C11, C++11, C++14, C++17, C++20 and
Fortran 2008 and partial support for Fortran 2018

B Extends directive syntax to C++ attribute specifiers
B The scope construct supports reductions within parallel regions

— Christian discussed this enhancement in another session

B Extends atomic construct to support compare-and-swap, min and max

- Detailed these enhancements in another session

B Adds many clauses and clause modifiers including:

—-nowait to taskwait construct
- strict modifier to clauses on the taskloop construct

i~ SC21
Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond science

Bronis R. de Supinski ‘&begond‘

OpenMP

OpenMP 5.1 refines existing functionality

B Support for mapping (translated) function pointers
B Device-specific environment variables to control their ICVs
B nothing directive supports metadirective clarity and completeness

W Several new runtime routines, including more memory allocation flavors
B Deprecations include:

—->The master affinity policy and master construct

- Cray pointers

—->Many enum values, most related to OMPT (first-party tool interface)

i~ SC21
Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond i

‘scwence
Bronis R. de Supinski &beyond ‘

OpenMP

Significant OpenMP 5.1 Features

14 Advance d OpenMP Tutorial - OpenMP 5.2 and Beyond {‘\ St.Louis.‘science
Bronis R.de Supinski s ojbedend .

OpenMP

OpenMP 5.1 adds some significant extensions

B The interop construct

- Improves native device support (e.g., CUDA streams)

- Also supports interoperability with CPU-based libraries (e.g., TBB)
B The new dispatch construct, improved declare variant directive

- Enable use of variants with device-specific arguments

— Elision of “unrecognized” code

15 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
Bronis R. de Supinski &beyond ‘

OpenMP

OpenMP 5.1 adds some significant extensions

B The assume directive

—> Supports optimization hints based on invariants

—> Supports promise to limit OpenMP usage to (optimizable) subsets
B Loop transformation directives: The tile and unroll directives

—> Control use of traditional sequential optimizations

-~ Ensure that they are applied when, where appropriate relative to parallelization

16 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
Bronis R. de Supinski &beyond ‘

OpenMP

New Error Directive

t
o< SC21
{~ St.Louis, ‘ science
MO |& beyond.

17 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

The error directive supports OpenMP
user-defined warnings and errors

B Use error directive to interact with the compiler

#fpragma omp error [at(compilation]|execution)] [severity(fatal|warning)] |\

[message (msg-string)]
structured-block

B Compiler displays msg-string as part of implementation-defined message
B The at clause determines when the effect of the directive occurs

- compilation: If encountered during compilation in a declarative context
(useful along with metadirective) or is reachable at runtime

- execution: If the code location is encountered during execution (similar to assert ())
B The severity clause determines compiler action
- warning: Print message only (default)

- fatal: Stop compilation or execution

> SC21

18 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
Bronis R. de Supinski &beyond.

OpenMP

New Masked Construct

t
o< SC21
{~ St.Louis, ‘ science
MO |& beyond.

19 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

The masked construct supports OpenMP
filtering execution per thread

B Use masked construct to limit parallel execution (low cost: no data environ.

fpragma omp masked [filter (integer-expression)]
structured-block

B Encountering thread executes if £ilter clause matches its thread number
® Default (i.e., no clause) is equivalent to deprecated master construct
® Future (i.e., OpenMP 6.0) enhancements planned

— Define concept of thread groups, a subset of the threads in a team
- Extend masked to filter based on thread groups or booleans (via clause modifier)

- filter clause added to other constructs, relying on thread group concept

t
s~ SC21

20 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski

OpenMP

OpenMP Organizational Overview

21 Advance d OpenMP Tutorial - OpenMP 5.2 and Beyond {‘\ St.Louis.‘science
Bronis R.de Supinski s ojbedend .

OpenMP API Specification as a Book OpenMP

M Save your printer-ink and get the full
specification as a paperback book!

- Always have the spec in easy reach.

—Includes the entire specification with the same

OpenMP

Application pro
Specification

gramming Interface
ersion 5.1

‘l' / pagination and line numbers as the PDF.

— Available at a near-wholesale price.

B Get yours at Amazon at
https://link.openmp.org/book51

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
. . . & beyond :
Bronis R. de Supinski

OpenMP Roadmap OpenMP

B OpenMP has a well-defined roadmap:

—>5-year cadence for major releases
- 0One minor release in between
- 0OpenMP 5.2 was added as a second minor release before OpenMP version 6.0

— (At least) one Technical Report (TR) with feature previews in every year

OpenMP 5.0 ¢ OpenMP 5.1 OpenMP 5.2 @ OpenMP 6.0 ¢
Nov’18 Nov’19 Nov’'20 Nov’21 Nov’'22 Nov’23
Public Comment Public Comment Public Comment
Draft (TR9*) Draft (TR10*) Draft (TR12)
t
2~ 21

2 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond . . i _Louis, | sci
Bronis R. depSupinski P / * Numbers assigned to TRs may change if additional TRs are released. o Mo\?fbee”;;d_

Development Process of the Specification OpenMP

B Modifications to the OpenMP specification follow a (strict) process:
Impl. Merge to
M
M Release process for specifications:
Comment Quality ARB
Draft Control Approval

t
< SC21
{~ St. Louis.‘science
MO |& beyond.

24 Advanced OpenMP Tutorial - OpenMP 5.2 and Beyond
Bronis R. de Supinski

User Outreach & Education

— o
OpenMP Use rS & :& Isc High Performance
~ DEVELOPER CONFERENCE & USER GROUP * he e Brent

Check out openmp.org/news/events-calendar/

25 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond St.L.ows.‘science
Bronis R.de Supinski s ojbedend .

OpenMP

OpenMP Language Committee Current Activities:
OpenMP 5.2 and 6.0

26 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond {‘\ St.Louis.‘science
Bronis R.de Supinski s ojbedend .

IEEE Proceedings article on vision for OpenMP: OpenMP
“The Ongoing Evolution of OpenMP”

B Broadly support on-node performant, portable parallelism

- Standardize syntax for commonly available (parallel) directives
— Consistently apply across C, C++ and Fortran

- To be simple yet flexible, supporting range of parallelism models

B OpenMP 5.0 fits within that vision

B OpenMP 5.1 and OpenMP 5.2 refine how OpenMP 5.0 realizes it

B OpenMP 6.0 will be a major step to further realizing it

27 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
Bronis R. de Supinski &beyond ‘

OpenMP 5.2 was released earlier this month OpenMP

B OpenMP ARB adopted on November 11, 2021
M Large portions of specification now generated from JSON-based database

—> Section headers and directive and clause format
—> Cross references, index entries, hyperlinks and many other document details

— Long-term plan will capture sufficient information in database to generate much more, including

grammar, quick reference guide, and header and runtime library routine stub files
B Improves specification of OpenMP syntax

— Ensuring syntax of directives and clauses is well-specified and consistent
— Ensuring restrictions are consistent and not just implied by syntax
- Deprecating one-off syntax choices, many other inconsistencies (12 new deprecation entries)

- Makes C++ attribute syntax a first-class citizen

B Many other minor improvements
B ~125 passed issues

28 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
Bronis R. de Supinski &beyond.

OpenMP 6.0 will be released in November 2023 OpenMP

B Removal of features that were deprecated in 5.0, 5.1 or 5.2

B Further adoption of the database-specification approach

M Dependences and affinity for the taskloop construct

M Task-only or free-agent threads

B Spawning tasks for other teams (event-driven parallelism and more)
B Continued improvements to device support

—>True support for using multiple devices

- Extensions of deep copy support (serialize/deserialize functions)

B More support for memory affinity and complex hierarchies
B Deeper support for descriptive and prescriptive control
B Support for pipelining, other computation/data associations; data-flow?
M 161 issues already created for/deferred to 6.0 t
i~ SC21

29 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond science
Bronis R. de Supinski & beyond ‘

Help Us Shape the Future of OpenMP OpenMP

B OpenMP continues to grow
- 33 members currently

® You can contribute to our annual releases
m Attend IWOMP, become a cOMPunity member
B OpenMP membership types now include less expensive memberships

—~>Please let us know if you would be interested

30 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
Bronis R. de Supinski &beyond ‘

