
OpenMP Programming
Workshop @LRZ

The Common Core and Beyond

Manuel Arenaz | February 11-13, 2020

©Appentra Solutions S.L.

Agenda

8:30 - 9:00 Setup and welcome participants

9:00 - 9:15 Overview

9:15 - 10:30 The OpenMP Common Core
Decomposing code into patterns for parallelization
Using Parallelware Trainer: A walk-through with PI example

10:30 - 11:00 Coffee

11:00 - 12:40 Practicals: Examples codes PI, MANDELBROT, HEAT and LULESHmk

 Worksheet: Parallelizing PI and LULESHmk with OpenMP

12:40 - 13:00 Close

2Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

What is the OpenMP Common Core?

● OpenMP is an API designed for programming shared memory parallel computers.

● OpenMP uses the concepts of threads and tasks

● OpenMP is a set of extensions to Fortran, C and C++

● The extensions consist of:

○ Compiler directives, e.g. #pragma omp parallel

○ Runtime library routines, e.g. omp_get_num_threads()

○ Environment variables, e.g. OMP_NUM_THREADS

● The OpenMP Common Core consists of the most widely used OpenMP constructs:

○ While the OpenMP specification contains dozens of constructs, most programs only use 19

○ The first version and the majority of the “Common Core” slides were developed by Tim Mattson, Intel Corp. Many
others have contributed

3Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

What is the OpenMP common core?
OMP pragma, function, or clause Concepts Notes about Parallelware Trainer 1.2

#pragma omp parallel
Parallel region, teams of threads, structured block, interleaved execution
across threads.

Support for the definition of the parallel region.

int omp_get_thread_num()
int omp_get_num_threads()

Create threads with a parallel region and split up the work using the
number of threads and thread ID.

n/a

double omp_get_wtime() Speedup and Amdahl's law. False Sharing and other performance issues. n/a

setenv OMP_NUM_THREADS N
Internal control variables. Setting the default number of threads with an
environment variable.

Support for control of number of threads.

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions. Revisit interleaved execution. Support for synchronization using ‘atomic’.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies. Support for workload sharing.

reduction(op:list) Reductions of values across a team of threads. Support for parallel scalar/sparse reductions

schedule(dynamic [,chunk])
schedule (static [,chunk])

Loop schedules, loop overheads and load balance.

private(list),
firstprivate(list), shared(list)

Data environment. Support for data scoping with private & shared.

nowait
Disabling implied barriers on workshare constructs, the high cost of
barriers. The flush concept (but not the concept).

#pragma omp single Workshare with a single thread. Support for the tasking paradigm.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks. Support for the tasking paradigm. 4

program mycode

!$omp parallel
.
.
.
.
.
!$omp end parallel
.
.

!$omp parallel
.
.
.
.
!$omp end parallel

void mycode() {

#pragma omp parallel
{
.
.
.
.
}
.
.

#pragma omp parallel
{
.
.
.
}

Sequential

Parallel

Sequential

Parallel

5Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Directive: parallel
● Directive that defines a parallel region, identifying the

code region to be parallelized by the compiler.

● It starts parallel execution on the current processor.

● By itself of limited use. It needs to be combined with the

work-sharing loop directive, which actually indicates to

the compiler how to schedule the loop iterations on the

processor.

C and C++:
#pragma omp parallel [clause [[,] clause]…]

Fortran:
!$omp parallel [clause [[,] clause]…]

#pragma omp parallel
 for (i=0; i<N; i++)
 {
 y[i] = 2.0f * x[i] + y[i];
 }

6Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Directive:for
● Directive for work-sharing in OpenMP

● By itself a parallel region is of limited use, but when paired

with the for directive the compiler will generate a parallel

version of the loop for the processor.

C and C++:
#pragma omp for [clause [[,] clause]…]

Fortran:
!$omp do [clause [[,] clause]…]

#pragma omp parallel for
 for (i=0; i<N; i++)
 {
 y[i] = 2.0f * x[i] + y[i];
 }

● By using the for directive the programmer asserts that the

affected loop is safe to parallelize and allows the compiler to

select how to schedule the loop iterations on the target processor.

● Clauses are used for correctness or performance

7Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Directive: atomic
● Ensures only one thread can read/write (i.e. any form of

access) a variable at any given time

● Use case: when one or more loop iterations need to access

an element in memory at the same time data races can

occur.

○ Use when a reduction is present, but the reduction

operator cannot be used (e.g. for a sparse reduction)

C and C++:
#pragma omp atomic [clause [[,] clause]…]

Fortran:
!$omp atomic [clause [[,] clause]…]

#pragma omp parallel for
 for(int i=0;i<N;i++) {
 #pragma omp atomic update
 h[a[i]]+=1;
 }

8Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Directives: task & taskwait
● The directive task defines an explicit task that will execute a given

code region.

○ The task is added to a pool of tasks managed by the runtime.

● The directive taskwait forces a task to wait on the completion of

child tasks.

○ Typically the master thread of a parallel region creates child

tasks and waits on their completion.

● The programmer is responsible for managing the data scoping of

the variables (e.g., private, shared, reduction,...)

C and C++:
#pragma omp task [clause [[,] clause]…]
#pragma omp taskwait

Fortran:
!$omp task [clause [[,] clause]…]
!$omp taskwait

9

#pragma omp parallel
#pragma omp master
{
for (int i = 0; i < N; i++) {
#pragma omp task
 { …
 }
}
#pragma omp taskwait
} // end parallel master

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

