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Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];

double t = 0.0; M)

double tb, te; Timing code (not needed, just to have

tb = omp_get wtime(); a bit more code to show ©)
#pragma omp parallel for firstprivate(a) <

for (int i = @; i < SZ; i++) { X This is the code we want to execute on a
y[i] = a * x[1] + y[i]; target device (i.e., GPU)

J !
te = omp_get wtime(); . :
t = te - tb; Timing code (not needed, just to have

a bit more code to show ©)

printf("Time of kernel: %1f\n", t);

Don’t do this at home!
Use a BLAS library for this!
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Device Model

m As of version 4.0 the OpenMP API supports accelerators/coprocessors

m Device model:
" One host for “traditional” multi-threading
= Multiple accelerators/coprocessors of the same kind for offloading

Accelerators
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Execution Model

m Offload region and data environment is lexically scoped
= Data environment is destroyed at closing curly brace
= Allocated buffers/data are automatically released

Host Device
PA | am alloc
EET LR ©
HoD -

HEEEEAg@Es / #pragma omp target \
@ map (alloc:...) \

from map (to:...) \

— map (from:...)

{ ... 1} @



OpenMP for Devices - Constructs

m Transfer control and data from the host to the device

m Syntax (C/C++)
#pragma omp target [clause[[,] clause],..]
structured-blocR

m Syntax (Fortran)
I$omp target [clause[[,] clause],..]
structured-blocRk
I$omp end target

m Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] List)
if(scalar-expr)

OpenMP




OpenMP

Example: saxpy

The compiler identifies variables that are
used in the target region.

void saxpy() {
float a, Xx[SZ] , ' All accessed arrays are copied from
double t = 0.0; host to device and back
double tb, te;
tb = omp_get wtime();
#pragma omp target “map(tofrom:y[0:SZ])”
for (int i = @0; 1 < SZ; i++) {
a * x[1] + y[il;
} Presence check: only transfer
te = omp_get_wtime(); if not yet allocated on the
t = te - tb; device.
printf("Time of kernel: %1f\n", t);

Copying x back is not necessary: it
was not changed.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
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Example: saxpy

The compiler identifies variables that are
used in the target region.

subroutine saxpy(a, X, y, n)
use iso fortran_env
integer :: n, i
real(kind=real32) :: a
real(kind=real32), dimensio
real(kind=real32), dimension(n)

All accessed arrays are copied from

host to device and back

x(1l:n)
y(1l:n)

l$omp target “map(tofrom:y(1:n))”

do i=1,n Presence check: only transfer
a * x(i) + y(i) if not yet allocated on the
end do device.

I$omp end target
end subroutine

Copying x back is not necessary: it
was not changed.

flang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908



Example: saxpy

void saxpy() {
double a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp_get wtime();
#pragma omp target map(to:x[0:5SZ]) \
map(tofrom:y[0:SZ])
for (int i = 0; 1 < SZ; i++) {
yl[i] = a * x[1] + y[1i];

}
te = omp _get wtime();
t = te - tb;

printf("Time of kernel: %1f\n", t);

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

y[0:SZ]

OpenMP
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Example: saxpy

The compiler cannot determine the size

of memory behind the pointer.
void saxpy(float a, float* xf{ float* vy, / b

int sz) {
double t = 0.0;
double tb, te;
tb = omp _get wtime();
#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[@:sz])

for (int i = 0; 1 < sz; i++) {
(y[i13 a * x[i] + y[il;

}
te = omp _get wtime();
t = te - tb;

PRALERC T G LEFNELE Zlmt, e Programmers have to help the compiler

with the size of the data transfer needed.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

10
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Creating Parallelism on the Target Device

mThe target construct transfers the control flow to the target device
" Transfer of control is sequential and synchronous
" This is intentional!

m OpenMP separates offload and parallelism
" Programmers need to explicitly create parallel regions on the target device
" |In theory, this can be combined with any OpenMP construct

" |[n practice, there is only a useful subset of OpenMP features for a target device such
as a GPU, e.g., no I/0, limited use of base language features.

11
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Example: saxpy

void saxpy(float a, float* x, float* vy,
int sz) {
#pragma omp target map(to:x[0:sz]) \
map (tofrom(y[0@:sz])
#pragma omp parallel for simd
for (int i = 0; 1 ¥sz; i++) {
y[i] = a * x[i]

¥

} GPUs are multi-level devices:
SIMD, threads, thread blocks

Create a team of threads to execute the loop in
parallel using SIMD instructions.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

12
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teams Construct

m Support multi-level parallel devices
mSyntax (C/C++):

#pragma omp teams [clause[[,] clause],..]
structured-blocR

m Syntax (Fortran):

I$omp teams [clause[[,] clause],..]
structured-blocRk

mClauses

num_teams(integer-expression), thread limit(integer-expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list), reduction(operator:list)

13
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Multi-level Parallel saxpy

® Manual code transformation
" Tile the loops into an outer loop and an inner loop

= Assign the outer loop to “teams” (OpenCL: work groups)
" Assign the inner looo to the “threads” (OonenClL: work items)

14
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Multi-level Parallel saxpy

m For convenience, OpenMP defines composite constructs to implement the
required code transformations

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams distribute parallel for simd \

num_teams(num_blocks) map(to:x[0:sz]) map(tofrom:y[@:sz])
for (int 1 = 0; i < sz; i++) {
yl[i] = a * x[i] + y[i];
}

}

subroutine saxpy(a, X, y, n)

I$omp omp target teams distribute parallel do simd &

1$omp& num_teams(num_blocks) map(to:x) map(tofrom:y)
do i=1,n
y(i) = a * x(1) + y(i)
end do

I$omp end target teams distribute parallel do simd
end subroutine

15
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Optimize Data Transfers

mReduce the amount of time spent transferring data
= Use map clauses to enforce direction of data transfer.

= Use target data, target enter data, target exit data constructs to keep
data environment on the target device.

void example() { void zeros(float* a, int n) {
float tmp[N], data_in[N], float data out[N]; #pragma omp target teams distribute parallel for
#pragma omp target data map(alloc:tmp[:N]) \ for (int i = 0; i < n; i++)
map(to:a[:N],b[:N]) \ a[i] = o.ef;
map (tofrom:c[:N]) }
{
zeros(tmp, N);
compute_kernel 1(tmp, a, N); void saxpy(float a, float* y, float* x, int n) {
saxpy(2.0f, tmp, b, N); #pragma omp target teams distribute parallel for
compute_kernel 2(tmp, b, N); for (int i = 0; i < n; i++)
saxpy(2.0f, c, tmp, N); y[i] = a * x[i] + y[i];
P} }

16
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target data Construct Syntax

m Create scoped data environment and transfer data from the host to the device and back

m Syntax (C/C++)
#pragma omp target data [clause[[,] clause],..]
structured-blocR

m Syntax (Fortran)

I$omp target data [clause[[,] clause],..]
structured-blocRk
I$omp end target data

m Clauses

device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] List)
if(scalar-expr)

17
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target update Construct Syntax

m Issue data transfers to or from existing data device environment

m Syntax (C/C++)
#pragma omp target update [clause[[,] clause],..]

m Syntax (Fortran)
I$omp target update [clause[[,] clause],..]

m Clauses
device(scalar-integer-expression)
to(Llist)
from(List)
if(scalar-expr)

18
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Example: target data and target update

#pragma omp target data device(©) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(9)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_ computation(input[i], 1i);

update_input_array on_the host(input);
#pragma omp target update device(©) to(input[:N])
#pragma omp target device(9)
#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)
res += final computation(input[i], tmp[i], i)

19
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Asynchronous Offloads

m OpenMP target constructs are synchronous by default
* The encountering host thread awaits the end of the target region before continuing

* The nowait clause makes the target constructs asynchronous (in OpenMP speak: they become
an OpenMP task)

#pragma omp task depend(out:a)
init_data(a);

#pragma omp target map(to:a[:N]) map(from:x[:N]) nowait depend(in:a) depend(out:x)
compute 1(a, x, N);

#pragma omp target map(to:b[:N]) map(from:z[:N]) nowait depend(out:y)
compute 3(b, z, N);

#pragma omp target map(to:y[:N]) map(to:z[:N]) nowait depend(in:x) depend(in:y)
compute _4(z, X, y, N);

#pragma omp taskwait
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Advanced Task Synchronization
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Asynchronous APl Interaction

m Some APIs are based on asynchronous operations
= MPI asynchronous send and receive
= Asynchronous I/O
= HIP, CUDA and OpenCL stream-based offloading
= |n general: any other API/model that executes asynchronously with OpenMP (tasks)

m Example: CUDA memory transfers

do_something();

cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);
do_something else();

cudaStreamSynchronize(stream);

do_other_important stuff(dst);

m Programmers need a mechanism to marry asynchronous APls with the parallel task model of
OpenMP

= How to synchronize completions events with task execution?

22
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Try 1: Use just OpenMP Tasks

void cuda_example() {
#pragma omp task // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);

}
#pragma omp task // task B Race condition between the tasks A & C,
{ task C may start execution before
do_something_else(); task A enqueues memory transfer.
}
#pragma omp task // task C
{
cudaStreamSynchronize(stream);
do_other_important stuff(dst);
}

m This solution does not work!
23
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Try 2: Use just OpenMP Tasks Dependences

void cuda_example() {

#pragma omp task depend(out:stream) // task A
{
do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMe
}
#pragma omp task // task B
{
do_something else();
}
#pragma omp task depend(in:stream) // task C
{
cudaStreamSynchronize(stream);
do_other_important stuff(dst);
}

}

m This solution may work, but

pyDeviceToHost, stream);

Synchronize execution of tasks through dependence.

May work, but task C will be blocked waiting for
the data transfer to finish

= takes a thread away from execution while the system is handling the data transfer.

* may be problematic if called interface is not thread-safe

24
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OpenMP Detachable Tasks

mOpenMP 5.0 introduces the concept of a detachable task
» Task can detach from executing thread without being “completed”

= Regular task synchronization mechanisms can be applied to await completion of a
detached task

" Runtime APl to complete a task

mDetached task events: omp_event t datatype
m Detached task clause: detach(event)
mRuntime API: void omp fulfill event(omp _event t *event)

25
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Detaching Tasks

omp_event_t *event;
void detach_example() {
#pragma omp task detach(event)

{
important_code();
}@ Some other thread/task:
. omp_fulfill event(event); @
#pragma omp taskwait <:> (:)
}

1. Task detaches 3. Signal event for completion

2. taskwait construct cannot 4. Task completes and taskwait
complete can continue

26
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Putting It All Together

void CUDART_CB callback(cudaStream_t stream, cudaError_t status, void *cb dat) {
(:)omp_fulfill_event((omp_event_t *) cb_data);

}
void cuda_example() {
omp_event_t *cuda_event;
#pragma omp task detach(cuda_event) // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceTpHost, stream);
cudaStreamAddCallback(stream, callback, cuda event,0);

®y

#pragma omp task // task B
do_something else();

1. Task A detaches

taskwait does not continue

When memory transfer completes, callback is
{ . invoked to signal the event for task completion

S ol GEER_AMPOrERE S EUAAESE) 4. taskwait continues, task C executes

S

#pragma omp taskwait(Z)(Z)
#pragma omp task // task C

o

27
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Removing the taskwalt Construct

void CUDART_CB callback(cudaStream_t stream, cudaError_t status, void *cb_dat) {
(:>omp_Fu1fill_event((omp_event_t *) cb_data);
}

void cuda_example() {
omp_event t *cuda_event;
#pragma omp task depend(out:dst) detach(cuda event) // tasl@d A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceTpHost, stream);
(:) cudaStreamAddCallback(stream, callback, cuda event,®9);

}
#pragma omp task // task B
do_something else(); .
1. Task A detaches and task C will not execute because
#pragma omp task depend(in:dst) /] task C of its unfulfilled dependency on A
{ @ 2. When memory transfer completes, callback is
do_other important stuff(dst); invoked to signal the event for task completion
oo} 3. Task A completes and C’s dependency is fulfilled

28
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summary

m OpenMP APl is ready to use Intel discrete GPUs for offloading compute
= Mature offload model w/ support for asynchronous offload/transfer
= Tightly integrates with OpenMP multi-threading on the host

m More, advanced features (not covered here)
= Memory management API

" |[nteroperability with native data
management

" |Interoperability with native streaming
interfaces

= Unified shared memory support

29
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OpenMP Tools OpenMP

B Correctness Tools
- ThreadSanitizer

—>Intel Inspector XE (or whatever the current name is)

B Performance Analysis

- Performance Analysis basics

- Overview on available tools

PRACE

Advanced OpenMP



Data Race OpenMP

M Data Race: the typical OpenMP programming error, when:

—>two or more threads access the same memory location, and
—>at least one of these accesses Is a write, and
—>the accesses are not protected by locks or critical regions, and

—>the accesses are not synchronized, e.g. by a batrrier.

B Non-deterministic occurrence: e.g. the sequence of the execution of
parallel loop iterations is non-deterministic

—In many cases private clauses, barriers or critical regions are missing

M Data races are hard to find using a traditional debugger

Advanced OpenMP

PRACE



ThreadSanitizer: Overview OpenMP

B Correctness checking for threaded applications
M Integrated in clang and gcc compiler
B Low runtime overhead: 2x — 15x

B Used to find data races in browsers like Chrome and Firefox

PRACE

n Advanced OpenMP
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ThreadSanitizer: Usage

module load clang

Module in Aachen.

ECompile the program with clang compiler:

clang -fsanitize=thread -fopenmp -g myprog.c -0 myprog

clang++ -fsanitize=thread -fopenmp -g myprog.cpp
-0 myprog
gfortran -fsanitize=thread -fopenmp -g myprog.f -c
clang -fsanitize=thread -fopenmp -lgfortran myprog.o
-0 myprog

* Execute:
OMP_NUM_ THREADS=4 ./myprog

 Understand and correct the detected threading errors .

Advanced OpenMP


https://pruners.github.io/

ThreadSanitizer: Example

1 #include <stdio.h>

WARNING: ThreadSanitizer: data race

T* Read of size 4 at Ox7fffffffdcdc by thread T2:

#0 .omp_outlined. race.c:7
(race+0x0000004a6dce)

#1 _kmp_invoke microtask <null>
(libomp_tsan.so)

« Previous write of size 4 at Ox7fffffffdcdc by

2
3 int main(int argc, char **argv) {
4 inta=0;
5 #pragma omp parallel
6
7/ if (a <100){ <
8 #pragma omp critical
9 at++; <
10 }
11 }
12 }

n Advanced OpenMP

main thread:

#0 .omp_outlined. race.c:9
(race+0x0000004a6e2c)

#1 _kmp_invoke microtask <null>
(libomp_tsan.so)

OpenMP

PRACE



Intel Inspector XE OpenMP

B Detection of

—->Memory Errors
- Deadlocks

- Data Races
W Support for

—->WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP
B Features

- Binary instrumentation gives full functionality

—Independent stand-alone GUI for Windows and Linux

Advanced OpenMP

PRACE



Pl example / 1 OpenMP

double f(double x)

1 il n i

return (4.0 / (1.0 + x*x)); . j 4 35/ Ny 35

} 1+ x?2 I "-.h E
0 25| “».H lag

double CalcPi (int n) Al s
const doublefH =1.0/(double) n; =l \-15
double fSum = 0.0; o )
dOUbIe fX, 05} {05
int i; ol D | | |

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (1=0;1<n;i++)

fX=fH * ((double)i + 0.5);
fSum += f(fX);

return fH * fSum;

}

PRACE

n Advanced OpenMP



Pl example / 2 OpenMP

double f(double x)

\ return (4.0 / (1.0 + x*x));

double CalcPi (int n)

const doublefH =1.0/(double) n;
double fSum = 0.0;

double fX; @ D
int i;

#pragma omp parallel for private(fX,i) reduction{+fSum)

for (I=0;1<n;i++)

fX=fH* ((double)i + 0.5);
fSum +:$((f)c())l? e 09) < <

return fH * fSum;

}

PRACE
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Inspector XE: create project / 1 OpenMP

$ module load Inspector ; inspxe-gui

<no current project> - Intel Inspector (as hpclab99) vl (a)(x
ile View Help

Project... Shift+Ctri+N

Open i Analysis

4

Project Properties Ctri+#

Memory Error Analysis / Detect Leaks

Close Project e ;
ROS LIOIEE Memory Error Analysis / Locate Memory Problems

Import Result.. Ctri+Alt+N] Threading Error Analysis / Locate Deadlocks and Data Races
Recent Projects 4 Project Properties
r =
Recent Results »
Options...
Exit ctri+Q

A Z (@ Getting Started
Welcome to Intel Inspector 2018
Memory and Thread Debugging

<no current project> New Project...
Open Project...
& Open Result

Recent Projects: Recent Results:

. paacE -

Advanced OpenMP
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Inspector XE: create project / 2

- ensure that multiple threads are used
- choose a small dataset (really!), | e coee smsmmicn oo *‘

Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

execution time can increase e T —_—

Application parameters: [< input | Modify... |

1 OX 1 O O OX [ Use application directory as working directory

Working directory: [1hor

User-defined environment variables: i y
|OMP_NUM_THREADS=2 | Modify... |

@® Store result in the project directory: ',fhomefhpclabggﬁntelfinspxefprojects,fpi
() Store result in (and create link file to) another directory

/home/hpclab99/intel/inspxe/projects/p

Result location:
fhome/hpclab89/intel/inspxe/projects/pifr@@@ {at}

[- ® Advanced ]

Ok | | Cancel

PRACE
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Inspector XE: configure analysis

Threading Error Analysis Modes .
1. Detect Deadlocks

2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races \ 4

more details,
more overhead

Configure Analysis Type ~ INTEL INSPEI:I[IRZUIS

4 A Analysis Type

o 10x-40x | Detect Deadlocks
[:I 20x-80x [RISFV== " || \[ I Step
40x 160x : ..||||| (x — ]
[Threadmg Error Analysi| ¥ #lysis Time Overheat Memory Overhead
Ep Reset Growth Tracklng ]

\ Memopy ELOV aHSIE Locate Deadlocks and Data Races | Copy

Threadlng Error Analysis !I 4?’ Measure Growth

Widest scope threading error analysis type. Maximizes the load on the system

| Custom Analysis Types ' and the time and resources required to perform analys:s however, detects the
widest set of errors and provides context and maximum detail for those errors. !9 Reset Leak Tracking. |
Press F1 for more details. —
¥ Find Leaks
[] Terminate on deadlock
Stack frame depth: | 16 E2
Scope: |Normal v

Advanced OpenMP

OpenMP
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Inspector XE: results / 1 OpenMP

1 detected problems
2 filters

3 code location File View Help
i i s bE @ @
4 Timeline

/home/hpclab99/intel/inspxe/projects/pi - Intel Inspector (as hpclab99) viiAalix

ID a ’QL ‘Type \ Sources ‘ Modules | State Severity 2
s Data race pi.c pi.exe * New Error 1 item(s)
Data race pi.c:72 pi.exe R New Type
Data race pi.c:72 pi.exe R New Data race 1 item(s)
Source
pi.c 1 item(s)
Module
1 pi.exe 1 item(s)
.4
State
New 1 item(s)

Suppressed

1of2 b Al

Description | Source | Function |Module |Variable ko
Read pi.c:72  CalcPi pi.exe OMP Worker Thread #1 (23717) I

70 { pi.exe!CalcPi - pi.c:72

71 fX = fH * ((double)i + 0 ||pi.exe!CalcPi - pi.c:68

12 fSum += f(fX); pi.exe! start

73

74 return fH * fSum; et
Write pi.c:72  CalcPi pi.exe

70 { pi.exe!CalcPi - pi.c:72 4

71 fX = fH * ((double)i + ©

72 fsum += f(fX); 3

73 }

74 return fH * fSum; v =2

- PRACE
13 Advanced OpenMP /




Inspector XE: results / 2

1 Source Code producing the issue — double click opens an editor
2 Corresponding Call Stack

Read - Thread OMP Master Thread #0 (23581) (pi.exe!CalcPi - pi.c:72)
R4 Disassembly (pi.exe!0x111f) Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 W pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX) pi.exe!CalcPi - pi.c:68
for (i = iRank; i < n; i += iNumProcs) pi.exe! start
{
fX = fH * ((double)i + 0.5);

Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 W pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX)
for (i = iRank; i < n; i += iNumProcs)

ouble)i + 0.5);

Advanced OpenMP

OpenMP
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Inspector XE: results / 3

1 Source Code producing the issue — double click opens an editor
2 Corresponding Call Stack

Call Stack
//#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 @ pi.exe!CalcPi - pi.c:72
#pragma omp parallel for private(i, fX) pi.exe!CalcPi - pi.c:68
for (i = iRank; i < n; i += iNumProcs) pi.exe!_start e
{
fX = fH * ((double)i + 0.5);

Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) 4 W pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX)
for (i = iRank; i < n; i += iNumProcs)

fH * ((double)i + 0.5);

)

Advanced OpenMP

OpenMP
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Sampling vs. Instrumentation OpenMP

Sampling

B Running program is periodically interrupted to take measurement
B Statistical inference of program behavior

B Works with unmodified executables

| YRR VR W YRR “HN N 2N U
—== W\ I nmEr rrrr ri=s ~

Time

Instrumentation

B Every event of interest is captured directly
B More detailed and exact information

B Typically: recompile for instrumentation

b b kb ok bkl b ho bbb b
—= B 1 | [ |

Advanced OpenMP

Time
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Tracing vs. Profiling OpenMP

Trace

B Chronologically ordered sequence of event records
— N | ] —

Time

- foo bar baz

Profile from instrumentation

B Aggregated information
L]

Profile from sampling
L3 [t2 [t5 [t8 t4 [ t7 t6 | t9
| VR Z SN N YRR SN S YA R
—= W I e rr i e —

PRACE
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OMPT support for sampling OpenMP

B OMPT defines states like barrier-wait, work-serial or work-parallel

—> Allows to collect OMPT state statistics in the profile void foo() {}

void bar() {foo();}
void baz() {bar();}
int main()

B OMPT provides frame information {foo();bar();baz();
return 0;}

- Profile break down for different OMPT states

—> Allows to identify OpenMP runtime frames.

- Runtime frames can be eliminated from call trees

| YRR 7SN RN RN R W (A SR

N

Time

Advanced OpenMP
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OMPT support for instrumentation OpenMP

B OMPT provides event callbacks

— Parallel begin / end

void foo() {}

- Implicit task begin / end void bar() {
_ _ #pragma omp task
—> Barrier / taskwait foo();}

void baz() {
#pragma omp task

— Task create / schedule

bar();}
B Tool can instrument those callbacks int main() {
#pragma omp parallel sections
_ _ _ {foo();bar();baz();}
B OpenMP-only instrumentation might return 0;}

be sufficient for some use-cases

PRACE
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VI-HPS Tools / 1 OpenMP

® Virtual institute — high productivity supercomputing
B Tool development

B Training:
- VI-HPS/PRACE tuning workshop series
- SC/ISC tutorials

B Many performance tools available under vi-hps.org
- =2 tools - VI-HPS Tools Guide

- Tools-Guide: flyer with a 2 page summary for each tool

PRACE
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VI-HPS Tools / 2 OpenMP

Data collection
B Score-P : instrumentation based profiling / tracing
B Extrae : instrumentation based profiling / tracing

Data processing
B Scalasca : trace-based analysis

Data presentation

B ARM Map, ARM performance report
B CUBE : display for profile information

B Vampir : display for trace data (commercial/test)
B Paraver : display for extrae data

B Tau : visualization

PRACE

Advanced OpenMP



Performance tools GUI
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Summary OpenMP

Correctness:

B Data Races are very hard to find, since they do not show up every program run.
B Intel Inspector XE or ThreadSanitizer help a lot in finding these errors.

B Use really small datasets, since the runtime increases significantly.

Performance:

B Start with simple performance measurements like hotspots analyses and then focus
on these hot spots.

B [n OpenMP applications analyze the waiting time of threads. Is the waiting time
balanced?

B Hardware counters might help for a better understanding of an application, but they
might be hard to interpret.

Advanced OpenMP
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OpenMP

Motivation

OpenMP Tutorial
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Motivation for hybrid programming

B Increasing number of cores per node

OpenMP Tutorial
Members of the OpenMP Language Committee




OpenMP

Hybrid programming

* (Hierarchical) mixing of different programming paradigms

CUDA / OpenMP
GPGPU

CUDA / OpenMP
GPGPU

OpenMP

Shared memory

OpenMP

Shared memory

O |1 |2 |3 |4 O |1 |2 |3

MPI

OpenMP Tutorial
Members of the OpenMP Language Committee




OpenMP

MPI and OpenMP
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OpenMP

MPI — threads interaction

 MPI needs special initialization in a threaded environment
« Use MPI_Init_ thread to communicate thread support level

» Four levels of threading support

Level identifier

MPI_THREAD_SINGLE Only one thread may execute
MPI_THREAD FUNNELED Only the main thread may make
MPI calls

MPI_THREAD_SERIALIZED Any one thread may make MPI
calls at a time

MPI_THREAD MULTIPLE Multiple threads may call MPI
concurrently with no restrictions

« MPI_THREAD MULTIPLE may incur significant overhead inside an MPI implementation

OpenMP Tutorial
Members of the OpenMP Language Committee




OpenMP

MPI — Threading support levels

« MPI_THREAD_SINGLE

- Only one thread per MPI rank MPI Communication

——— Thread Synchronization

MPI_Init MPI_Init

MPI_Send MPI_Recv

MPI_Recv MPI_Send

MPI_Barrier MPI_Barrier

MPI_Finalize MPI_Finalize

OpenMP Tutorial
Members of the OpenMP Language Committee




MPI — Threading support levels

 MPI_THREAD FUNNELED
* Only one thread communicates

(NS
MPI_Init

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

MPI Communication

——— Thread Synchronization

[ NN———
MPI_Init



OpenMP

MPI — Threading support levels

« MPI_THREAD_SERIALIZED

. : MPI Communication
* Only one thread communicates at a time

——— Thread Synchronization

[ NN———
MPI_Init

(NS
MPI_Init

MPI_Send MPI_Recv

OpenMP Tutorial
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MPI — Threading support levels

« MPI_THREAD_MULTIPLE

» All threads communicate concurrently without synchronizatio

(NS
MPI_Init
HEN

MI\'I' [ QIR |

MDT Darv
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OpenMP

MPI Communication

——— Thread Synchronization
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MPI_Init
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MPI_Finalize
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OpenMP Parallel Loops

PRACE

Advance d OpenMP



loop Construct OpenMP

B Existing loop constructs are tightly bound to execution model:

#pragma omp parallel for #pragma omp simd #pragma omp taskloop
for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..}

III)I HEEE generate tasks
HEEEEEEN

1

HEEEEEEN taskwait

B The loop construct is meant to tell OpenMP about truly parallel
semantics of a loop.

PRACE
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OpenMP Fully Parallel Loops OpenMP

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof (float));
float *y = (float*) malloc(n * sizeof (float));

// Define scalars n, a, b & initialize x, vy

fpragma omp parallel
#pragma omp loop
for (int 1 = 0; 1 < n; ++1) {

yv[i] = a*x[1] + yI[1];

PRACE
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loop Constructs, Syntax OpenMP

B Syntax (C/C++)
fprragma omp loop [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp loop [clause[[,] clause],..]
do—-loops
[!Somp end loop]

PRACE

Advanced OpenMP



loop Constructs, Clauses OpenMP

B bind(binding)

—> Binding region the loop construct should bind to
- One of: teams, parallel, thread

B order (concurrent)

- Tell the OpenMP compiler that the loop can be executed in any order.
— Default!

collapse (n)
private (list)

lastprivate (list)

reduction (reduction-id:11ist)

- Advanced OpenMP
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Extensions to Existing Constructs OpenMP

B Existing loop constructs have been extended to also have truly parallel
semantics.

B C/C++ Worksharing:

#fpragma omp [for|simd] order (concurrent) \
[clause[[,] clause],..]

for-1loops

B Fortran Worksharing:

'Somp [do|simd] order (concurrent) &
[clause[[,] clause],..]

do-loops

[!Somp end [do|simd} ]

Advanced OpenMP
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DOACROSS Loops
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DOACROSS Loops OpenMIP

B "DOACROSS’ loops are loops with special loop schedules
- Restricted form of loop-carried dependencies
- Require fine-grained synchronization protocol for parallelism

B Loop-carried dependency:
—> Loop iterations depend on each other
—> Source of dependency must be scheduled before sink of the dependency

B DOACROSS loop:

— Data dependency is an invariant for the execution of the whole loop nest

PRACE
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Parallelizable Loops OpenMP

B A parallel loop cannot not have any loop-carried dependencies (simplified just a
little bit!)

for (int 1 = 1; 1 < N; ++1i) {
for (int J = 1; j < M; ++73) {

b[i]l[3] = £([1i]([3],
bli][J], ali1][3]);

~ Thread 1 Thread 2
J ¢ : : : : :

s e i il i i i e > execution order
E B 2 B : — dependency

i PRACE
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Non-parallelizable Loops

OpenMP

M |f there is a loop-carried dependency, a loop cannot be parallelized anymore

(“easily” that is)

for

Advanced OpenMP Tutorial

bli][3]

~ Thread 1

(int 1 = 1; 1 < N; ++1i) {
(int 3 = 1; jJ < M; ++3) {
= f(b[i-1]11[31,
b[i] [j-1],

alil[3])7

Thread 2

QT error

T T [ S * execution order
v v v

— dependency

i PRACE



Wavefront-Parallel Loops

OpenMP

B |f the data dependency is invariant, then skewing the loop helps remove the data

dependency

for

Advanced OpenMP Tutorial

= 1; 1 < Ny

i+l; j < i+N;

f(oli-1]1[3-11,
b[i][j-1-11, alill3]);

b[i] []-1]

Thread 1 Thread 2
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error
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OpenMP

DOACROSS Loops with OpenMP

B OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried
dependencies
B Syntax (C/C++):

fpragma omp for ordered(d) [clause[[,] clause],..]

for-1loops

and
fpragma omp ordered [clause[[,] clause],..]

where clause is one of the following:

depend (source)
depend (sink:vector)

B Syntax (Fortran):
!'Somp do ordered(d) [clause[[,] clause],..]

do-loops
!'Somp ordered [clause[[,] clause],..] PRACE
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Example OpenMP

B The ordered clause tells the compiler about loop-carried dependencies and their
distances

#pragma omp parallel for ordered(2)
for (int i = 1; 1 < N; ++1i) {
for (int J = 1; j < M; ++73) {
#fpragma omp ordered depend(sink:i-1,7j) depend(sink:i,j-1)
b[1][3] = £(b[1-11[31,
b[i] [J-1], alil([3]1);
}

#fpragma omp ordered depend (source)

}

PRACE
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Example: 3D Gauss-Seidel OpenMP

#pragma omp for ordered(2) private (7, k)
for (1 = 1; 1 < N-1; ++1i) {
for (J = 1; jJ < N-1; ++73) {
#pragma omp ordered depend(sink: i-1,j-1) depend(sink: i-1,73) \
depend (sink: i-1,j+1) depend(sink: i, j-1)
for (k = 1; k < N-1; ++k) {
double tmpl (pli-1]1[3-1
1]

[1 []
[1-111
double tmp2 = (p[i][j-1]
[1 ]
n

1 Tk-1] + p[i-1]1[3-1]
1[k-1]1 + p[i-11[31I[k
+1] [k=-1] + pli- +

[k] + p[1i-1][J-1][k+1]
] + pli-1][J] [k+1]
] 1] [J+1]1[k] + p[i-1][J+1][k+1]);
[k=1] + p[1][J-1]1[k] + pl[i]([3-1][k+1]
1031 [k-1] + p[i][J] [K] pli] [J] [k+1]
pli] [J+1][k-1]1 + pli][J+1][k] + p[i][3+1][k+1]);
] [ [ [k] + p[1i+1][J-1] [k+1]
[ ] + pl[i+1][J] [k+1]
1

1[k] + p[i+1][J+1] [k+1]);

+ ]
double tmp3 = (p[i+1][]j-1]1[k-1]1 + pl[i+1]I[]
+ pli+1]1[3][k-1] + pl[i+1][7]
+ pli+1] [jJ+1] [k-1] + pl[i+1]]
plil[J]1[k] = (tmpl + tmp2 + tmp3) / 27.0;

-1
[
J
]

+
[k
—1]

[k
J+

}
fpragma omp ordered depend (source)
}
}

Advanced OpenMP Tutorial
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OpenMP Meta-Programming
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The metadirective Directive OpenMP

B Construct OpenMP directives for different OpenMP contexts
B Limited form of meta-programming for OpenMP directives and clauses

#pragma omp target map(to:vi,v2) map(from:v3)
#pragma omp metadirective \
when( device={arch(nvptx)}: teams loop ) \
default( parallel loop )
for (i = 1b; i < ub; i++)
v3[i] = vi1[i] * v2[i];

I$omp begin metadirective &
when( implementation={unified_shared memory}: target ) &
default( target map(mapper(vec_map),tofrom: vec) )

I$omp teams distribute simd

do i=1, vec%size()

call vec(i)%work()

end do

I$omp end teams distribute simd

I$omp end metadirective

PRACE
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OpenMP

Nothing Directive

PRACE

Advanced OpenMP Tutorial



The nothing Directive OpenMP

B The nothing directive makes meta programming a bit clearer and more flexible.

M [f a certain criterion matches, the nothing directive can stand to indicate that no
(other) OpenMP directive should be used.
- The nothing directive is implicitly added if no condition matches

I$omp begin metadirective &

when( implementation={unified shared memory}: &
target teams distribute parallel do simd) &

default( nothing )

do i=1, vecksize()

call vec(i)%work()
end do
I$omp end metadirective

PRACE
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OpenMP

Error Directive

PRACE
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Error Directive Syntax OpenMP

B Syntax (C/C++)
fpragma omp error [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp error [clause[[,] clause],..]

do—-loops
[!Somp end loop]

B Clauses
one of: at (compilation), at (runtime)

one of. severity (fatal), severity(warning)
message (msg-string)

Advanced OpenMP Tutorial
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Error Directive OpenMP

B Can be used to issue a warning or an error at compile time and runtime.
B Consider this a “directive version” of assert(), but with a bit more flexibility.

#pragma omp parallel

{
if (omp_get num threads() % 2) {

#pragma omp error at(runtime) severity(warning) \
message(“Running on odd number of threads\n”);
}

do_stuff that works best with even thread count();

PRACE
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Error Directive OpenMP

B Can be used to issue a warning or an error at compile time and runtime.
B Consider this a “directive version” of assert(), but with a bit more flexibility.
B More useful in combination with OpenMP metadirective

I$omp begin metadirective &
when( arch={fancy_processor}: parallel ) &
default( error severity(fatal) at(compilation) &
message(“No implementation available” )
call fancy_impl for_ fancy processor()
I$omp end metadirective

PRACE
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OpenMP

Future Directions

2 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond { St.Lonig‘gcti)enced
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Topics

® Final Review of OpenMP 4.0, 4.5, 5.0 and 5.1
B OpenMP Organizational Overview
® Current OpenMP Language Committee Activities

3 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski
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OpenMP

Final Review of OpenMP 4.0, 4.5, 5.0 and 5.1
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Bronis R.de Supinski s ojbedend .



Ratified OpenMP 4.0 in July 2013,

Ratified OpenMP 4.5 in November 2015
B OpenMP 4.0

—~>Addressed several major open issues for OpenMP
—Included 106 passed tickets

- Did not break existing code
B OpenMP 4.5

—Includes many refinements to 4.0 additions
—Included 130 passed tickets

- Did not break existing code unnecessarily

5 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski
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Overview of major 4.0 additions

B Device constructs
B SIMD constructs
B Cancellation

B Task dependences and task groups

M Thread affinity control

B User-defined reductions

M Initial support for Fortran 2003

B Support for array sections (including in C and C++)
B Sequentially consistent atomics

B Display of initial OpenMP internal control variables

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond
Bronis R. de Supinski
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Overview of major OpenMP 4.5 additions OpenMP

B Many changes focused on device support

—> Unstructured data mapping

- Asynchronous execution

- Device runtime routines: allocation, copy, etc.

- Clauses to support device pointers, ability to map structure elements
—->New combined constructs

B Several other significant enhancements

— Support for doacross loops

- Divide loop into tasks with taskloop construct

—>Hints for locks and critical sections

—> Task priorities

- Addition of schedule modifiers: simd, monotonic, nonmonotonic
—>Support for 1 £ clause on combined/composite constructs t

i~ SLC21
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Ratified OpenMP 5.0 in November 2018, OpenMP

Ratified OpenMP 5.1 in November 2020
B OpenMP 5.0

— Addressed several major open issues for OpenMP

- Included 293 passed tickets

—> Did not break existing code

- One possible issue: nonmonotonic default

B OpenMP 5.1
- Includes many refinements to 5.0 additions
- Included 254 passed GitHub issues

- Did not break (most?) existing code

— Deprecated several keywords and symbols

t
i~ SLC21
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Major new features in OpenMP 5.0 OpenMP

B Significant extensions to improve usability

- 0penMP contexts, metadirective and declare variant

- Addition of requires directive, including support for unified shared memory
—->Memory allocators and support for deep memory hierarchies

- Descriptive 1oop construct

- Abllity to quiesce OpenMP threads

—> Support to print/inspect affinity state

-~ Release/acquire semantics added to memory model

- Support for C/C++ array shaping
® First (OMPT) and third (OMPD) party tool support

Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
. . . & beyond :
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Major new features in OpenMP 5.0 OpenMP

B Some significant extensions to existing functionality

- Verbosity reducing changes such as implicit declare target directives
- User defined mappers provide deep copy support for map clauses
- Support for reverse offload

—> Support for task reductions , including on taskloop construct, task affinity, new
dependence types, depend objects and detachable tasks

- Allows teams construct outside of target construct (i.e., on host)
— Supports collapse of non-rectangular loops

- Scan extension of reductions
B Major advances for base language normative references

- Completed support for Fortran 2003
- Added Fortran 2008, C11, C++11, C++14 and C++17

10 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
Bronis R. de Supinski &beyond.



OpenMP 5.0 clarifications and enhancements OpenMP

W Supports collapse of imperfectly nested loops

W Supports !=on C/C++ loops

B Adds conditional modifierto lastprivate

W Support use of any C/C++ Ivalue in depend clauses

B Permits declare target on C++ classes with virtual members
B Clarification of declare target C++ Initializations

B Adds task modifier on many reduction clauses

B Adds depend clause to taskwait construct

11 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
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OpenMP 5.1 refines existing functionality OpenMP

B Adds full support for C11, C++11, C++14, C++17, C++20 and
Fortran 2008 and partial support for Fortran 2018

B Extends directive syntax to C++ attribute specifiers
B The scope construct supports reductions within parallel regions

— Christian discussed this enhancement in another session

B Extends atomic construct to support compare-and-swap, min and max

- Detailed these enhancements in another session

B Adds many clauses and clause modifiers including:

—-nowait to taskwait construct
- strict modifier to clauses on the taskloop construct

i~ SC21
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OpenMP

OpenMP 5.1 refines existing functionality

B Support for mapping (translated) function pointers
B Device-specific environment variables to control their ICVs
B nothing directive supports metadirective clarity and completeness

W Several new runtime routines, including more memory allocation flavors
B Deprecations include:

—->The master affinity policy and master construct

- Cray pointers

—->Many enum values, most related to OMPT (first-party tool interface)

i~ SC21
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OpenMP

Significant OpenMP 5.1 Features
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OpenMP

OpenMP 5.1 adds some significant extensions

B The interop construct

- Improves native device support (e.g., CUDA streams)

- Also supports interoperability with CPU-based libraries (e.g., TBB)
B The new dispatch construct, improved declare variant directive

- Enable use of variants with device-specific arguments

— Elision of “unrecognized” code

15 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
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OpenMP

OpenMP 5.1 adds some significant extensions

B The assume directive

—> Supports optimization hints based on invariants

—> Supports promise to limit OpenMP usage to (optimizable) subsets
B Loop transformation directives: The tile and unroll directives

—> Control use of traditional sequential optimizations

-~ Ensure that they are applied when, where appropriate relative to parallelization

16 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘science
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OpenMP

New Error Directive

t
o< SC21
{~ St.Louis, ‘ science
MO |& beyond.
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The error directive supports OpenMP
user-defined warnings and errors

B Use error directive to interact with the compiler

#fpragma omp error [at(compilation]|execution) ] [severity(fatal|warning) ] |\

[message (msg-string) ]
structured-block

B Compiler displays msg-string as part of implementation-defined message
B The at clause determines when the effect of the directive occurs

- compilation: If encountered during compilation in a declarative context
(useful along with metadirective) or is reachable at runtime

- execution: If the code location is encountered during execution (similar to assert ())
B The severity clause determines compiler action
- warning: Print message only (default)

- fatal: Stop compilation or execution

> SC21
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OpenMP

New Masked Construct

t
o< SC21
{~ St.Louis, ‘ science
MO |& beyond.
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The masked construct supports OpenMP
filtering execution per thread

B Use masked construct to limit parallel execution (low cost: no data environ.

fpragma omp masked [filter (integer-expression) ]
structured-block

B Encountering thread executes if £ilter clause matches its thread number
® Default (i.e., no clause) is equivalent to deprecated master construct
® Future (i.e., OpenMP 6.0) enhancements planned

— Define concept of thread groups, a subset of the threads in a team
- Extend masked to filter based on thread groups or booleans (via clause modifier)

- filter clause added to other constructs, relying on thread group concept

t
s~ SC21
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OpenMP

OpenMP Organizational Overview
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OpenMP API Specification as a Book OpenMP

M Save your printer-ink and get the full
specification as a paperback book!

- Always have the spec in easy reach.

—Includes the entire specification with the same

OpenMP

Application pro
Specification

gramming Interface
ersion 5.1

‘l' / pagination and line numbers as the PDF.

— Available at a near-wholesale price.

B Get yours at Amazon at
https://link.openmp.org/book51
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OpenMP Roadmap OpenMP

B OpenMP has a well-defined roadmap:

—>5-year cadence for major releases
- 0One minor release in between
- 0OpenMP 5.2 was added as a second minor release before OpenMP version 6.0

— (At least) one Technical Report (TR) with feature previews in every year

OpenMP 5.0 ¢ OpenMP 5.1 OpenMP 5.2 @ OpenMP 6.0 ¢
Nov’18 Nov’19 Nov’'20 Nov’21 Nov’'22 Nov’23
Public Comment Public Comment Public Comment
Draft (TR9*) Draft (TR10*) Draft (TR12)
t
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Development Process of the Specification OpenMP

B Modifications to the OpenMP specification follow a (strict) process:
Impl. Merge to
M
M Release process for specifications:
Comment Quality ARB
Draft Control Approval

t
< SC21
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User Outreach & Education

— o
OpenMP Use rS & :& Isc High Performance
~  DEVELOPER CONFERENCE & USER GROUP * he e Brent

Check out openmp.org/news/events-calendar/
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OpenMP

OpenMP Language Committee Current Activities:
OpenMP 5.2 and 6.0
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IEEE Proceedings article on vision for OpenMP: OpenMP
“The Ongoing Evolution of OpenMP”

B Broadly support on-node performant, portable parallelism

- Standardize syntax for commonly available (parallel) directives
— Consistently apply across C, C++ and Fortran

- To be simple yet flexible, supporting range of parallelism models

B OpenMP 5.0 fits within that vision

B OpenMP 5.1 and OpenMP 5.2 refine how OpenMP 5.0 realizes it

B OpenMP 6.0 will be a major step to further realizing it
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OpenMP 5.2 was released earlier this month OpenMP

B OpenMP ARB adopted on November 11, 2021
M Large portions of specification now generated from JSON-based database

—> Section headers and directive and clause format
—> Cross references, index entries, hyperlinks and many other document details

— Long-term plan will capture sufficient information in database to generate much more, including

grammar, quick reference guide, and header and runtime library routine stub files
B Improves specification of OpenMP syntax

— Ensuring syntax of directives and clauses is well-specified and consistent
— Ensuring restrictions are consistent and not just implied by syntax
- Deprecating one-off syntax choices, many other inconsistencies (12 new deprecation entries)

- Makes C++ attribute syntax a first-class citizen

B Many other minor improvements
B ~125 passed issues

28 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond ‘scwence
Bronis R. de Supinski &beyond.



OpenMP 6.0 will be released in November 2023 OpenMP

B Removal of features that were deprecated in 5.0, 5.1 or 5.2

B Further adoption of the database-specification approach

M Dependences and affinity for the taskloop construct

M Task-only or free-agent threads

B Spawning tasks for other teams (event-driven parallelism and more)
B Continued improvements to device support

—>True support for using multiple devices

- Extensions of deep copy support (serialize/deserialize functions)

B More support for memory affinity and complex hierarchies
B Deeper support for descriptive and prescriptive control
B Support for pipelining, other computation/data associations; data-flow?
M 161 issues already created for/deferred to 6.0 t
i~ SC21

29 Advanced OpenMP Tutorial — OpenMP 5.2 and Beyond science
Bronis R. de Supinski & beyond ‘



Help Us Shape the Future of OpenMP OpenMP

B OpenMP continues to grow
- 33 members currently

® You can contribute to our annual releases
m Attend IWOMP, become a cOMPunity member
B OpenMP membership types now include less expensive memberships

—~>Please let us know if you would be interested
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