

Introduction to
OpenMP Offload Features

Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
// left out initialization
double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp parallel for firstprivate(a)
for (int i = 0; i < SZ; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

Timing code (not needed, just to have
a bit more code to show ☺)

Timing code (not needed, just to have
a bit more code to show ☺)

This is the code we want to execute on a
target device (i.e., GPU)

Don’t do this at home!
Use a BLAS library for this!

3

Device Model

◼As of version 4.0 the OpenMP API supports accelerators/coprocessors

◼Device model:
▪ One host for “traditional” multi-threading

▪ Multiple accelerators/coprocessors of the same kind for offloading

Accelerators
Host

4

Execution Model

◼Offload region and data environment is lexically scoped
▪ Data environment is destroyed at closing curly brace

▪ Allocated buffers/data are automatically released

Host Device

#pragma omp target \

alloc

1

from

4

to

2

pA

map(alloc:...) \

map(to:...) \

{ ... } 3

map(from:...)

5

OpenMP for Devices - Constructs

◼ Transfer control and data from the host to the device

◼ Syntax (C/C++)
#pragma omp target [clause[[,] clause],…]
structured-block

◼ Syntax (Fortran)
!$omp target [clause[[,] clause],…]
structured-block
!$omp end target

◼ Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] list)
if(scalar-expr)

6

Example: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp target
for (int i = 0; i < SZ; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}
h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:SZ]
y[0:SZ]

x[0:SZ]
y[0:SZ]

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

All accessed arrays are copied from
host to device and back

Copying x back is not necessary: it
was not changed.

The compiler identifies variables that are
used in the target region.

“map(tofrom:y[0:SZ])”

Presence check: only transfer
if not yet allocated on the

device.

7

Example: saxpy

subroutine saxpy(a, x, y, n)
use iso_fortran_env
integer :: n, i
real(kind=real32) :: a
real(kind=real32), dimension(n) :: x
real(kind=real32), dimension(n) :: y

!$omp target
do i=1,n

y(i) = a * x(i) + y(i)
end do

!$omp end target
end subroutine

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x(1:n)
y(1:n)

x(1:n)
y(1:n)

All accessed arrays are copied from
host to device and back

Copying x back is not necessary: it
was not changed.

The compiler identifies variables that are
used in the target region.

“map(tofrom:y(1:n))”
Presence check: only transfer

if not yet allocated on the
device.

flang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
8

Example: saxpy

void saxpy() {
double a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp target map(to:x[0:SZ]) \
map(tofrom:y[0:SZ])

for (int i = 0; i < SZ; i++) {
y[i] = a * x[i] + y[i];

}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:SZ]
y[0:SZ]

y[0:SZ]

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
9

Example: saxpy

void saxpy(float a, float* x, float* y,
int sz) {

double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[0:sz])

for (int i = 0; i < sz; i++) {
y[i] = a * x[i] + y[i];

}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:sz]
y[0:sz]

y[0:sz]

The compiler cannot determine the size
of memory behind the pointer.

Programmers have to help the compiler
with the size of the data transfer needed.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
10

Creating Parallelism on the Target Device

◼The target construct transfers the control flow to the target device
▪ Transfer of control is sequential and synchronous

▪ This is intentional!

◼OpenMP separates offload and parallelism
▪ Programmers need to explicitly create parallel regions on the target device

▪ In theory, this can be combined with any OpenMP construct

▪ In practice, there is only a useful subset of OpenMP features for a target device such
as a GPU, e.g., no I/O, limited use of base language features.

11

Example: saxpy

void saxpy(float a, float* x, float* y,
int sz) {

#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[0:sz])

#pragma omp parallel for simd
for (int i = 0; i < sz; i++) {

y[i] = a * x[i] + y[i];
}

}

h
o
s
t

ta
rg
e
t

h
o
s
t

Create a team of threads to execute the loop in
parallel using SIMD instructions.

GPUs are multi-level devices:
SIMD, threads, thread blocks

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
12

teams Construct

◼Support multi-level parallel devices

◼Syntax (C/C++):
#pragma omp teams [clause[[,] clause],…]
structured-block

◼Syntax (Fortran):
!$omp teams [clause[[,] clause],…]
structured-block

◼Clauses
num_teams(integer-expression), thread_limit(integer-expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list), reduction(operator:list)

13

Multi-level Parallel saxpy

◼Manual code transformation
▪ Tile the loops into an outer loop and an inner loop
▪ Assign the outer loop to “teams” (OpenCL: work groups)
▪ Assign the inner loop to the “threads” (OpenCL: work items)

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams map(to:x[0:sz]) map(tofrom:y[0:sz])

{
int bs = n / omp_get_num_teams();

#pragma omp distribute
for (int i = 0; i < sz; i += bs) {

#pragma omp parallel for simd firstprivate(i,bs)
for (int ii = i; ii < i + bs; ii++) {

y[ii] = a * x[ii] + y[ii];
}

}
}

}

14

Multi-level Parallel saxpy

◼For convenience, OpenMP defines composite constructs to implement the
required code transformations

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams distribute parallel for simd \

num_teams(num_blocks) map(to:x[0:sz]) map(tofrom:y[0:sz])
for (int i = 0; i < sz; i++) {

y[i] = a * x[i] + y[i];
}

}

subroutine saxpy(a, x, y, n)
! Declarations omitted

!$omp omp target teams distribute parallel do simd &
!$omp& num_teams(num_blocks) map(to:x) map(tofrom:y)

do i=1,n
y(i) = a * x(i) + y(i)

end do
!$omp end target teams distribute parallel do simd
end subroutine

15

Optimize Data Transfers

◼Reduce the amount of time spent transferring data
▪ Use map clauses to enforce direction of data transfer.

▪ Use target data, target enter data, target exit data constructs to keep
data environment on the target device.

void example() {
float tmp[N], data_in[N], float data_out[N];

#pragma omp target data map(alloc:tmp[:N]) \
map(to:a[:N],b[:N]) \
map(tofrom:c[:N])

{
zeros(tmp, N);
compute_kernel_1(tmp, a, N); // uses target
saxpy(2.0f, tmp, b, N);
compute_kernel_2(tmp, b, N); // uses target
saxpy(2.0f, c, tmp, N);

} }

void zeros(float* a, int n) {
#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++)
a[i] = 0.0f;

}

void saxpy(float a, float* y, float* x, int n) {
#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

16

target data Construct Syntax

◼ Create scoped data environment and transfer data from the host to the device and back

◼ Syntax (C/C++)
#pragma omp target data [clause[[,] clause],…]
structured-block

◼ Syntax (Fortran)
!$omp target data [clause[[,] clause],…]
structured-block
!$omp end target data

◼ Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] list)
if(scalar-expr)

17

target update Construct Syntax

◼ Issue data transfers to or from existing data device environment

◼ Syntax (C/C++)
#pragma omp target update [clause[[,] clause],…]

◼ Syntax (Fortran)
!$omp target update [clause[[,] clause],…]

◼ Clauses
device(scalar-integer-expression)
to(list)
from(list)
if(scalar-expr)

18

Example: target data and target update

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

h
o
s
t

ta
rg
e
t

h
o
s
t

ta
rg
e
t

h
o
s
t

19

Asynchronous Offloads

◼ OpenMP target constructs are synchronous by default

▪ The encountering host thread awaits the end of the target region before continuing

▪ The nowait clause makes the target constructs asynchronous (in OpenMP speak: they become
an OpenMP task)

#pragma omp task
init_data(a);

#pragma omp target map(to:a[:N]) map(from:x[:N]) nowait
compute_1(a, x, N);

#pragma omp target map(to:b[:N]) map(from:z[:N]) nowait
compute_3(b, z, N);

#pragma omp target map(to:y[:N]) map(to:z[:N]) nowait
compute_4(z, x, y, N);

#pragma omp taskwait

depend(in:a) depend(out:x)

depend(out:y)

depend(in:x) depend(in:y)

depend(out:a)

20

Advanced Task Synchronization

Asynchronous API Interaction

◼ Some APIs are based on asynchronous operations
▪ MPI asynchronous send and receive
▪ Asynchronous I/O
▪ HIP, CUDA and OpenCL stream-based offloading
▪ In general: any other API/model that executes asynchronously with OpenMP (tasks)

◼ Example: CUDA memory transfers

◼ Programmers need a mechanism to marry asynchronous APIs with the parallel task model of
OpenMP
▪ How to synchronize completions events with task execution?

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);
do_something_else();
cudaStreamSynchronize(stream);
do_other_important_stuff(dst);

22

Try 1: Use just OpenMP Tasks

◼This solution does not work!

void cuda_example() {

#pragma omp task // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task // task C
{

cudaStreamSynchronize(stream);
do_other_important_stuff(dst);

}
}

Race condition between the tasks A & C,
task C may start execution before
task A enqueues memory transfer.

23

Try 2: Use just OpenMP Tasks Dependences

◼ This solution may work, but
▪ takes a thread away from execution while the system is handling the data transfer.
▪ may be problematic if called interface is not thread-safe

void cuda_example() {

#pragma omp task depend(out:stream) // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task depend(in:stream) // task C
{

cudaStreamSynchronize(stream);
do_other_important_stuff(dst);

}
}

Synchronize execution of tasks through dependence.
May work, but task C will be blocked waiting for
the data transfer to finish

24

OpenMP Detachable Tasks

◼OpenMP 5.0 introduces the concept of a detachable task
▪ Task can detach from executing thread without being “completed”

▪ Regular task synchronization mechanisms can be applied to await completion of a
detached task

▪ Runtime API to complete a task

◼Detached task events: omp_event_t datatype

◼Detached task clause: detach(event)

◼Runtime API: void omp_fulfill_event(omp_event_t *event)

25

Detaching Tasks
omp_event_t *event;

void detach_example() {

#pragma omp task detach(event)

{

important_code();

}

#pragma omp taskwait

}




omp_fulfill_event(event); 

Some other thread/task:



1. Task detaches

2. taskwait construct cannot

complete

3. Signal event for completion

4. Task completes and taskwait
can continue

26

Putting It All Together
void CUDART_CB callback(cudaStream_t stream, cudaError_t status, void *cb_dat) {

omp_fulfill_event((omp_event_t *) cb_data);
}

void cuda_example() {

omp_event_t *cuda_event;

#pragma omp task detach(cuda_event) // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);
cudaStreamAddCallback(stream, callback, cuda_event, 0);

}
#pragma omp task // task B

do_something_else();

#pragma omp taskwait
#pragma omp task // task C

{
do_other_important_stuff(dst);

} }







1. Task A detaches
2. taskwait does not continue
3. When memory transfer completes, callback is

invoked to signal the event for task completion
4. taskwait continues, task C executes

27

Removing the taskwait Construct

void CUDART_CB callback(cudaStream_t stream, cudaError_t status, void *cb_dat) {
omp_fulfill_event((omp_event_t *) cb_data);

}

void cuda_example() {

omp_event_t *cuda_event;

#pragma omp task depend(out:dst) detach(cuda_event) // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);
cudaStreamAddCallback(stream, callback, cuda_event, 0);

}
#pragma omp task // task B

do_something_else();

#pragma omp task depend(in:dst) // task C
{

do_other_important_stuff(dst);
} }







1. Task A detaches and task C will not execute because
of its unfulfilled dependency on A

2. When memory transfer completes, callback is
invoked to signal the event for task completion

3. Task A completes and C’s dependency is fulfilled

28

Summary

◼ OpenMP API is ready to use Intel discrete GPUs for offloading compute

▪ Mature offload model w/ support for asynchronous offload/transfer

▪ Tightly integrates with OpenMP multi-threading on the host

◼ More, advanced features (not covered here)

▪ Memory management API

▪ Interoperability with native data
management

▪ Interoperability with native streaming
interfaces

▪ Unified shared memory support

29

Visit www.openmp.org for more information

1
Advanced OpenMP

Programming OpenMP

Christian Terboven

Michael Klemm

Tools for OpenMP Programming

2
Advanced OpenMP

◼ Correctness Tools

→ThreadSanitizer

→Intel Inspector XE (or whatever the current name is)

◼ Performance Analysis

→Performance Analysis basics

→Overview on available tools

OpenMP Tools

3
Advanced OpenMP

◼ Data Race: the typical OpenMP programming error, when:

→two or more threads access the same memory location, and

→at least one of these accesses is a write, and

→the accesses are not protected by locks or critical regions, and

→the accesses are not synchronized, e.g. by a barrier.

◼ Non-deterministic occurrence: e.g. the sequence of the execution of

parallel loop iterations is non-deterministic

→In many cases private clauses, barriers or critical regions are missing

◼ Data races are hard to find using a traditional debugger

Data Race

4
Advanced OpenMP

◼ Correctness checking for threaded applications

◼ Integrated in clang and gcc compiler

◼ Low runtime overhead: 2x – 15x

◼ Used to find data races in browsers like Chrome and Firefox

ThreadSanitizer: Overview

5
Advanced OpenMP

ThreadSanitizer: Usage
module load clang

• Compile the program with clang compiler:
clang –fsanitize=thread –fopenmp –g myprog.c –o myprog

clang++ –fsanitize=thread –fopenmp –g myprog.cpp

–o myprog

gfortran –fsanitize=thread –fopenmp –g myprog.f –c

clang –fsanitize=thread –fopenmp –lgfortran myprog.o

–o myprog

• Execute:

OMP_NUM_THREADS=4 ./myprog

• Understand and correct the detected threading errors

C

C++

Fortran

Module in Aachen.
https://pruners.github.io

https://pruners.github.io/

6
Advanced OpenMP

ThreadSanitizer: Example
1 #include <stdio.h>
2
3 int main(int argc, char **argv) {
4 int a = 0;
5 #pragma omp parallel
6 {
7 if (a < 100) {
8 #pragma omp critical
9 a++;

10 }
11 }
12 }

WARNING: ThreadSanitizer: data race

Read of size 4 at 0x7fffffffdcdc by thread T2:

#0 .omp_outlined. race.c:7
(race+0x0000004a6dce)

#1 __kmp_invoke_microtask <null>
(libomp_tsan.so)

Previous write of size 4 at 0x7fffffffdcdc by
main thread:

#0 .omp_outlined. race.c:9
(race+0x0000004a6e2c)

#1 __kmp_invoke_microtask <null>
(libomp_tsan.so)

7
Advanced OpenMP

◼ Detection of

→Memory Errors

→Deadlocks

→Data Races

◼ Support for

→WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

◼ Features

→Binary instrumentation gives full functionality

→Independent stand-alone GUI for Windows and Linux

Intel Inspector XE

8
Advanced OpenMP

PI example / 1
double f(double x)
{

return (4.0 / (1.0 + x*x));
}

double CalcPi (int n)
{

const double fH = 1.0 / (double) n;
double fSum = 0.0;
double fX;
int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (i = 0; i < n; i++)
{

fX = fH * ((double)i + 0.5);
fSum += f(fX);

}
return fH * fSum;

}

𝜋 = න

0

1
4

1 + 𝑥2

9
Advanced OpenMP

PI example / 2
double f(double x)
{

return (4.0 / (1.0 + x*x));
}

double CalcPi (int n)
{

const double fH = 1.0 / (double) n;
double fSum = 0.0;
double fX;
int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (i = 0; i < n; i++)
{

fX = fH * ((double)i + 0.5);
fSum += f(fX);

}
return fH * fSum;

}

What if we
would have

forgotten this?

10
Advanced OpenMP

Inspector XE: create project / 1
$ module load Inspector ; inspxe-gui

11
Advanced OpenMP

- ensure that multiple threads are used

- choose a small dataset (really!),

execution time can increase

10X – 1000X

Inspector XE: create project / 2

12
Advanced OpenMP

Inspector XE: configure analysis

Threading Error Analysis Modes
1. Detect Deadlocks
2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead

13
Advanced OpenMP

Inspector XE: results / 1
1

2

3

detected problems
filters
code location
Timeline

1

2

3

4

4

14
Advanced OpenMP

Inspector XE: results / 2
1

2
Source Code producing the issue – double click opens an editor
Corresponding Call Stack

1 2

1 2

15
Advanced OpenMP

Inspector XE: results / 3
1

2
Source Code producing the issue – double click opens an editor
Corresponding Call Stack

1 2

1 2

The missing reduction
is detected.

16
Advanced OpenMP

Sampling vs. Instrumentation
Sampling

◼ Running program is periodically interrupted to take measurement

◼ Statistical inference of program behavior

◼ Works with unmodified executables

Instrumentation

◼ Every event of interest is captured directly

◼ More detailed and exact information

◼ Typically: recompile for instrumentation

Time
main foo bar baz Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

TimeTime

t
1

t
2

t
3
t
4

t
5

t
6
t
7
t
8

t
9

t
10 t

11
t
12
t
13

t
14

17
Advanced OpenMP

Tracing vs. Profiling
Trace

◼ Chronologically ordered sequence of event records

Profile from instrumentation

◼ Aggregated information

Profile from sampling

Time
main foo bar baz

Time

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

t1 t3 t2 t5 t8 t4 t7 t6 t9

18
Advanced OpenMP

OMPT support for sampling
◼ OMPT defines states like barrier-wait, work-serial or work-parallel

→ Allows to collect OMPT state statistics in the profile

→ Profile break down for different OMPT states

◼ OMPT provides frame information

→ Allows to identify OpenMP runtime frames.

→ Runtime frames can be eliminated from call trees

Time

main foo bar baz Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

void foo() {}
void bar() {foo();}
void baz() {bar();}
int main()
{foo();bar();baz();
return 0;}

19
Advanced OpenMP

OMPT support for instrumentation
◼ OMPT provides event callbacks

→ Parallel begin / end

→ Implicit task begin / end

→ Barrier / taskwait

→ Task create / schedule

◼ Tool can instrument those callbacks

◼ OpenMP-only instrumentation might

be sufficient for some use-cases

void foo() {}
void bar() {
#pragma omp task
foo();}

void baz() {
#pragma omp task

bar();}
int main() {
#pragma omp parallel sections
{foo();bar();baz();}
return 0;}

20
Advanced OpenMP

◼ Virtual institute – high productivity supercomputing

◼ Tool development

◼ Training:

→ VI-HPS/PRACE tuning workshop series

→ SC/ISC tutorials

◼ Many performance tools available under vi-hps.org

→→ tools → VI-HPS Tools Guide

→ Tools-Guide: flyer with a 2 page summary for each tool

VI-HPS Tools / 1

21
Advanced OpenMP

VI-HPS Tools / 2
Data collection

◼ Score-P : instrumentation based profiling / tracing

◼ Extrae : instrumentation based profiling / tracing

Data processing

◼ Scalasca : trace-based analysis

Data presentation

◼ ARM Map, ARM performance report

◼ CUBE : display for profile information

◼ Vampir : display for trace data (commercial/test)

◼ Paraver : display for extrae data

◼ Tau : visualization

22
Advanced OpenMP

Performance tools GUI

HPC Toolkit

23
Advanced OpenMP

Summary

Correctness:

◼ Data Races are very hard to find, since they do not show up every program run.

◼ Intel Inspector XE or ThreadSanitizer help a lot in finding these errors.

◼ Use really small datasets, since the runtime increases significantly.

Performance:

◼ Start with simple performance measurements like hotspots analyses and then focus

on these hot spots.

◼ In OpenMP applications analyze the waiting time of threads. Is the waiting time

balanced?

◼ Hardware counters might help for a better understanding of an application, but they

might be hard to interpret.

1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven
Michael Klemm

OpenMP and MPI

2
OpenMP Tutorial

Members of the OpenMP Language Committee

Motivation

3
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Increasing number of cores per node

Motivation for hybrid programming

4
OpenMP Tutorial

Members of the OpenMP Language Committee

• (Hierarchical) mixing of different programming paradigms

Hybrid programming

MPI

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

CUDA / OpenMP

GPGPU

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

CUDA / OpenMP

GPGPU

5
OpenMP Tutorial

Members of the OpenMP Language Committee

MPI and OpenMP

6
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI needs special initialization in a threaded environment

• Use MPI_Init_thread to communicate thread support level

• Four levels of threading support

• MPI_THREAD_MULTIPLE may incur significant overhead inside an MPI implementation

MPI – threads interaction

Level identifier Description

MPI_THREAD_SINGLE Only one thread may execute

MPI_THREAD_FUNNELED Only the main thread may make

MPI calls

MPI_THREAD_SERIALIZED Any one thread may make MPI

calls at a time

MPI_THREAD_MULTIPLE Multiple threads may call MPI

concurrently with no restrictions

H
ig

h
e
r

le
v
e
ls

7
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_SINGLE

• Only one thread per MPI rank

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

8
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_FUNNELED

• Only one thread communicates

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

MPI_Init

MPI_Recv

MPI_Send

MPI_Finalize

MPI_Barrier

9
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_SERIALIZED

• Only one thread communicates at a time

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

MPI_Init

MPI_Recv

MPI_Send

MPI_Finalize

MPI_Barrier

10
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_MULTIPLE

• All threads communicate concurrently without synchronization

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send
MPI_Recv

MPI_Finalize

MPI_Send
MPI_RecvMPI_Send

MPI_Recv
MPI_Send

MPI_RecvMPI_Send
MPI_Recv

MPI_Send
MPI_Recv

MPI_Init

MPI_Recv
MPI_Send

MPI_Finalize

MPI_Recv
MPI_SendMPI_Recv

MPI_Send
MPI_Recv

MPI_SendMPI_Recv
MPI_Send

MPI_Recv
MPI_Send

Advanced OpenMP1

Programming OpenMP

Christian Terboven

Michael Klemm

Misc Advanced OpenMP Topics

Advanced OpenMP2

OpenMP Parallel Loops

Advanced OpenMP3

◼ Existing loop constructs are tightly bound to execution model:

◼ The loop construct is meant to tell OpenMP about truly parallel

semantics of a loop.

loop Construct

join

distribute work

barrier

fork

#pragma omp parallel for

for (i=0; i<N;++i) {…}

#pragma omp simd

for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

Advanced OpenMP4

OpenMP Fully Parallel Loops

int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float));

float *y = (float*) malloc(n * sizeof(float));

// Define scalars n, a, b & initialize x, y

#pragma omp parallel

#pragma omp loop

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

}

}

Advanced OpenMP5

◼ Syntax (C/C++)
#pragma omp loop [clause[[,] clause],…]

for-loops

◼ Syntax (Fortran)
!$omp loop [clause[[,] clause],…]

do-loops

[!$omp end loop]

loop Constructs, Syntax

Advanced OpenMP6

◼ bind(binding)

→ Binding region the loop construct should bind to

→ One of: teams, parallel, thread

◼ order(concurrent)

→ Tell the OpenMP compiler that the loop can be executed in any order.

→ Default!

◼ collapse(n)

◼ private(list)

◼ lastprivate(list)

◼ reduction(reduction-id:list)

loop Constructs, Clauses

Advanced OpenMP7

◼ Existing loop constructs have been extended to also have truly parallel

semantics.

◼ C/C++ Worksharing:
#pragma omp [for|simd] order(concurrent) \

[clause[[,] clause],…]

for-loops

◼ Fortran Worksharing:
!$omp [do|simd] order(concurrent) &

[clause[[,] clause],…]

do-loops

[!$omp end [do|simd}]

Extensions to Existing Constructs

8 Advanced OpenMP Tutorial

DOACROSS Loops

9 Advanced OpenMP Tutorial

◼ “DOACROSS” loops are loops with special loop schedules

→Restricted form of loop-carried dependencies

→Require fine-grained synchronization protocol for parallelism

◼ Loop-carried dependency:

→Loop iterations depend on each other

→Source of dependency must be scheduled before sink of the dependency

◼ DOACROSS loop:

→Data dependency is an invariant for the execution of the whole loop nest

DOACROSS Loops

10 Advanced OpenMP Tutorial

◼ A parallel loop cannot not have any loop-carried dependencies (simplified just a

little bit!)

Parallelizable Loops

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

b[i][j] = f(b[i][j],

b[i][j], a[i][j]);

}

}

i

j

execution order

dependency

Thread 1 Thread 2

11 Advanced OpenMP Tutorial

◼ If there is a loop-carried dependency, a loop cannot be parallelized anymore

(“easily” that is)

Non-parallelizable Loops

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

b[i][j] = f(b[i-1][j],

b[i][j-1], a[i][j]);

}

}

i

j
Thread 1 Thread 2

execution order

dependency

error

12 Advanced OpenMP Tutorial

◼ If the data dependency is invariant, then skewing the loop helps remove the data

dependency

Wavefront-Parallel Loops

for (int i = 1; i < N; ++i) {

for (int j = i+1; j < i+N; ++j) {

b[i][j-i] = f(b[i-1][j-i],

b[i][j-i-1], a[i][j]);

}

}

i

j

execution order

dependency

error

Thread 1 Thread 2

13 Advanced OpenMP Tutorial

◼ OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried

dependencies

◼ Syntax (C/C++):
#pragma omp for ordered(d) [clause[[,] clause],…]

for-loops

and
#pragma omp ordered [clause[[,] clause],…]

where clause is one of the following:
depend(source)

depend(sink:vector)

◼ Syntax (Fortran):
!$omp do ordered(d) [clause[[,] clause],…]

do-loops

!$omp ordered [clause[[,] clause],…]

DOACROSS Loops with OpenMP

14 Advanced OpenMP Tutorial

◼ The ordered clause tells the compiler about loop-carried dependencies and their

distances

Example

#pragma omp parallel for ordered(2)

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

#pragma omp ordered depend(sink:i-1,j) depend(sink:i,j-1)

b[i][j] = f(b[i-1][j],

b[i][j-1], a[i][j]);

}

#pragma omp ordered depend(source)

}

15 Advanced OpenMP Tutorial

Example: 3D Gauss-Seidel
#pragma omp for ordered(2) private(j,k)

for (i = 1; i < N-1; ++i) {

for (j = 1; j < N-1; ++j) {

#pragma omp ordered depend(sink: i-1,j-1) depend(sink: i-1,j) \

depend(sink: i-1,j+1) depend(sink: i,j-1)

for (k = 1; k < N-1; ++k) {

double tmp1 = (p[i-1][j-1][k-1] + p[i-1][j-1][k] + p[i-1][j-1][k+1]

+ p[i-1][j][k-1] + p[i-1][j][k] + p[i-1][j][k+1]

+ p[i-1][j+1][k-1] + p[i-1][j+1][k] + p[i-1][j+1][k+1]);

double tmp2 = (p[i][j-1][k-1] + p[i][j-1][k] + p[i][j-1][k+1]

+ p[i][j][k-1] + p[i][j][k] + p[i][j][k+1]

+ p[i][j+1][k-1] + p[i][j+1][k] + p[i][j+1][k+1]);

double tmp3 = (p[i+1][j-1][k-1] + p[i+1][j-1][k] + p[i+1][j-1][k+1]

+ p[i+1][j][k-1] + p[i+1][j][k] + p[i+1][j][k+1]

+ p[i+1][j+1][k-1] + p[i+1][j+1][k] + p[i+1][j+1][k+1]);

p[i][j][k] = (tmp1 + tmp2 + tmp3) / 27.0;

}

#pragma omp ordered depend(source)

}

}

16 Advanced OpenMP Tutorial

OpenMP Meta-Programming

17 Advanced OpenMP Tutorial

◼ Construct OpenMP directives for different OpenMP contexts

◼ Limited form of meta-programming for OpenMP directives and clauses

The metadirective Directive

#pragma omp target map(to:v1,v2) map(from:v3)
#pragma omp metadirective \

when(device={arch(nvptx)}: teams loop) \
default(parallel loop)

for (i = lb; i < ub; i++)
v3[i] = v1[i] * v2[i];

!$omp begin metadirective &
when(implementation={unified_shared_memory}: target) &
default(target map(mapper(vec_map),tofrom: vec))

!$omp teams distribute simd
do i=1, vec%size()

call vec(i)%work()
end do
!$omp end teams distribute simd
!$omp end metadirective

18 Advanced OpenMP Tutorial

Nothing Directive

19 Advanced OpenMP Tutorial

◼ The nothing directive makes meta programming a bit clearer and more flexible.

◼ If a certain criterion matches, the nothing directive can stand to indicate that no

(other) OpenMP directive should be used.

→The nothing directive is implicitly added if no condition matches

The nothing Directive

!$omp begin metadirective &
when(implementation={unified_shared_memory}: &

target teams distribute parallel do simd) &
default(nothing)

do i=1, vec%size()
call vec(i)%work()

end do
!$omp end metadirective

20 Advanced OpenMP Tutorial

Error Directive

21 Advanced OpenMP Tutorial

◼ Syntax (C/C++)
#pragma omp error [clause[[,] clause],…]

for-loops

◼ Syntax (Fortran)
!$omp error [clause[[,] clause],…]

do-loops

[!$omp end loop]

◼ Clauses
one of: at(compilation), at(runtime)

one of: severity(fatal), severity(warning)

message(msg-string)

Error Directive Syntax

22 Advanced OpenMP Tutorial

◼ Can be used to issue a warning or an error at compile time and runtime.

◼ Consider this a “directive version” of assert(), but with a bit more flexibility.

Error Directive

#pragma omp parallel
{

if (omp_get_num_threads() % 2) {
#pragma omp error at(runtime) severity(warning) \

message(“Running on odd number of threads\n”);
}
do_stuff_that_works_best_with_even_thread_count();

}

23 Advanced OpenMP Tutorial

◼ Can be used to issue a warning or an error at compile time and runtime.

◼ Consider this a “directive version” of assert(), but with a bit more flexibility.

◼ More useful in combination with OpenMP metadirective

Error Directive

!$omp begin metadirective &
when(arch={fancy_processor}: parallel) &
default(error severity(fatal) at(compilation) &

message(“No implementation available”)
call fancy_impl_for_fancy_processor()

!$omp end metadirective

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
1

Advanced OpenMP Tutorial

OpenMP 5.2 and Beyond

Christian Terboven

Michael Klemm

Ruud van der Pas

Bronis R. de Supinski

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
2

Future Directions

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
3

◼ Final Review of OpenMP 4.0, 4.5, 5.0 and 5.1

◼OpenMP Organizational Overview

◼ Current OpenMP Language Committee Activities

Topics

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
4

Final Review of OpenMP 4.0, 4.5, 5.0 and 5.1

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
5

◼OpenMP 4.0

→Addressed several major open issues for OpenMP

→Included 106 passed tickets

→Did not break existing code

◼OpenMP 4.5

→Includes many refinements to 4.0 additions

→Included 130 passed tickets

→Did not break existing code unnecessarily

Ratified OpenMP 4.0 in July 2013,
Ratified OpenMP 4.5 in November 2015

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
6

◼ Device constructs

◼ SIMD constructs

◼ Cancellation

◼ Task dependences and task groups

◼ Thread affinity control

◼ User-defined reductions

◼ Initial support for Fortran 2003

◼ Support for array sections (including in C and C++)

◼ Sequentially consistent atomics

◼ Display of initial OpenMP internal control variables

Overview of major 4.0 additions

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
7

◼Many changes focused on device support

→Unstructured data mapping

→Asynchronous execution

→Device runtime routines: allocation, copy, etc.

→Clauses to support device pointers, ability to map structure elements

→New combined constructs

◼ Several other significant enhancements

→Support for doacross loops

→Divide loop into tasks with taskloop construct

→Hints for locks and critical sections

→Task priorities

→Addition of schedule modifiers: simd, monotonic, nonmonotonic

→Support for if clause on combined/composite constructs

Overview of major OpenMP 4.5 additions

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
8

◼ OpenMP 5.0

→Addressed several major open issues for OpenMP

→ Included 293 passed tickets

→Did not break existing code

→One possible issue: nonmonotonic default

◼ OpenMP 5.1

→ Includes many refinements to 5.0 additions

→ Included 254 passed GitHub issues

→Did not break (most?) existing code

→Deprecated several keywords and symbols

Ratified OpenMP 5.0 in November 2018,
Ratified OpenMP 5.1 in November 2020

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
9

◼ Significant extensions to improve usability

→OpenMP contexts, metadirective and declare variant

→Addition of requires directive, including support for unified shared memory

→Memory allocators and support for deep memory hierarchies

→Descriptive loop construct

→Ability to quiesce OpenMP threads

→Support to print/inspect affinity state

→Release/acquire semantics added to memory model

→Support for C/C++ array shaping

◼ First (OMPT) and third (OMPD) party tool support

Major new features in OpenMP 5.0

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
10

◼ Some significant extensions to existing functionality

→Verbosity reducing changes such as implicit declare target directives

→User defined mappers provide deep copy support for map clauses

→Support for reverse offload

→Support for task reductions , including on taskloop construct, task affinity, new

dependence types, depend objects and detachable tasks

→Allows teams construct outside of target construct (i.e., on host)

→Supports collapse of non-rectangular loops

→Scan extension of reductions

◼ Major advances for base language normative references

→Completed support for Fortran 2003

→Added Fortran 2008, C11, C++11, C++14 and C++17

Major new features in OpenMP 5.0

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
11

◼ Supports collapse of imperfectly nested loops

◼ Supports != on C/C++ loops

◼ Adds conditional modifier to lastprivate

◼ Support use of any C/C++ lvalue in depend clauses

◼ Permits declare target on C++ classes with virtual members

◼ Clarification of declare target C++ initializations

◼ Adds task modifier on many reduction clauses

◼ Adds depend clause to taskwait construct

OpenMP 5.0 clarifications and enhancements

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
12

◼ Adds full support for C11, C++11, C++14, C++17, C++20 and

Fortran 2008 and partial support for Fortran 2018

◼ Extends directive syntax to C++ attribute specifiers

◼ The scope construct supports reductions within parallel regions

→Christian discussed this enhancement in another session

◼ Extends atomic construct to support compare-and-swap, min and max

→Detailed these enhancements in another session

◼ Adds many clauses and clause modifiers including:

→nowait to taskwait construct

→strict modifier to clauses on the taskloop construct

OpenMP 5.1 refines existing functionality

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
13

◼ Support for mapping (translated) function pointers

◼ Device-specific environment variables to control their ICVs

◼ nothing directive supports metadirective clarity and completeness

◼ Several new runtime routines, including more memory allocation flavors

◼ Deprecations include:

→The master affinity policy and master construct

→Cray pointers

→Many enum values, most related to OMPT (first-party tool interface)

OpenMP 5.1 refines existing functionality

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
14

Significant OpenMP 5.1 Features

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
15

◼ The interop construct

→Improves native device support (e.g., CUDA streams)

→Also supports interoperability with CPU-based libraries (e.g., TBB)

◼ The new dispatch construct, improved declare variant directive

→Enable use of variants with device-specific arguments

→Elision of “unrecognized” code

OpenMP 5.1 adds some significant extensions

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
16

◼ The assume directive

→Supports optimization hints based on invariants

→Supports promise to limit OpenMP usage to (optimizable) subsets

◼ Loop transformation directives: The tile and unroll directives

→Control use of traditional sequential optimizations

→Ensure that they are applied when, where appropriate relative to parallelization

OpenMP 5.1 adds some significant extensions

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
17

New Error Directive

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
18

◼ Use error directive to interact with the compiler

◼ Compiler displays msg-string as part of implementation-defined message

◼ The at clause determines when the effect of the directive occurs

→ compilation: If encountered during compilation in a declarative context

(useful along with metadirective) or is reachable at runtime

→ execution: If the code location is encountered during execution (similar to assert())

◼ The severity clause determines compiler action

→ warning: Print message only (default)

→ fatal: Stop compilation or execution

The error directive supports
user-defined warnings and errors

#pragma omp error [at(compilation|execution)] [severity(fatal|warning)] \

[message(msg-string)]

structured-block

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
19

New Masked Construct

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
20

◼ Use masked construct to limit parallel execution (low cost: no data environ.)

◼ Encountering thread executes if filter clause matches its thread number

◼ Default (i.e., no clause) is equivalent to deprecated master construct

◼ Future (i.e., OpenMP 6.0) enhancements planned

→Define concept of thread groups, a subset of the threads in a team

→Extend masked to filter based on thread groups or booleans (via clause modifier)

→filter clause added to other constructs, relying on thread group concept

The masked construct supports
filtering execution per thread

#pragma omp masked [filter(integer-expression)]

structured-block

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
21

OpenMP Organizational Overview

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
22

OpenMP API Specification as a Book

◼ Save your printer-ink and get the full
specification as a paperback book!

→Always have the spec in easy reach.

→Includes the entire specification with the same

pagination and line numbers as the PDF.

→Available at a near-wholesale price.

◼Get yours at Amazon at
https://link.openmp.org/book51

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
23

OpenMP Roadmap

◼OpenMP has a well-defined roadmap:

→5-year cadence for major releases

→One minor release in between

→OpenMP 5.2 was added as a second minor release before OpenMP version 6.0

→(At least) one Technical Report (TR) with feature previews in every year

Public Comment
Draft (TR9*)

Public Comment
Draft (TR12)

Public Comment
Draft (TR10*)

Nov’18 Nov’19 Nov’20 Nov’21 Nov’22 Nov’23

OpenMP 5.0 OpenMP 5.1 TR11* OpenMP 6.0

* Numbers assigned to TRs may change if additional TRs are released.

TR8* OpenMP 5.2 TR1x*

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
24

Development Process of the Specification

◼Modifications to the OpenMP specification follow a (strict) process:

◼ Release process for specifications:

Proposal
Impl.

in LaTeX
1st vote 2nd vote Verify

Merge to
main

Draft Editing
Comment

Draft
Quality
Control

Final Draft
ARB

Approval

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
25

User Outreach & Education

Check out openmp.org/news/events-calendar/

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
26

OpenMP Language Committee Current Activities:
OpenMP 5.2 and 6.0

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
27

◼ Broadly support on-node performant, portable parallelism

→Standardize syntax for commonly available (parallel) directives

→Consistently apply across C, C++ and Fortran

→To be simple yet flexible, supporting range of parallelism models

◼OpenMP 5.0 fits within that vision

◼OpenMP 5.1 and OpenMP 5.2 refine how OpenMP 5.0 realizes it

◼OpenMP 6.0 will be a major step to further realizing it

IEEE Proceedings article on vision for OpenMP:
“The Ongoing Evolution of OpenMP”

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
28

◼ OpenMP ARB adopted on November 11, 2021

◼ Large portions of specification now generated from JSON-based database

→ Section headers and directive and clause format

→Cross references, index entries, hyperlinks and many other document details

→ Long-term plan will capture sufficient information in database to generate much more, including

grammar, quick reference guide, and header and runtime library routine stub files

◼ Improves specification of OpenMP syntax

→Ensuring syntax of directives and clauses is well-specified and consistent

→Ensuring restrictions are consistent and not just implied by syntax

→Deprecating one-off syntax choices, many other inconsistencies (12 new deprecation entries)

→Makes C++ attribute syntax a first-class citizen

◼ Many other minor improvements

◼ ~125 passed issues

OpenMP 5.2 was released earlier this month

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
29

◼ Removal of features that were deprecated in 5.0, 5.1 or 5.2

◼ Further adoption of the database-specification approach

◼ Dependences and affinity for the taskloop construct

◼ Task-only or free-agent threads

◼ Spawning tasks for other teams (event-driven parallelism and more)

◼ Continued improvements to device support

→True support for using multiple devices

→Extensions of deep copy support (serialize/deserialize functions)

◼More support for memory affinity and complex hierarchies

◼ Deeper support for descriptive and prescriptive control

◼ Support for pipelining, other computation/data associations; data-flow?

◼ 161 issues already created for/deferred to 6.0

OpenMP 6.0 will be released in November 2023

Advanced OpenMP Tutorial – OpenMP 5.2 and Beyond

Bronis R. de Supinski
30

◼OpenMP continues to grow

→33 members currently

◼ You can contribute to our annual releases

◼ Attend IWOMP, become a cOMPunity member

◼OpenMP membership types now include less expensive memberships

→Please let us know if you would be interested

Help Us Shape the Future of OpenMP

