Advanced OpenMP:

Hands-on Session

Christian Terboven \ RO

/[

Michael Klemm (intel”)

. arcelona
Xavier Teruel © e
ntro Nacional de Supercomputacion

Bronis R. de Supinski W o s S

[N]

Q0

Members of the OpenMP Language Committee

OpenMP

5C19
=8| ow

0la - Using tasks (sudoku) OpenMP

B Sudoku is a popular Japanese puzzle game based on the placement of numbers
on a square board. For each position in the board the algorithm tries each possible
combination.

B Source file structure
— SudokuBoard.cpp, SudokuBoard.h - Sudoku class definition

— sudoku.cpp = contains the main program and solver. Candidate to parallelize.
B Exercise goals

— Focus on the annotated TODOQO’s spread among the code (at sudoku.cpp)

—> Create the parallel region to guarantee a single creator, multiple executors

—> Create tasks when required. Add proper synchronization mechanisms.

—> Discuss about the need of having two different versions of the sudoku solve function

2% SC19
Advanced OpenMP - Denver.‘ :
COlisNOW.

01b - Using tasks (cholesky) OpenMP

B Cholesky kernel is a decomposition of a Hermitian, positive-definite matrix into the

product of a lower triangular matrix and its conjugate transpose. The algorithm
uses 4 MKL services to compute the final result: gemm, potrf, trsm and syrk.

B Source file structure (single file)

—> cholesky.c = contains the main program and Cholesky solver

B Exercise goals

— Focus on the annotated TODO'’s spread among the code (at cholesky.c)
—> Create the parallel region to guarantee a single creator, multiple executors

—> Create tasks when required. Add proper synchronization mechanisms

2% SC19
Advanced OpenMP B Denver | npe

co‘

02a - Using task dependencies (cholesky) OpenMP

B Cholesky kernel is a decomposition of a Hermitian, positive-definite matrix into the
product of a lower triangular matrix and its conjugate transpose. The algorithm
uses 4 MKL services to compute the final result: gemm, potrf, trsm and syrk.

B Source file structure (single file)

—> cholesky.c = contains the main program and Cholesky solver

B Exercise goals

— Focus on the annotated TODO'’s spread among the code (at cholesky.c)

— Taking as the starting point the previous parallelized version of Cholesky, relax the

synchronization mechanisms in order to use task dependencies

2% SC19
Advanced OpenMP o Denver o

co‘

03a - Using cut-off (sudoku) OpenMP

B Sudoku is a popular Japanese puzzle game based on the placement of numbers

on a square board. For each position in the board the algorithm tries each possible
combination.

B Source file structure

— SudokuBoard.cpp, SudokuBoard.h - Sudoku class definition

— sudoku.cpp = contains the main program and solver. Candidate to parallelize.
B Exercise goals

— Focus on the annotated TODOQO’s spread among the code (at sudoku.cpp)

—> This time we will have just a single sudoku “solve” function (and not a parallel and sequential

versions), add the proper cut-off mechanism to guarantee enough task granularity

2% SC19
Advanced OpenMP -

Denver,|hp
CO|is NOW.

03- Using cut-off (merge-sort) OpenMP

B The merge-sort is a Divide and Conquer algorithm. It divides input array in two
halves, calls itself for the two halves and then merges the two sorted halves.

B Source file structure (single file)
— mergesort.cpp = contains the main program, the sorting and merge functions

B Exercise goals

— Focus on the annotated TODOQO’s spread among the code (at mergesort.cpp)
—> Create the parallel region to guarantee a single creator, multiple executors
—> Create tasks when required. Add proper synchronization mechanisms

— Add the proper cut-off mechanism to guarantee enough task granularity

2% SC19
n Advanced OpenMP - Demet e

04- Using cancellation (tree-search) OpenMP

B A tree search algorithm attempts to find a solution by traversing a tree structure.
Multiple solutions (eg, occurrences) may exist. Once one of this solutions have
been found, the program may finalize.

B Source file structure (single file)
—> treesearch.c - contains the main program, and all tree related functions
B Exercise goals

—> Focus on the annotated TODO'’s spread among the code (at mergesort.cpp)
—> Create the parallel region to guarantee a single creator, multiple executors
—> Create tasks when required. Add proper synchronization mechanisms

- Add the proper cancellation scope, and cancellation points

- Set OMP_CANCELLATION=true in the shell

Advanced OpenMP Den‘&e(g‘ B

