OpenMP

Advanced OpenMP

Tasking, Vectorization, Memory Access
Accelerators, Tools for Performance and Correctness

Michael Klemm intel)

PRACE
Members of the OpenMP Language Committee

Updated slides OpenMP

e Slides are never perfect ...

e ... but we offer a free update service :-)

https://tinyurl.com/prace-omp A PRACE

Advanced OpenMP

Agenda OpenMP

® Day I
—> Tasking

- Vectorization: OpenMP SIMD
—->Memory Access: NUMA

® Day I

—> Accelerators
—> Tools for Performance and Correctness

—~>Misc. OpenMP 5.0 Features & Outlook

Advanced OpenMP

PRACE

OpenMP

OpenMP Overview

PRACE

Advance d OpenMP

What is OpenMP? OpenMP

B De-facto standard Application Programming Interface (API) to write
shared memory parallel

applications in C, i
C++, and Fortran g
B Consists of Compiler Directives, /ﬁ Y
Runtime routines s b
and Environment <$Peaf’ A
variables f//
B Version 4.5 has o S n
been released in July 2015 iy

B Version 5.0 has
been released during last SC

Advanced OpenMP

PRACE

The OpenMP Execution Model

Master
Thread

Parallel Worker
region Threads

* Fork and Join Model

Parallel Worker
region Threads

OpenMP

#pragma omp parallel
{

}

Advanced OpenMP

#pragma omp parallel
{

}

PRACE

The Worksharing Constructs

m The work is distributed over the threads
m Must be enclosed in a parallel region

m Must be encountered by all threads in
the team, or none at all

m No implied barrier on entry

m Implied barrier on exit (unless the nowait
clause is specified)

m A work-sharing construct does not launch
any new threads

Advance d OpenMP

OpenMP

#pragma omp for
{

}

#pragma omp sections

{
}

#pragma omp single
{

}

PRACE

The Single and Master Directives OpenMP

M Single: only one thread in the team executes the code enclosed

#pragma omp single [private] [firstprivate] \
[copyprivate] [nowait]
{

}

<code-block>

B Master: the master thread executes the code enclosed

#pragma omp master
{<code-block>}

There is no implied
barrier on entry or
exit !

PRACE

Advanced OpenMP

The OpenMP Memory Model

& All threads have access
to the same, globally
shared memory

& Data in private memory
is only accessible by the
thread owning this
memory

€ No other thread sees
the change(s) in private
memory

€ Data transfer is through
shared memory and is
100% transparent to the
application

n Advanced OpenMP

private
memory

private
memory

OpenMP

private

private
memory

private
memory

PRACE

The OpenMP Barrier

B Several constructs have an implied barrier

- This is another safety net (has implied flush by the way)

the “nowait” clause
M This can help fine tuning the application

- But you'd better know what you're doing

B The explicit barrier comes in quite handy then

#pragma omp barrier

Advanced OpenMP

OpenMP

PRACE

OpenMP

Tasking Motivation

PRACE

ni vvvvv d OpenMP

Sudoko for Lazy Computer Scientists OpenMP

B [ets solve Sudoku puzzles with brute multi-core force

6 8[11 15[14 16
15[11 16[14 12 6 ® (1) Search an empty field
13 | 9[12 3[16[14] [15[11]10
2l T1e] T11| T15[10] 1

15111110 16| 2113l 8l 9l12 o (2) Try all numbers:
12[13 4l 1] 5] 6] 2| 3 11[10 B (2 a) Check Sudoku
5 | 6| 112] 9] T15[11[10] 7|16 3

2 10l 111l 6 5 13 9 ® If invalid; Sklp
10] 7]15/11]16 12]13 6 B [f valid: Go to next field
9 1 2| 11610 11
1] | 4| ef 9[13 71 11| | 3|16
16[14 71 110[15] 4| 6] 1 13| 8
- 101215 2 616121213 111; 2 4 B Wait for completion

51 1 s[12[13] 10 1] 2 14

3[16 10 7 6 12

PRACE

n Advanced OpenMP

Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions

6

8

11

15

14

16

15

11

16

14

12

6

13

12

16

14

15

11

10

2

16

11

15

10

15

11

10

12

12

13

O

11

5

12

16

10

11

13

10

15

11

16

9

16

1

13

11

16

16

14

15

13

11

10

15

16

13

OO~

11

14

3

16

12

Advanced OpenMP

B (1) Search an empty fie first call contained in a

#fpragma omp parallel
fpragma omp single
such that one tasks starts the
execution of the algorithm

m (2) Try all numbers:
M (2 a) Check Sudoku
® [f invalid: skip

B [f valid: Go to ne: #pragma omp task
needs to work on a new copy

of the Sudoku board

B Wait for completion

fpragma omp taskwait
wait for all child tasks

PRACE

Performance Evaluation

Runtime [sec] for 16x16

[EEN

o

Advanced OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

mm Intel C++ 13.1, scatter binding —m=—speedup: Intel C++ 13.1, scatter binding

3 4 5 6 7 8 9 10 11 12 16 24 32

#threads

OpenMP

Is this the best
we can can do?

¥t

il *
-+ PRACE **

OpenMP

Tasking Overview

PRACE

Advance d OpenMP

What is a task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately
B Tasks are composed of

— code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...

.. when reaching a parallel region - implicit tasks are created (per thread)
.. when encountering a task construct = explicit task is created
.. when encountering a taskloop construct - explicit tasks per chunk are created

.. when encountering a target construct - target task is created

PRACE

Advanced OpenMP

Tasking execution model

B Supports unstructured parallelism

— unbounded loops

while (<expr>) {

}

- recursive functions

void myfunc(<args>)
{

.; myfunc(<newargs>); ...;

}

B Several scenarios are possible:

/

I

—> single creator, multiple creators, nested tasks (tasks & WS) |
\

® All threads in the team are candidates to execute tasks .

Advanced OpenMP

B Example (unstructured parallelism)

OpenMP

#pragma omp parallel
#pragma omp master
while (elem !'= NULL) {
#pragma omp task
compute (elem) ;
elem = elem->next;

Parallel Team

-y
- s

PRACE

The task construct OpenMP

B Deferring (or not) a unit of work (executable for any member of the team)

#pragma omp task [clause[[,] clause]...] !Somp task [clause[[,] clause]...]

..structured-block..
!Somp end task

{structured-block}

B \Where clause is one of:

— private(list) - if(scalar-expression)

- firstprivate(list) - mergeable Cutoff Strategies
—> shared(list) Data Environment - final(scalar-expression)

- depend(dep-type: list)

—> in_reduction(r-id: list) —> untied

- allocate([allocator:] list) - priority(priority-value) Task Scheduling
Miscellaneous
- detach(event-handler) - affinity(list)

Advanced OpenMP

- default(shared | none)

Task scheduling: tied vs untied tasks OpenMP

B Tasks are tied by default (when no untied clause present)

—> tied tasks are executed always by the same thread (not necessarily creator)

- tied tasks may run into performance problems

B Programmers may specify tasks to be untied (relax scheduling)

#pragma omp task untied
{structured-block}

—> can potentially switch to any thread (of the team)
- bad mix with thread based features: thread-id, threadprivate, critical regions...
—> gives the runtime more flexibility to schedule tasks

- but most of OpenMP implementations doesn’t “honor” untied ®

PRACE

Advanced OpenMP

Task scheduling: taskyield directive

B Task scheduling points (and the taskyield directive)

OpenMP

—> tasks can be suspended/resumed at TSPs - some additional constraints to avoid deadlock problems

—> implicit scheduling points (creation, synchronization, ...)

- explicit scheduling point: the taskyield directive

#pragma omp taskyield

B Scheduling [tied/untied] tasks: example

#pragma omp parallel
#pragma omp single
{
#pragma omp task untied
{
foo() ;
#pragma omp taskyield
bar ()

}

n Advanced OpenMP

tied:

untied:

* foo() bar() (default)]

single

PRACE

Task scheduling: programmer’s hints

B Programmers may specify a priority value when creating a task

OpenMP

{structured-block}

#pragma omp task priority (pvalue)

—> pvalue: the higher - the best (will be scheduled earlier)

— once a thread becomes idle, gets one of the highest priority tasks

#pragma omp parallel
#pragma omp single
{
for (1 =0, i < SIZE; i++) {
#pragma omp task priority (1)
{ code A; }
}
#pragma omp task priority(100)
{ code B; }

Advanced OpenMP

Task pool
priority-aware

PRACE

Task synchronization: taskwait directive

B The taskwait directive (shallow task synchronization)

- It is a stand-alone directive

OpenMP

#pragma omp taskwait

includes an implicit task scheduling point (TSP)

{

#pragma omp parallel
#pragma omp single

#pragma omp task
{

#pragma omp task
{ .. }

#pragma omp task
{ ... #c.1; #c.2; ..}

#pragma omp taskwait

}

:B
L]

:C

/

> wait for... @ @

} // implicit barrier will wait for C.x

n Advanced OpenMP

—> wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;

PRACE

Task synchronization: barrier semantics OpenMP

B OpenMP barrier (implicit or explicit)

—> All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

#pragma omp barrier

— And all other implicit barriers at parallel, sections, for, single, etc...

PRACE

n Advanced OpenMP

Task synchronization: taskgroup construct

B The taskgroup construct (deep task synchronization)

OpenMP

— attached to a structured block; completion of all descendants of the current task; TSP at the end

{structured-block}

#pragma omp taskgroup [clause[[,] clause]...]

— where clause (could only be): reduction(reduction-identifier: list-items)

#pragma omp parallel
#pragma omp single
{

#pragma omp taskgroup
{

} // end of taskgroup

#pragma omp task | :B
{ .. }

#pragma omp task | .c
{ .. #c.1; #c.2; ..}

| —

}

> wait for... <

Advanced OpenMP

PRACE

OpenMP

Data Environment

PRACE

Advance d OpenMP

Explicit data-sharing clauses

B Explicit data-sharing clauses (shared, private and firstprivate)

#pragma omp task shared(a)
{

// Scope of a: shared
}

#pragma omp task private (b)
{

// Scope of b: private
}

OpenMP

B [f default clause present, what the clause says

#pragma omp task firstprivate (c)
{
// Scope of c: firstprivate

}

—> shared: data which is not explicitly included in any other data sharing clause will be shared

- none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

#pragma omp task default (shared)
{

}

// Scope of all the references, not explicitly
// included in any other data sharing clause,
// and with no pre-determined attribute: shared }

{

#pragma omp task default (none)

// Compiler will force to specify the scope for
// every single variable referenced in the context

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

Advanced OpenMP

=g

PRACE

Pre-determined data-sharing attributes OpenMP

B threadprivate variables are threadprivate (1) #pragma omp task 9
B dynamic storage duration objects are shared (malloc, new,...) (2) |* int % = MN:
B static data members are shared (3) // Scope of x: private

B variables declared inside the construct

—> static storage duration variables are shared (4) #pragma omp task 0
{

. . . . static int y;
—> automatic storage duration variables are private (5) // Scope of y: shared
= }

int A[SIZE]; G int *p; a void foo (void) { e

#pragma omp threadprivate (A) static int s = MN;

P = malloc(sizeof (float) *SIZE) ; }
// ...
#pragma omp task #fpragma omp task #pragma omp task
{ { {
// A: threadprivate // *p: shared foo(); // s@foo(): shared

} } }

Advanced OpenMP

Implicit data-sharing attributes (in-practice) OpenMP

B Implicit data-sharing rules for the task region

- the shared attribute is lexically inherited

—> in any other case the variable is firstprivate

int a = 1;
void foo () {
int b=2, ¢ = 3;
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{
int e = 5;
// Scope of
// Scope of
// Scope of
// Scope of
// Scope of

(O o Mo B o i

}
}

}

Advanced OpenMP

- Pre-determined rules (could not change)
— Explicit data-sharing clauses (+ default)
—> Implicit data-sharing rules

B (in-practice) variable values within the task:

—> value of a: 1
—> value of b: x // undefined (undefined in parallel)
—> value of ¢c: 3
—> value of d: 4

— value of e: 5

PRACE

Task reductions (using taskgroup) OpenMP

int res =0;

= : .
Reduction operation node_t* node = NULL;

- perform some forms of recurrence calculations
#pragma omp parallel

—> associative and commutative operators {
_) #pragma omp single
B The (taskgroup) scoping reduction clause {

#pragma omp taskgroup task reduction(op: list) #pragma omp taskgroup task_reduction(+: res)

i {//11]
{structured-block} while (node) {

#pragma omp task in_reduction(+: res) \
firstprivate(node)

- Register a new reduction at [1]
{//12]

- Computes the final result after [3] res += node->value;

B The (task) in_reduction clause [participating] }
node = node->next;
#pragma omp task in reduction(op: list) }
{structured-block} +// 3]
}
- Task participates in a reduction operation [2] }

PRACE

Advanced OpenMP

Task reductions (+ modifiers) OpenMP

int res =0;
node_t* node = NULL;

B Reduction modifiers

- Former reductions clauses have been extended
#pragma omp parallel reduction(task,+: res)

- task modifier allows to express task reductions {//11]2]
#pragma omp single
- Registering a new task reduction [1] {

- Implicit tasks participate in the reduction [2]
: while (node) {
- Compute final result after [4] #pragma omp task in_reduction(+: res) \

B The (task) in_reduction clause [participating] (/)3 firstprivate(node)

#pragma omp task in reduction(op: list) res += node->value;
{structured-block} }
node = node->next;
— Task participates in a reduction operation [3] }
}
+//14]

PRACE

Advanced OpenMP

OpenMP

Tasking illustrated

PRACE

Advance d OpenMP

Fibonacci illustrated

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel
6 {

7 #pragma omp single
8 {

9 fib(input);

0 }

1 }

2 [...]

3}

14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

int fib(int n) {
if (n < 2) return n;
int x, y;
#pragma omp task shared(x)
{
x = fib(n - 1);
}
#pragma omp task shared(y)
{
y = fib(n - 2);
}
#pragma omp taskwait
return x+y;

OpenMP

® Only one Task / Thread enters fib() from main(), it is responsible for
creating the two initial work tasks

B

Taskwait is required, as otherwise x and y would get lost

dvanced OpenMP

PRACE

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
Task Queue

PRACE

Advanced OpenMP

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks

PRACE

Advanced OpenMP

OpenMP

The taskloop Construct

PRACE

Advanced OpenMP

Tasking use case: saxpy (taskloop)

for (i = 0; i<SIZE; i+=1) {
A[i]=A[1i]1*B[i]*S;
}

for (i = 0, i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;
for (ii=i; ii<UB; ii++) {
A[ii]=A[ii]*B[ii]*S;

}

#pragma omp parallel

#pragma omp single

for (i = 0, i<SIZE; i+=TS) {
UB = SIZE < (i+TS)?SIZE:i+TS;
#pragma omp task private(ii) \
firstprivate(i,UB) shared(S,A,B)
for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[1i]*S;

}

}

B Difficult to determine grain
- 1 single iteration - to fine
- whole loop = no parallelism
B Manually transform the code

—> blocking techniques
B Improving programmability
- OpenMP taskloop

OpenMP

#pragma omp taskloop grainsize (TS)

for (i = 0; i<SIZE; i+=1) {
A[i]=A[1]1*B[1]*S;

}

Advanced OpenMP

—> Hiding the internal details

— Grain size ~ Tile size (TS) = but implementation

decides exact grain size

PRACE

The taskloop Construct

OpenMP

B Task generating construct: decompose a loop into chunks, create a task for each loop chunk

#pragma omp taskloop [clause[[,] clause]..]

{structured-for-loops}

B \Where clause is one of:

- shared(list)

- private(list)

- firstprivate(list)

- lastprivate(list)

- default(sh | pr| fp | none)
- reduction(r-id: list)

- in_reduction(r-id: list)

Data Environment

—> grainsize(grain-size)

- num_tasks(num-tasks)

Chunks/Grain

Advanced OpenMP

!Somp taskloop [clause[[,] clause]..]

..structured-do-loops..

!Somp end taskloop

9

if(scalar-expression)

- final(scalar-expression)

9

mergeable

Cutoff Strategies

untied

priority(priority-value)

Scheduler (R/H)

N2 N2 | V2%

collapse(n)
nogroup

allocate([allocator:] list)

Miscellaneous

Worksharing vs. taskloop constructs (1/2)

OpenMP

subroutine worksharing
integer :: x
integer :: 1
integer, parameter
integer, parameter

x =0
!Somp parallel shared(x)

!Somp do
do 1 = I,N
!'Somp atomic

Xx =x + 1
!'Somp end atomic
end do

ISomp end do
!'Somp end parallel

end subroutine

write (*,' (A,I0)") '

T—
= 1024

16

num threads (T)

subroutine taskloop
integer :: x
integer :: 1
integer, parameter
integer, parameter

x = 0
!'Somp parallel shared(x)

!Somp taskloop
do 1 = 1,N
!'Somp atomic

X =x + 1
'Somp end atomic
end do

!Somp end taskloop

!'Somp end parallel

write (*,' (A,I0)") '

end subroutine

T = 16
N = 1024

num threads (T)

Advanced OpenMP

PRACE

Worksharing vs. taskloop constructs (2/2)

OpenMP

subroutine worksharing
integer :: x
integer :: 1
integer, parameter
integer, parameter

x =0
!Somp parallel shared(x)

!Somp do
do 1 = I,N
!'Somp atomic

Xx =x + 1
!'Somp end atomic
end do

ISomp end do
!'Somp end parallel

end subroutine

write (*,' (A,I0)") '

T—
= 1024

16

num threads (T)

subroutine taskloop
integer :: x
integer :: 1
integer, parameter
integer, parameter

x = 0
!'Somp parallel shared(x)
!Somp single
!Somp taskloop
do 1 = 1,N
!'Somp atomic

X =x + 1
'Somp end atomic
end do

!Somp end taskloop
!Somp end single
!'Somp end parallel

write (*,' (A,I0)") '

end subroutine

T = 16
N = 1024

num threads (T)

Advanced OpenMP

PRACE

OpenMP

Taskloop decomposition approaches

B Clause: grainsize(grain-size) B Clause: num_tasks(num-tasks)
- Chunks have at least grain-size iterations - Create num-tasks chunks
- Chunks have maximum 2x grain-size iterations - Each chunk must have at least one iteration
int TS = 4 * 1024; int NT = 4 * omp get num threads();
#pragma omp taskloop grainsize (TS) #pragma omp taskloop num tasks (NT)
for (i = 0; i<SIZE; i+=1) { for (1 = 0; 1<SIZE; i+=1) {

A[i]=A[i]1*B[i]*S; A[i]=A[i]1*B[i]*S;

} }

B If none of previous clauses is present, the number of chunks and the number of iterations per chunk
is implementation defined
B Additional considerations:

— The order of the creation of the loop tasks is unspecified

—> Taskloop creates an implicit taskgroup region; nogroup -> no implicit taskgroup region is created

n Advanced OpenMP

PRACE

Collapsing iteration spaces with taskloop OpenMP

B The collapse clause in the taskloop construct #pragma omp taskloop collapse (2)
for (i = 0; i<SX; i+=1) {
#pragma omp taskloop collapse (n) for (J= 0; i<SY; J+=1) {
{structured-for-loops} for (k = 0; 1i<5z; k+=1) {
Alf(1i,73,k)]=<expression>;

- Number of loops associated with the taskloop construct (n) } }

- Loops are collapsed into one larger iteration space

— Then divided according to the grainsize and num_tasks

B Intervening code between any two associated loops et

#pragma omp taskloop

for (ij = 0; i<SX*SY; ij+=1) {
for (k = 0; i<SZ; k+=1) {

i index for i(ij);

index for j(ij);

(i,j,kT]=<€kpression>;

—> at least once per iteration of the enclosing loop

— at most once per iteration of the innermost loop

I

i
J
Al

PRACE

Advanced OpenMP

Task reductions (using taskloop) OpenMP

B Clause: reduction (r-id: list) double dotprod(int n, double *x, double *y) ({
double r = 0.0;
#pragma omp taskloop reduction(+: r)
for (1 = 0; i < n; i++)
r += x[i] * yl[i]~

- It defines the scope of a new reduction
— All created tasks participate in the reduction

—> It cannot be used with the nogroup clause _
return r;

}

B Clause: 1in_reduction (r-id: list) double dotprod(int n, double *x, double *y) {

double r = 0.0;
#pragma omp taskgroup task reduction(+: r)

— All created tasks participate in the reduction {

- Reuse an already defined reduction scope

#pragma omp taskloop in reduction(+: r)*
> |t can be used with the nogroup* clause, but it for (i = 0; 1 < n; i++)

r += x[1] * y[i];

is user responsibility to guarantee result }

return r;

PRACE

n Advanced OpenMP

Composite construct: taskloop simd OpenMP

B Task generating construct: decompose a loop into chunks, create a task for each loop chunk
B Each generated task will apply (internally) SIMD to each loop chunk

- C/C++ syntax:

#pragma omp taskloop simd [clause[[,] clause]..]
{structured-for-loops}

- Fortran syntax:

!Somp taskloop simd [clause[[,] clause]..]
..structured-do-loops..

!Somp end taskloop

B Where clause is any of the clauses accepted by taskloop or simd directives

PRACE

n Advanced OpenMP

OpenMP

Improving Tasking Performance:
Task dependences

PRACE

Advance d OpenMP

Motivation

OpenMP

B Task dependences as a way to define task-execution constraints

int x = 0; OpenMP 3.1
#pragma omp parallel

#pragma omp single
{
@ #pragma omp task
std: :cout << x << std::endl;

#pragma omp taskwait

@ fpragma omp task
X++;

}

OpenMP 3.1 —_—

e e = 0 OpenMP 4.0
#fpragma omp parallel

#fpragma omp single

{

@® #pragma omp task depend(in: x)
std::cout << x << std::endl;

@ #ipragma omp task depend(inout: x)
X++;
}

OpenMP 4.0 I

D Task’s creation time

[:] Task’s execution time

PRACE

Advanced OpenMP

Motivation OpenMP

B Task dependences as a way to define task-execution constraints

int x = 0; OpenMP 3.1 int x = 0; OpenMP 4.0
#fpragma omp parallel #fpragma omp parallel
#pragma omp single #fpragma omp single
{ {
@® #pragma omp task @® #pragma omp task depend(in: x)
std: :cout << x << st d::endl;

Task dependences can help us to remove
#pragma omp taskwait “gtrong” synchronizations, increasing the look
@ ioraona omp task ahead and, frequently, the parallelism!!!!

X++; X++;
} }

and (inout: x)

0
£2

OpenMP 3.1 —_—

D Task’s creation time

|:| Task’s execution time

OpenMP 4.0 I
PRACE

Advanced OpenMP

OpenMP

Motivation: Cholesky factorization

void cholesky(int ts, int nt, double* a[nt] [nt]) {

for (int k = 0; k < nt; k++) {

Opotrf(alk] [k], ts, ts);

// Diagonal Block factorization
7 , 0000
potrf(alk] [k], ts, ts);
00000
// Triangular systems 000
for (int 1i = k + 1; 1 < nt; 1i++)

#fpragma omp task ©00
@ trsm(alk][k], alk][i], ts, ts) 000000
}

#pragma omp taskwait © 0
o . 000
// Update trailing matrix
for (int i = k + 1; i < nt; i++) @)
for (int 7 = k + 1; j < i; j++
@
#pragma omp task

@ dgemmn (a (k] [1], alkl (3], alj] kerr—eer———rr

}

#pragma omp task
@svrk(alk][i], ali]l[i], ts, ts);

}
#pragma omp taskwait
}
OpenMP 3.1

n Advanced OpenMP

void cholesky(int ts, int nt, double* al[nt][nt]) {
for (int k = 0; k < nt; k++) {

// Diagonal Block factorization
#pragma omp task depend(inout: al[k][k])

// Triangular systems
for (int i = k + 1; 1 < nt; i++) {
fpragma omp task depend(in: alk][k])
depend (inout: alk][i])
.trsm(a[k][k], alkl[i], ts, ts);
}

// Update trailing matrix

for (int i = k + 1; 1 < nt; i++) {
for (int 7 = k + 1; J < i; Jj++) {
#pragma omp task depend(inout: a[j][i])
depend (in: alk][i], alk]l[J])
@ doemm (a[k] [1], alk]l[]j], aljl[il, ts, ts);
t
#pragma omp task depend(inout: al[i][i])
depend (in: alk][i])
.syrk(a[k][i], alil[i], ts, ts);
}

OpenMP 4.0

PRACE

Motivation: Cholesky factorization

void cholesky(int ts, int n
for (int k = 0; k < nt; k
// Diagonal Block facto
potrf(alk][k], ts, ts);

// Triangular systems

for (int 1 = k + 1; 1 <
#pragma omp task

. trsm(alk] [k], alk][i]

}

#pragma omp taskwait

// Update trailing matr
for (int i = k + 1; i <
for (int 7 = k + 1; J
#pragma omp task
@ dgemm (a[k] [i], alk]
}
#pragma omp task
@svrk(alk][i], ali][i]
}

#pragma omp taskwait

Advanced OpenMP

]

L

1

e A8 o de dE S 4 ~

OpenMP

uble* a[nt] [nt]) {

GFLOPS

1400

1200

1000

800

600

400

200

Cholesky - Scalability (2 NUMA Nodes x 24 Cores, N=8192, TS=256)

T T T T
depend_tasks —e—

tasks —a—

10

15

20

25
Threads

30 35 40 45 50

E++) {

alk] [k])
b [k] [1])
ts) ;

E++) |
Jj++) |
rnout:
[k][1]1,
a[J][1], ts,

aljl[i])
alkl[J])
ts) ;

but: al[i][1])

<] [1])
ts);

OpenMP 4.0

PRACE

Using 2017 Intel compiler

OpenMP

What’s in the spec

PRACE

u Advance d OpenMP

What'’s in the spec: a bit of history OpenMP

OpenMP 4.0 OpenMP 4.5

* The depend clause was added « The depend clause was added to the
to the task construct target constructs

« Support to doacross loops

OpenMP 5.0

lvalue expressions in the depend clause

New dependency type: mutexinoutset

Iterators were added to the depend clause

The depend clause was added to the taskwait construct

Dependable objects

PRACE

Advanced OpenMP

What’s in the spec: syntax depend clause OpenMP

depend ([depend-modifier,] dependency-type: list-items)

where:

- depend-modifier is used to define iterators

- dependency-type maybe: in, out, inout, mutexinoutset and depob]

- A list-item may be:

« C/C++: A lvalue exproran array section depend(in: x, vI[i], *p, w[10:10])

* Fortran: A variable or an array section depend (in: x, v (i), w(10:20))

PRACE
n Advanced OpenMP

What'’s in the spec: sema depend clause (1) OpenMP

B A task cannot be executed until all its predecessor tasks are completed

B |f a task defines an in dependence over a list-item

—> the task will depend on all previously generated sibling tasks that reference that list-item in an out or

inout dependence

B |f a task defines an ocut/inout dependence over list-item

—> the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or

inout dependence

PRACE
n Advanced OpenMP

What'’s in the spec: depend clause (1) OpenMP

B A task cannot be executed until all its predecessor tasks are completed

m If atask defir .. - ./

gma omp parallel
#fpragma omp single

- the task will ¢ ine of the list items in
. #pragma omp task depend(inout: x) //T1
an out Or 1n { ...}
#pragma omp task depend(in: Xx) //T2
. { ... 1}
M [f a task defir
_ #pragma omp task depend(in: Xx) //T3 o .
- thetaskwill ¢ ... ne of the list items in

an in, out (#pragma omp task depend(inout: x) //T4
{ ...}

PRACE

Advanced OpenMP

What'’s in the spec: depend clause (2) OpenMP

B New dependency type: mutexinoutset

int x = 0, vy =0, res = 0;
#fpragma omp parallel
#fpragma omp single

{

fpragma omp task depend(out: res)

res = 0;

#fpragma omp task depend (out: x)
long computation (x);

fpragma omp task depend(out: vy)
short computation(y);

#pragma omp task depend(in: x) depend (mnbekinoesyef/TBes)

res += X;

#pragma omp task depend(in: y) depend (mnberinoasget’/TZes)

res += y;

fpragma omp task depend(in: res)
std::cout << res << std::endl;

}

Advanced OpenMP

//TO

//T1

//T2

//T5

//T3

/ /T4

1. inoutset property: tasks with a mutexinoutset
dependence create a cloud of tasks (an inout set) that
synchronizes with previous & posterior tasks that
dependent on the same list item

2. mutex property: Tasks inside the inout set can be
executed in any order but with mutual exclusion

PRACE

What'’s in the spec: depend clause (4) OpenMP

B Task dependences are M List items used in the depend
defined among sibling tasks clauses [...] must indicate identical
or disjoint storage

//testl.cc //test2.cc
x = 0; al[l00] = {0},
#pragma omp parallel fpragma omp parallel
#pragma omp single fpragma omp single
{ {
#pragma omp task depend (inout: x) //T1 #pragma omp task depend(inout: a[50:99]) //T1
{ compute (/* from */ &a[50], /*elems*/ 50);
#pragma omp task depend(inout: x) //T1.1
x++; #pragma omp task depend(in: a) //T2
print (/* from */ a, /* elem */ 100); 2P0
#pragma omp taskwait } . .
} \ 4
#pragma omp task depend(in: x) //T2
std::cout << x << std::endl;
}
PRACE

Advanced OpenMP

What'’s in the spec: depend clause (5) OpenMP

M |[terators + deps: a way to define a dynamic number of dependences

std::list<int> list = ...: It seems innocent but it's not:

int n = list.size(); depend (out: list.operator[] (1))

fpragma omp parallel
fpragma omp single
{
for (int 1 = 0; 1 < n; ++1)
fpragma omp task depend(out: list[i]) //Px
compute elem(list[i1]);

#pragma omp task depend(ihera®dy(j=0:n), in : list[j]) //C
print elems (list);

}

Equivalent to:
depend (in: 1ist[0], list[1l], .., list[n-11])

PRACE

Advanced OpenMP

OpenMP

Philosophy

PRACE

Advance d OpenMP

Philosophy: data-flow model OpenMP

B Task dependences are orthogonal to data-sharings

- Dependences as a way to define a task-execution constraints

- Data-sharings as how the data is captured to be used inside the task

// testl.cc // test2.cc
x = 0; x = 0y

fpragma omp parallel ffpragma omp parallel
#fpragma omp single fpragma omp single
{ {

#fpragma omp task depend (inout: x) \ #pragma omp task depend (inout: x) //T1

firstprivate(x) //T1 X++;
X++;

#fpragma omp task depend(in: x) \

#pragma omp task depend(in: x) //T2
std::cout << x << std::endl;

} }

OK, but it always prints ‘0" :(PRAGE

Advanced OpenMP

Philosophy: data-flow model (2) OpenMP

B Properly combining dependences and data-sharings allow us to define
a task data-flow model

—~>Data that is read in the task = input dependence

—>Data that is written in the task - output dependence

B A task data-flow model

- Enhances the composability

—~>Eases the parallelization of new regions of your code

PRACE

Advanced OpenMP

Philosophy: data-flow model (3) OpenMP

//testl vl.cc //testl v2.cc
s = U v = 07 //testl v3.cc
#pragma omp parallel #] =
#pragma omp single #] 4 //testl vi.cc
{ | 4 x =0, yv=0;
#pragma omp task depend(inout: x) //T1 { fpragma omp parallel
{ #fpragma omp single
X++; {
y++; // 11 fpragma omp task depend(inout: x, y) //T1
} {
#fpragma omp task depend(in: x) //T2 X++;
y++;

std: :cout << x << std::endl;
}

#fpragma omp task depend(in: x) //T2

#fpragma omp taskwait
std::cout << x << std::endl;

std::cout << y << std::endl;

#pragma omp task depend(in: y) //T3
) std::cout << y << std::endl;

If all tasks are properly annotated,
we only have to worry about the

_ i 1
dependendences & data-sharings of the new task!!! PRACE

Advanced OpenMP

OpenMP

Use case

PRACE

Advance d OpenMP

Use case: intro to Gauss-seidel OpenMP

serial gauss seidel (tsteps, size, (*p) [size]) { Access pattern anaIySIS
e e e (A For a specific t, i and j

for (i =1; i < size-1; ++1i) {

for (5 1; 7 < size-1; ++7) {
plil[j] = 0.25 * (pl[il[j-11 * // left . ..
plil [J+1] * // right ot

pli-1]1[J] * // top
pli+1]1[3]1); // bottom

J Each cell depends on:
- two cells (north & west) that are
computed in the current time step, and
- two cells (south & east) that were
computed in the previous time step

PRACE

Advanced OpenMP

Use case: Gauss-seidel (2)

OpenMP

serial gauss seidel (tsteps, size, (*p) [size]) { 1St para"ellzatlon Strategy
for (t = 0; t < tsteps; ++t) { For an specific t
for (i =1; 1 < size-1; ++i) { A AN A
for (J =1;] < size-1; ++3) {
plil[j] = 0.25 * (p[i]l[3-1] * // left
p[i] [§+1] * // right < oot
pli-11[j]1 * // top 7
pli+1]1[3]1); // bottom |
}
} \7

We can exploit the wavefront to
obtain parallelism!!

Advanced OpenMP

PRACE

Use case : Gauss-seidel (3) OpenMP

gauss_seidel (tsteps, size, TS, (*p) [size]) {
NB = size / TS;
#pragma omp parallel

for (t = 0; t < tsteps; ++t) {
// First NB diagonals
for (diag = 0; diag < NB; ++diag) {
#fpragma omp for
for (d = 0; d <= diag; ++d) {
ii = d;
7] = diag - d;
for (i = 1+1i*TS; i < ((ii+1)*TS); ++1i)
for (J = 14+33*TS; 1 < ((§3+1)*TS); ++7)
plil[J] = 0.25 * (p[1][J-1] * pli][j+1] *

pli-11[(3]1 * pli+l]1[31);

// Lasts NB diagonals
for (diag = NB-1; diag >= 0; --diag) {
// Similar code to the previous loop

PRACE

Advanced OpenMP

Use case : Gauss-seidel (4) OpenMP

2nd parallelization strategy

serial gauss seidel (tsteps, size, (*p) [size]) {
multiple time iterations
A AN A

// left
// right <« ot
// top y ot
// bottom | e

tn+3

Vv

We can exploit the wavefront
of multiple time steps to obtain MORE

parallelism!!
PRACE

Advanced OpenMP

Use case : Gauss-seidel (5) OpenMP

gauss_seidel (tsteps, size, TS, (*p) [size]) | inner matrix region
NB = size / TS;

#pragma omp parallel
fpragma omp single

for (t = 0; t < tsteps; ++t)
for (ii=1; ii < size-1; 11i+=TS)
for (33=1; JJ] < size-1; JJ+=TS) {

#pragma omp task depend(inout: p[ii:TS][]jj:TS])
depend (in: p[ii-TS:TS][]J]J:TS], p[ii+TS:TS][]j]:TS],
plii:TS][jj-TS:TS], pl[ii:TS]1[]jj:TS])

{ Q: Why do the input dependences

Ee | L=lly LR (ARl) S el depend on the whole block rather
for (J=337; J<(1+33J)*TS; ++3) than iust | / ?
plil1[3] = 0.25 * (p[i][§-1] * pl[i][j+1] * an justa column/row:

pli-1][J] * pli+1][3])7

VS

PRACE

Advanced OpenMP

Use case : Gauss-seidel (5)

gauss_ seidel (
NB = size / T

#pragma omp paral
#pragma omp singl
for (5 = e
for (1i=1;
for (JJ=1
#pragma omp
depend (

Speedup

Advanced OpenMP

Speedup Gauss-Seidel (2 NUMA nodes x 24 cores, baseline serial version, ICC 18.1)

omp_for —g—
omp_depend —g—

12 24
Threads

48

OpenMP

matrix region

le input dependences
e whole block rather
' a column/row?

VS

PRACE

OpenMP

OpenMP 5.0: (even) more advanced features

PRACE

Advance d OpenMP

Advanced features: deps on taskwait OpenMP

B Adding dependences to the taskwait construct

—->Using a taskwait construct to explicitly wait for some predecessor tasks

- Syntactic sugar!

x =0, yv=20;
fpragma omp parallel
fpragma omp single
{

#pragma omp task depend(inout: x) //T1
X++;

#fpragma omp task depend(in: vy) / /T2
std::cout << y << std::endl;

#pragma omp taskwait depend(in: x)

std::cout << x << std::endl;

PRACE

Advanced OpenMP

Advanced features: dependable objects (1) OpenMP

B Offer a way to manually handle dependences

- Useful for complex task dependences
— 1t allows a more efficient allocation of task dependences
—-New omp depend t opaque type

-3 new constructs to manage dependable objects
2 #pragma omp depobj (obj) depend(dep-type: list)
2 #pragma omp depob] (obj) update (dep-type)

2 #pragma omp depobj (obj) destroy

PRACE

Advanced OpenMP

Advanced features: dependable objects (2) OpenMP

B Offer a way to manually handle dependences

x = 0;
#fpragma omp parallel
#fpragma omp single
{
omp depend t obj;
#fpragma omp depobj (obj) depend(inout: x)

x = 0;
#fpragma omp parallel
#pragma omp single

{

. #fpragma o task depend (depobj: ob] T1
#pragma omp task depend(inout: x) //T1 Xﬁi'gm e B (depob] 1) //
X++; ’
v
d bj (ob]] date (i
#pragma omp task depend(in: x) //T2 #pragma omp depobj (obj) update (in)

S << << s ; : :
stdszeout . stdsrendl #fpragma omp task depend (depobij: obj) //T2

std::cout << x << std::endl;

#pragma omp depobj (obj) destroy

PRACE

Advanced OpenMP

OpenMP

Improving Tasking Performance:
Cutoff clauses and strategies

PRACE

Advance d OpenMP

OpenMP

Example: Sudoku revisited

PRACE

Advance d OpenMP

Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions

6 8]11 15|14 16
13|11 16|14 12 6
13 9112 3|16|14| |15(11[10
2| |16 |11 [15]10] 1
15|11|10 16| 2|13| 8| 9|12
12|13 4 1| 5| 6] 2| 3 11(10
9] 6| 112 91 |15|11|10] 7|16 3
2 101 [11] © S 13 9
10| 7{15|11|16 12|13 6
9 1 2| [16]10 11
1 4] 6] 9|13 71 11 3|16
16|14 7| |10[15] 4| 6| 1 13| 8
11|10 |15 16] 9|12|13 1 5| 4
12 11 4| 6/ |16 11110
5 8(12|13| |10 11| 2 14
3|16 10 7 6 12

Advanced OpenMP

B (1) Search an empty fie first call contained in a
#pragma omp parallel

fpragma omp single
such that one tasks starts the
execution of the algorithm

m (2) Try all numbers:
M (2 a) Check Sudoku
® |f invalid: skip

m If valid: Go to ne: #pragma omp task
field needs to work on a new copy

of the Sudoku board

#fpragma omp taskwait

m \\Vait for completion wait for all child tasks

PRACE

Performance Evaluation OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

 Intel C++ 13.1, scatter binding =@=speedup: Intel C++ 13.1, scatter binding

8 - 4.0
—a
- 35
7 e
(Vo]
Q6 - 3.0
x
o
~ 5 25
) T a
* >
D 4 20 ©
X, Q
v &
€3 - 15
o+
C
>
o) | - 1.0
1 I I-o.s
0 - 0.0
5 6 7 8 9

1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

#threads
il "
-+ PRACE *
» *
n Advanced OpenMP i, *

Performance Analysis OpenMP

Event-based profiling provides a . . :
. P 5P Tracing provides more details:

gOOd OverVIeW : G‘E_il)s 6‘8i55 6.90 s G‘SiSs 7.00s 705; T.IliOS 7.1i55
m Call tree { Flat view ‘ E system tree ‘ Box<_? ks : : :

5.088038e7 Visits ([| F [] 0 task_root J | 2 [- machine Linux :
103.547101 Time (& [1.077944e7 l$omp ta & [- nede cluster-phi.rz.F ‘
=

vl 6

7.165572 Maximun [1.077938e7 $omp [1.357093e8 M
80 I$omp atomic @
80 1$omp atomic @sudok
P [0 185419727 1$omp paralle| |
17 1$omp parallel @sudok |~

[J 0.000000 Minimum E [1.077944e7 1$omp £} [- Process

127.000000 max a - [1.359940e6 O
- 1.316204e6 O
[1.289513e6 O
- 1.318732e6 O
- [1.384530e6 O
- [1.384840e6 O
L [1.368480e8 O

Duration: 0.16 sec

6.80s 6.855 6.90 5 6.955 7.00s 7.055 7.10s 7.155

Master thread :

YEPE

Every thread is executing ~1.3m tasks... S ration: 0.047 sec

Metric tree Call tree { | Flat view ‘ System tree | || Box < u MR
E E E Y Lol 6.80 s 6.85 s 6.90 s 6.955 7.00s 7.05s 7.10s 7.15s

5.088038e7 Visits F (] 0.000000 task_root [} [- machine Linux
103.547101 Time (| 46.229420 l$omp task | & [- node cluster-phi.rz.f|
[] 0.000000 Minimum 0.000051 |$omp atomic @ B [- Process
7.165572 Maximumn 57.317553 l$omp parallel - O 5.787572 Mast
127.000000 max a 0.000076 |$omp parallel @ + [5.767037 OMF
+ [5.770848 OMF
[5.793451 OMF

Master thread

L ’ MI* H -IF-F PWIIHI-
vl 48 as _I_ll {1
: Il

K Duration: 0.001 sec

Master thread

m gy ey .
|

- O 5.794502 OMF 79 (AR 1 LN I 1
- O 5.775753 OMF ol 11T 111 A | (1T [I I [T AT
- [5.770343 OMF vl 82 = T U T)]
L O 5.769917 OMF G ‘ L .
Y Duration: 2.2 us

... in ~5.7 seconds. Tasks get much smaller
=> average duration of a task is ~4.4 us down the call-stack.

Advanced OpenMP

PRACE

Performance Analysis OpenMP

Event-based profiling provides a Tracing provides more details:

gOOd Ove rVIeW : 6.80 s 685s 6.90s 695s 7.00s 7.05s 7105 7.5s
= metric tree i Call tree | Flat view I m E] Box ¢ | | MEStErthreald $;_\q : ; |

5.08B038e7 Visits (|| | &} [0task_root | ' & O - machine Linux
103.547101 Time (|| CF [1.077944e7 $omp tas | & [- nede cluster-phi. rzAll
] 0.000000 Minimum [1.077944e7 I$omp B [- Process IVI 6
7.165572 Maximun [1.077938e7 $omp O 1.357093e6 M

127.000000 max a 80 I$omp atomic [0 1.359940e6 O

80 1$omp atomic @sudok O 1.316204e6 O a
[0 185419727 1$omp paralle| | O 1.289513e6 QI |~
17 $omp parallel @sudok || O 1.318732e6 O

If you have enough parallelism, stop creating more tasks!!
if-clause, final-clause, mergeable-clause

0B = Duration: 0.16 sec

Al

7.055 7.105s 7.155s

Every thread i ®

%I\ ;

W e hatively inyour program code / sec
| e s T T R e soud § 7.055 7.10s 7.15s
5.088038e7 Visits (] | =0 0. 000000 task_root | |"EF OO " machine L ;_ : :
(B 103.547101 Time (| O [0 46.229420 l$omp task | & [- node cluster-phi.rz.f| |
[] 0.000000 Minimum 0.000051 |$omp atomic @ B [- Process
7.165572 Maximumn 57.317553 l$omp parallel - O 5.787572 Mast
127.000000 max a 0.000076 |$omp parallel @ + [5.767037 OMF

- O 5.770846 OMF
— O 5.793451 OMF| Master thread :

i

ik
Ak

— O 5.794502 OMF 75 [ﬁ'!"ﬂ‘ mme mem p ; 1 'f""m m i
- [5.775753 OMF ol 11T R T IIIIII | |
- [5.770343 OMF vl 82 = : (i L . 1
L 0 5.769917 OMF 0 II\HIIIIII'F

| Y Duration: 2.2 us

.in ~5.7 seconds. Tasks get much smaller
=> average duration of a task is ~4.4 us down the call-stack.

u Advanced OpenMP

PRACE

Performance Evaluation (with cutoff)

Advanced OpenMP

Runtime [sec] for 16x16

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff
=@—speedup: Intel C++ 13.1, scatter binding =>=speedup: Intel C++ 13.1, scatter binding, cutoff
IV
— —— —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#threads

18

16

OpenMP

Speedup

PRACE

The if clause OpenMP

B Rule of thumb: the i f (expression) clause as a “switch off” mechanism

- Allows lightweight implementations of task creation and execution but it reduces the parallelism

B If the expression of the 1f clause evaluates to false

- the encountering task is suspended int foo(int x) {

printf (“entering foo function\n”);

- the new task is executed immediately (task int res = 0;

#fpragma omp task shared(res) if(false)
dependences are respected!!) {

res += Xx;

- the encountering task resumes its execution J
printf (“leaving foo function\n”);

once the new task is completed J

' ications!
> This is known as undeferred task Really useful to debug tasking applications!

B Evenifthe expression is false, data-sharing clauses are honored

PRACE
n Advanced OpenMP

The £inal clause OpenMP

B The final (expression) clause
- Nested tasks / recursive applications

—> allows to avoid future task creation - reduces overhead but also reduces parallelism

B |[f the expression of the final clause evaluates to true

- The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)
e == false e == true
#fpragma omp task final (e) - .

{ ,’: o“
#pragma omp task ..*' ".‘
T 7 y / r:----’ ————— I
fpragma omp task :Code_B; i
{ #C.l,‘ #C.Z } :code_c; :
fpragma omp taskwalt ot ! code_ci; :
} S, | code_c2; I
O i e]
B Data-sharing clauses are honored too! O

PRACE

n Advanced OpenMP

The mergeable clause OpenMP

B The mergeable clause
— Optimization: get rid of “data-sharing clauses are honored”

— This optimization can only be applied in undeferred or included tasks

B A Task that is annotated with the mergeable clause is called a mergeable task

— Atask that may be a merged task if it is an undeferred task or an included task

B A merged task is:

— Atask for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

B A good implementation could execute a merged task without adding any OpenMP-

related overhead Unfortunately, there are no OpenMP

commercial implementations taking
. Advanced Ooentp advantage of final neither mergeable =(PRACE
10 vance pen

OpenMP

Vectorization w/ OpenMP SIMD

PRACE

Disclaimer & Optimization Notice OpenMP

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/software/products.

All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, VTune, and Cilk are trademarks of Intel
Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

PRACE

Advanced OpenMP

Evolution of Intel Hardware

Images not intended to reflect actual die sizes

OpenMP

64-bit Intel® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon®

Xeon® processor processor processor processor E5- Scalable

processor 5100 series 5500 series 5600 series 2600v3 series Processor

Frequency 3.6 GHz 3.0GHz 3.2 GHz 3.3 GHz 2.3 GHz 2.5 GHz
Core(s) 1 2 4 6 18 28
Thread(s) 2 2 8 12 36 56
128 128 128 128 256 512

SIMD width
v (2 clock) (1 clock) (1 clock) (1 clock) (1 clock) (1 clock)

Advanced OpenMP

PRACE

Levels of Parallelism OpenMP

B OpenMP already supports several levels of parallelism in today’s hardware

Cluster
Coprocessors/Accelerators
Node

Socket

Hyper-Threads
Superscalar

Pipeline

Vector Single instruction using multiple functional units

PRACE -

Advanced OpenMP

SIMD on Intel® Architecture OpenMP

® Width of SIMD registers has been growing in the past:

<— 128 bit —>

SSE

AVX

AVX-512

- Y

Advanced OpenMP

PRACE

More Powerful SIMD Units OpenMP

B SIMD instructions become more powerful
B One example is the Intel® Xeon Phi™ Coprocessor

vaddpd dest, sourcel, source2

512 bit >

N

source?2

+

PRACE

- Advanced OpenMP

OpenMP

More Powerful SIMD Units

B SIMD instructions become more powerful
B One example is the Intel® Xeon Phi™ Coprocessor

vfmadd213pd sourcel, source2, source3

< 512 bit >
t 3
+
+c6 +c4 +c2

PRACE

Advanced OpenMP

More Powerful SIMD Units

B SIMD instructions become more powerful
B One example is the Intel® Xeon Phi™ Coprocessor

- Advanced OpenMP

vaddpd dest{k1}, source2, source3
512 bit

N

+
O
o Ja o

sourcel

source2

mask

dest

OpenMP

PRACE

More Powerful SIMD Units OpenMP

B SIMD instructions become more powerful
B One example is the Intel® Xeon Phi™ Coprocessor

vmovapd dest, source{dacb}
512 bit

swizzle l >€< l >€<
EllEE T ElTT e o

R A e
El B BN Bl

N
v

PRACE

d OpenMP

Auto-vectorization OpenMP

B Compilers offer auto-vectorization as an optimization pass
—~ Usually part of the general loop optimization passes
[%Code analysis detects code properties that inhibit SIMD vectorization] ?
—>Heuristics determine if SIMD execution might be beneficial
—If all goes well, the compiler will generate SIMD instructions

B Example: Intel® Composer XE
—-vec (automatically enabled with —02)
—>-qopt-report

PRACE

Advanced OpenMP

Why Auto-vectorizers Fail OpenMP

B Data dependencies

B Other potential reasons
- Alignment
= Function calls in loop block
- Complex control flow / conditional branches

-~ Loop not “countable”
—e.g., upper bound not a runtime constant

- Mixed data types

- Non-unit stride between elements

—~>Loop body too complex (register pressure)
- Vectorization seems inefficient

B Many more ... but less likely to occur

Advanced OpenMP

PRACE

Data Dependencies OpenMP

B Suppose two statements S1 and S2

B S2 depends on S1, iff ST must execute before S2
- Control-flow dependence
—~>Data dependence
—>Dependencies can be carried over between loop iterations

B Important flavors of data dependencies

FLOW ANTI

sl:a =40 b =40
b=21 sl:a=b+1<>

s2:c=a+ 2 s2:b =21

PRACE

Advanced OpenMP

Loop-Carried Dependencies OpenMP

B Dependencies may occur across loop iterations
- Loop-carried dependency

B The following code contains such a dependency:

void lcd ex(float* a, float* b, size t n, float cl, float c2)
{
size t 1;
for (i = 0; 1 < n; i++) {
ali] = cl * a[i + 17] + c2 * b[i];
}
}

Loop-carried dependency for a[i] and

B Some iterations of the loop have to a[i+17]; distance is 17.
complete before the next iteration can run

- Simple trick: Can you reverse the loop w/o getting wrong results?

Advanced OpenMP

PRACE

Loop-carried Dependencies OpenMP

B Can we parallelize or vectorize the loop?

void lcd ex(float* a, float* b, size t n, float cl, float c2) {
for (int i =0; i < n; i++) {
a[i] = c1 * a[i + 17] + c2 * b[i];
P}

Thread 1 Thread 2

O 0000000000006 0606060006 90 0
1 2 3

0 17 18 19 20

- Parallelization: no
(except for very specific loop schedules)

- Vectorization: yes
(iff vector length is shorter than any distance of any dependency)

PRACE

Advanced OpenMP

Example: Loop not Countable OpenMP

B “Loop not Countable” plus “Assumed Dependencies”

typedef struct {

float* data;
size t size;

} vec t;

volid vec eltwise product(vec t* a, vec t* b, vec t* c) {
size t 1i;

0; 1 < a->size; 1i++) {

for Yi =
c->data[i] = a->datali] * b->datali];

}

PRACE

Advanced OpenMP

In a Time Before OpenMP 4.0 OpenMP

B Support required vendor-specific extensions
—->Programming models (e.g., Intel® Cilk Plus)
- Compiler pragmas (e.g., #pragma vector)
-~ Low-level constructs (e.g., mm add pd())

fpragma omp parallel for
fpragma vector always
#pragma ivdep e ©

0
1

You need to trust
your compiler to do

the “right” thing.

for (int 1

= < N; 1++4) |
ali]l] = bl

;1
]+ ...

PRACE

Advanced OpenMP

SIMD Loop Construct OpenMP

B Vectorize a loop nest

— Cut loop into chunks that fit a SIMD vector register
-~ No parallelization of the loop body

B Syntax (C/C++)
fprragma omp simd [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp simd [clause[[,] clause],..]
do—-loops
[!Somp end simd]

Advanced OpenMP

PRACE

Example OpenMP

float sprod(float *a, float *b, int n) {
float sum = 0.0f;
fpragma omp simd reduction (+:sum)
for (int k=0,; k<n; k++)
sum += alk] * blk];
return sum;

PRACE

Advanced OpenMP

Data Sharing Clauses OpenMP

B private(var-1list) :
Uninitialized vectors for variables in var-list

X: | 42 21?21?17

B firstprivate(var-1ist):
Initialized vectors for variables in var-list

X. | 42 42 | 42 | 42 | 42

B reduction(op:var-1ist):
Create private variables for var-list and apply reduction operator op at the end of the construct

12 5 8 | 17 X: | 42

PRACE

Advanced OpenMP

SIMD Loop Clauses OpenMP

B safelen (length)

- Maximum number of iterations that can run concurrently without breaking a
dependence

- In practice, maximum vector length
B linear (list[:linear-step])

- The variable’s value is in relationship with the iteration number
2X; = Xorig + 1 * linear-step

BMacligned (list[:alignment])
- Specifies that the list items have a given alignment
—>Default is alignment for the architecture
BMcollapse (n)

Advanced OpenMP

PRACE

SIMD Worksharing Construct OpenMP

B Parallelize and vectorize a loop nest

- Distribute a loop’s iteration space across a thread team
- Subdivide loop chunks to fit a SIMD vector register

B Syntax (C/C++)
fpragma omp for simd [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp do simd [clause[[,] clause],..]
do—-loops
[!Somp end do simd [nowait]]

Advanced OpenMP

PRACE

Example OpenMP

float sprod(float *a, float *b, int n) {
float sum = 0.0f;
fpragma omp |for]simd| reduction (+:sum)
for (int k=0; k<n; k++)
sum += alk] * blk];
return sum;

parallelize
Thread 0 Thread 1 Thread 2

Remainder Loop Peel Loop

PRACE

Advanced OpenMP

Be Careful What You Wish For... OpenMP

float sprod(float *a, float *b, int n) {
float sum = 0.0f;
fpragma omp for simd reduction (+:sum) \
schedule (static, 5)
for (int k=0,; k<n; k++)
sum += al[k] * bl[k];
return sum;

}

B You should choose chunk sizes that are multiples of the SIMD length
- Remainder loops are not triggered
—> Likely better performance
B In the above example ...
- and AVX2, the code will only execute the remainder loop!
- and SSE, the code will have one iteration in the SIMD loop plus one in the remainder loop!

Advanced OpenMP

PRACE

OpenMP 4.5 Simplifies SIMD Chunks OpenMP

float sprod(float *a, float *b, int n) {
float sum = 0.0f;
fpragma omp for simd reduction (+:sum) \
schedule (simd: static, 5)
for (int k=0,; k<n; k++)
sum += al[k] * bl[k];
return sum;

}

B Chooses chunk sizes that are multiples of the SIMD length

—>First and last chunk may be slightly different to fix alignment and to handle
loops that are not exact multiples of SIMD width

- Remainder loops are not triggered
—>Likely better performance

Advanced OpenMP

PRACE

SIMD Function Vectorization OpenMP

float min(float a, float b) {
return a < b ? a : b;

}

float distsg(float x, float y) {
return (x - y) * (X - V);

}

void example () {
#fpragma omp parallel for simd
for (i=0; 1i<N; 1i++) {
d[i] = min(distsg(ali]l, bl[i]l), cli]);
} }

PRACE

Advanced OpenMP

SIMD Function Vectorization OpenMP

B Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

B Syntax (C/C++):

fpragma omp declare simd [clause[[,] clause],..]
[#pragma omp declare simd [clause[[,] clause],..]]

[...]

function-definition-or—-declaration

B Syntax (Fortran):

'Somp declare simd (proc—-name-1ist)

Advanced OpenMP

PRACE

SIMD Function Vectorization OpenMP

#fpragma omp declare simd
float min(float a, float b) { |_2GVZNlé6vv min (5zmmQO, %Szmml) :

return a < b ? a : b; ——p vminps %zmml, %zmmO, %zmmO
} ret

fpragma omp declare simd

float distsqg(float x, float y)|_24GVZNlovv distsqg(szmm0O, Szmml) :
return (x - y) * (x - y)pr#® Vsubps %zmm0O, %Szmml, $Szmm2
} vmulps %zmm2, S$zmmZ2, %zmmO
ret
void example () {

#fpragma omp parallel for simd
for (1=0; 1<N; 1i++) {
d[i] = min(distsqg(ali], bl[i]), cl[i]);

} }
\\\ivmovups (%rld,%rl2,4), %zmmO

vmovups (%rl3,%rl2,4), %Szmml
call ZGVZNlovv distsqg
vmovups (%rbx,%rl2,4), %zmml PRACE

Advanced OpenMP call ZGVZNlé6vv min

SIMD Function Vectorization OpenMP

BMsimdlen (length)

—> generate function to support a given vector length
BMuniform (argument-1ist)
— argument has a constant value between the iterations of a given loop

M inbranch

—> function always called from inside an if statement

B notinbranch

— function never called from inside an if statement

B 1inear (argument-list[:linear-step])

BMaligned (argument-list/[:alignment])

PRACE

Advanced OpenMP

inbranch & notinbranch OpenMP

#fpragma omp declare simd inbranch

float do stuff (float x) {
/* do something */
return x * 2.0; —

vec8 do stuff v(vec8 x, mask m) {
/* do something */

™ vmulpd x{m}, 2.0, tmp

} return tmp;

}

vold example () {
fpragma omp simd
for (int 1 =

1if (ali] 0.0)
b[1i] do stuff(alil]);

} \
for (int 1 = 0, 1 < N; 1+=8) {

N vemp 1t &afi], 0.0, mask
b[i] = do stuff v(&al[i], mask);

0, 1 < N; i++)
<

PRACE

Advanced OpenMP

SIMD Constructs & Performance OpenMP

5,00x

B |CCauto-vec

4,50x 4,34x
B |CCSIMD directive
4,00x

3,50x

3,00x

2,50x

relative speed-up
(higher is better)

2,00x

1,50x

1,00x -

0,50x -

0,00x -

Mandelbrot Volume Rendering BlackScholes Fast Walsh Perlin Noise SGpp

M.Klemm, A.Duran, X.Tian, H.Saito, D.Caballero, and X.Martorell. Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

PRACE

Advanced OpenMP

OpenMP

OpenMP: Memory Access

PRACE

Advance d OpenMP

Example: Loop Parallelization OpenMP

B Assume the following: you have learned that load imbalances can

severely impact performance and a dynamic loop schedule may
prevent this:

—->What is the issue with the following code:

double* A;

A = (double*) malloc(N * sizeof (double));
/* assume some initialization of A */

#pragma omp parallel for schedule(dynamic, 1)
for (int 1 = 0; i < N; i++) {

A[i] += 1.0;
}

—->How is A accessed? Does that affect performance?

PRACE
Advanced OpenMP

False Sharing

OpenMP

“ False Sharing: Parallel accesses to the same cache line may have a significant performance

impact!

Advanced OpenMP

Core Core

on-chip cache

memory

Core Core

on-chip cache

Caches are organized in lines of typically
64 bytes: integer array a[0-4] fits into
one cache line.

Whenever one element of a cache line
is updated, the whole cache line is
Invalidated.

Local copies of a cache line have to be
re-loaded from the main memory and
the computation may have to be
repeated.

PRACE

Non-uniform Memory OpenMP

double* A;
A = (double*) Core Core Core Core
malloc (N * sizeof (double)) ;

on-chip on-chip on-chip on-chip
cache cache cache cache

interconnect
for (int i = 0; i < N; i++) {

A[i] = 0.0;

memory memory

" - .
 PRACE *

Advanced OpenMP ’** »*

Non-uniform Memory OpenMP

“ Serial code: all array elements are allocated in the memory of the NUMA node closest to the
core executing the initializer thread (first touch)

double* A;
A = (double¥*)

malloc (N * sizeof (double)); ore Core Core Core

on-chip on-chip on-chip on-chip
cache cache cache cache

for (int i = 0; i < N; i++) {
A[i] = 0.0;

interconnect

memory memory

PRACE

Advanced OpenMP

About Data Distribution OpenMP

B Important aspect on cc-NUMA systems

—If not optimal, longer memory access times and hotspots

B Placement comes from the Operating System

- This is therefore Operating System dependent

® Windows, Linux and Solaris all use the “First Touch” placement policy
by default

—>May be possible to override default (check the docs)

PRACE

- Advanced OpenMP

Non-uniform Memory OpenMP

“ Serial code: all array elements are allocated in the memory of the NUMA node closest to the
core executing the initializer thread (first touch)

double* A;
A = (double¥*)

malloc (N * sizeof (double)); ore Core Core Core

on-chip on-chip on-chip on-chip
cache cache cache cache

for (int i = 0; i < N; i++) {
A[i] = 0.0;

interconnect

memory memory

PRACE

Advanced OpenMP

First Touch Memory Placement OpenMP

“ First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA
node that contains the core that executes the
thread that initializes the partition

double* A;

A = (double¥*)
malloc (N * sizeof (double)) ;

omp set num threads(2);

#pragma omp parallel for interconnect
for (int 1 = 0; i < N; i++) {
A[i] = 0.0;

memory memory

PRACE

- Advanced OpenMP

Serial vs. Parallel Initialization OpenMP

B Stream example on 2 socket sytem with Xeon X5675 processors, 12
OpenMP threads:

_ lcopy lsale Jadd __Jwiad

ser_init 18.8GB/s 18.5GB/s 18.1GB/s 18.2 GB/s
par_init 41.3GB/s 39.3GB/s 40.3GB/s 40.4 GB/s

ser_init: T1 T2 T3 @M 77 T8 T9
CPU O CPU 1 MEM

T4 T5 T6 T1I0 T11 T12

par_init: T1 T2 T3 T7 T8 T9

CPU1

T10 T11 T12

CPUO

T4 T5 T6

PRACE

- Advanced OpenMP

Get Info on the System Topology OpenMP

B Before you design a strategy for thread binding, you should have a basic
understanding of the system topology. Please use one of the following
options on a target machine:

9|nte| MPI‘S cpuinfo tOOI

- cpuinfo

— Delivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

- hwlocs’ hwioc-15 tool

- hwloc-1s

—>Displays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

PRACE
Advanced OpenMP

Decide for Binding Strategy OpenMP

B Selecting the ,right” binding strategy depends not only on the topology,
but also on application characteristics.

—>Putting threads far apart, i.e., on different sockets
—~>May improve aggregated memory bandwidth available to application
—~>May improve the combined cache size available to your application
—~>May decrease performance of synchronization constructs
- Putting threads close together, i.e., on two adjacent cores that possibly share
some caches

—~>May improve performance of synchronization constructs

—~>May decrease the available memory bandwidth and cache size

Advanced OpenMP

PRACE

Places + Binding Policies (1/2)

B Define OpenMP Places

— set of OpenMP threads running on one or more processors

—> can be defined by the user, i.e. oup pPLACES=cores

B Define a set of OpenMP Thread Affinity Policies

- SPREAD: spread OpenMP threads evenly among the places,
partition the place list

- CLOSE: pack OpenMP threads near master thread
- MASTER: collocate OpenMP thread with master thread

B Goals

—> user has a way to specify where to execute OpenMP threads

- locality between OpenMP threads / less false sharing / memory bandwidth

Advanced OpenMP

OpenMP

PRACE

Places OpenMP

B Assume the following machine:

—> 2 sockets, 4 cores per socket, 4 hyper-threads per core

B Abstract names for OMP_PLACES:

- threads: Each place corresponds to a single hardware thread on the target machine.

—> cores: Each place corresponds to a single core (having one or more hardware threads) on the
target machine.

—> sockets: Each place corresponds to a single socket (consisting of one or more cores) on the
target machine.

PRACE

Advanced OpenMP

Places + Binding Policies (2/2) OpenMP

B Example’s Objective:

— separate cores for outer loop and near cores for inner loop

B Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)

— spread creates partition, compact binds threads within respective partition

OMP PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores
#pragma omp parallel proc bind(spread) num threads(4)
#pragma omp parallel proc bind(close) num threads (4)

B Example
Sintial 82 06 J p7
‘\\l
‘] =“ *‘ "
Sspread 4 RO W PIN, p2 Wed (P pd §ps || p6 § p7
Sclose4 | po | piyigpest p3 || p4 | p5 || p6 § p7

;
_ 000 s0ee]-cee coee] cee coee] cee o6 PRACE

Advanced OpenMP

More Examples (1/3) OpenMP

B Assume the following machine:

-2 sockets, 4 cores per socket, 4 hyper-threads per core

M Parallel Region with two threads, one per socket

—-OMP PLACES=sockets

2 #pragma omp parallel num threads(2) proc bind(spread)

PRACE

Advanced OpenMP

More Examples (2/3) OpenMP

B Assume the following machi

B Parallel Region with four threads, one per core, but only on the first
socket

—-OMP PLACES=cores

2 #pragma omp parallel num threads (4) proc bind(close)

PRACE

Advanced OpenMP

More Examples (3/3) OpenMP

M Spread a nested loop first across two sockets, then among the cores
within each socket, only one thread per core

—-OMP PLACES=cores
2 #pragma omp parallel num threads(2) proc bind(spread)

2 #pragma omp parallel num threads (4) proc bind(close)

PRACE

Advanced OpenMP

Places API (1/2) OpenMP

B 1: Query information about binding and a single place of
all places withids O ... omp get num places():

B omp proc bind t omp get proc bind(): returns the thread affinity policy
(omp_proc_bind_false, true, master, ...)

B int omp get num places ():returns the number of places

B int omp get place num procs(int place num): returns the number of
processors in the given place

B void omp get place proc ids(int place num, int* ids):returns the

ids of the processors in the given place

PRACE

Advanced OpenMP

Places API (2/2) OpenMP

B 2: Query information about the place partition:

B int omp get place num(): returns the place number of the place to which the
current thread is bound

B int omp get partition num places ():returns the number of places in the
current partition

B void omp get partition place nums (int* pns):returns the list of place
numbers corresponding to the places in the current partition

PRACE

Advanced OpenMP

Places API: Example OpenMP

B Simple routine printing the processor ids of the place the calling thread
IS bound to:

volid print binding info () {
int my place = omp get place num();
int place num procs = omp get place num procs (my place);

printf ("Place consists of $d processors: ", place num procs);

int *place processors = malloc(sizeof (int) * place num procs);
omp get place proc ids(my place, place processors)

for (int 1 = 0; 1 < place num procs - 1; 1++) {
printf ("%d ", place processors([i]);

}
printf ("\n") ;

free(place processors);

PRACE

Advanced OpenMP

OpenMP 5.0 way to do this OpenMP

H Set OMP DISPLAY AFFINITY=TRUE

-~ Instructs the runtime to display formatted affinity information

- Example output for two threads on two physical cores:

nesting level= 1, thread num= 0, thread affinity= 0,1
nesting level= 1, thread num= 1, thread affinity= 2,3

- Output can be formatted with OMP AFFINITY FORMAT env var or

corresponding routine

- Formatted affinity information can be printed with

omp display affinity(const char* format)

PRACE

Advanced OpenMP

Affinity format specification OpenMP

t omp_get _team_num() a omp_get_ancestor_thread num() at level-1
T omp_get num_teams() H hostname
L omp_get_level() P process identifier
omp_get thread num() i native thread identifier
N omp_get num_threads() A thread affinity: list of processors (cores)
B Example:
OMP AFFINITY FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H"
- Possible output:
Affinity: 001 0 0-1,16-17 host003
Affinity: 001 1 2-3,18-19 host003

PRACE

Advanced OpenMP

A first summary OpenMP

B Everything under control?
M In principle Yes, but only if

—>threads can be bound explicitly,
—~>data can be placed well by first-touch, or can be migrated,

—>you focus on a specific platform (= OS + arch) — no portability

® \What if the data access pattern changes over time?
B What if you use more than one level of parallelism?

PRACE

Advanced OpenMP

NUMA Strategies: Overview OpenMP

M First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a
physical location of a memory page during the first page fault, when
the page is first ,touched”, and put it close to the CPU causing the
page fault.

B Explicit Migration: Selected regions of memory (pages) are moved
from one NUMA node to another via explicit OS syscall.

B Next Touch: Binding of pages to NUMA nodes is removed and pages
are migrated to the location of the next ,touch®. Well-supported in
Solaris, expensive to implement in Linux.

B Automatic Migration: No support for this in current operating systems.

Advance d OpenMP

PRACE

User Control of Memory Affinity OpenMP

B Explicit NUMA-aware memory allocation:

— By carefully touching data by the thread which later uses it

— By changing the default memory allocation strategy
—Linux: numactl command

—->Windows: VirtualAllocExNuma () (limited functionality)

— By explicit migration of memory pages
—Linux: move pages ()

—->Windows: no option

B Example: using numactl to distribute pages round-robin:

= numactl —-interleave=all ./a.out

Advanced OpenMP

PRACE

OpenMP

Improving Tasking Performance:
Task Affinity

PRACE

Motivation OpenMP

B Techniques for process binding & thread pinning available

—->0OpenMP thread level: oMP PLACES & OMP PROC BIND

- 0OS functionality: taskset -c

OpenMP Tasking:
M In general: Tasks may be executed by any thread in the team

- Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:
B affinity clause to express affinity to data

Advanced OpenMP

PRACE

affinity clause OpenMP

B New clause: #pragma omp task affinity (list)

- Hint to the runtime to execute task closely to physical data location

- Clear separation between dependencies and affinity

B Expectations:

- Improve data locality / reduce remote memory accesses

- Decrease runtime variability

B Still expect task stealing

—In particular, if a thread is under-utilized

Advanced OpenMP

PRACE

Code Example OpenMP

B Excerpt from task-parallel STREAM

1 omp task \

2 shared(a, b, c, scalar) \

3 firstprivate(tmp_ idx_start, tmp_idx _end) \
4 affinity(a[tmp_idx_start])

5 A

6 int 1;

7 (1 = tmp_idx_start; i <= tmp_idx _end; i++)
8 a[i] = b[i] + scalar * c[i];

9 }

—~>Loops have been blocked manually (see tmp idx start/end)
- Assumption: initialization and computation have same blocking and same affinity

PRACE

Advanced OpenMP

Selected LLVM implementation details OpenMP

Encounter tas\ ‘/E‘ZI(;:(\NO | Push to local
region / 2 queue
affinity?
\/ A map is introduced to

A

Yes store location information
) of data that was previously
Location g
for data use
reference in

map?

\ 4

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,

I:entlfy N:MA Yes Michael Klemm, Xavier Teruel, Sergi
oma.ln where Mateo, Stephen L. Olivier, and Matthias
data is stored S. Muiller. Assessing Task-to-Data Affinity

in the LLVM OpenMP Runtime.
Proceedings of the 14th International

\ 4 \ 4

y Workshop on OpenMP, IWOMP 2018.
Select thread Save Push task into N September 26-28, 2018, Barcelona,
pinned to > {reference, »| other threads end Spain.
NUMA domain location} in map queue

PRACE

Advanced OpenMP

Evaluation OpenMP

Program runtime Distribution of single
Median of 10 runs task execution times
40 b 180
375 170
' 160 T
35 150 |
3257t 140 :
30+ 7 130 :
— [
§ 275 o 1207 | 1
= o5 £ 110 | |
£ 225 5 1007 | |
8 20 - -5‘ 90+ | |
= 8 80 |
217.5¢ S 70t |
Lﬁ 15F é 60 F |
|
125¢ - 50 + |
10} 40 |
75r 301 | :
5t 20+ : |
ol L —
llvm llvm + task affinity llvm llvm + task affinity
LIKWID: reduction of remote data volume from 69% to 13% PRICF

Advanced OpenMP

Summary OpenMP

B Requirement for this feature: thread affinity enabled

B The affinity clause helps, if

—>tasks access data heavily

—>single task creator scenario, or task not created with data affinity

—high load imbalance among the tasks
M Different from thread binding: task stealing is absolutely allowed

PRACE

Advanced OpenMP

OpenMP

Managing Memory Spaces

PRACE

Advance d OpenMP

Different kinds of memory

M Traditional DDR-based memory
® High-bandwidth memory
® Non-volatile memory

Advanced OpenMP

DDR4
RAM

(on-platform
memory)

OpenMP

. PRAGE

Memory Management OpenMP

M Allocator := an OpenMP object that fulfills requests to allocate and
deallocate storage for program variables

B OpenMP allocators are of type omp allocator handle t

B Default allocator for Host

—via OMP ALLOCATOR env. var. or corresponding API

B OpenMP 5.0 supports a set of memory allocators

PRACE

Advance d OpenMP

OpenMP Allocators

OpenMP

M Selection of a certain kind of memory

omp_default._ mem_alloc
omp_large cap_mem_alloc
omp_const_mem_alloc
omp_high_bw_mem_alloc
omp_low lat_ mem_alloc

omp_cgroup_mem_alloc
omp_pteam_mem_alloc

omp_thread local_mem_alloc

Advanced OpenMP

use default storage

use storage with large capacity

use storage optimized for read-only variables
use storage with high bandwidth

use storage with low latency

use storage close to all threads in the contention group
of the thread requesting the allocation

use storage that is close to all threads in the same
parallel region of the thread requesting the allocation

use storage that is close to the thread requesting the
allocation

PRACE

Using OpenMP Allocators OpenMP

B New clause on all constructs with data sharing clauses:

> allocate([allocator:] list)

B Allocation:

—~omp alloc(size t size, omp allocator handle t allocator)

B Deallocation:

- omp free(void *ptr, const omp allocator handle t allocator)

> allocator argument is optional

B a1locate directive: standalone directive for allocation, or declaration of allocation
stmt.

PRACE

Advanced OpenMP

OpenMP Allocator Traits / 1

B Allocator traits control the behavior of the allocator

sync_hint
alignment
access

pool_size

fallback

fb_data

pinned

partition

Advanced OpenmpP

contended, uncontended, serialized, private
default: contended

positive integer value that is a power of two
default: 1 byte

all, cgroup, pteam, thread
default: all

positive integer value

default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

an allocator handle

true, false
default: false

environment, nearest, blocked, interleaved
default: environment

OpenMP

PRACE

OpenMP Allocator Traits / 2 OpenMP

B fallback: describes the behavior if the allocation cannot be fulfilled

—~default mem fb: return system’s default memory

- Other options: null, abort, or use different allocator

B pinned: request pinned memory, i.e. for GPUs

PRACE

Advanced OpenMP

OpenMP Allocator Traits / 3 OpenMP

B partition: partitioning of allocated memory of physical storage
resources (think of NUMA)

—environment: use system’s default behavior
—“nearest: most closest memory

—2>blocked: partitioning into approx. same size with at most one block per

storage resource

—~interleaved: partitioning in a round-robin fashion across the storage

resources

PRACE

n Advanced OpenMP

OpenMP Allocator Traits / 4 OpenMP

B Construction of allocators with traits via

—~omp allocator handle t omp init allocator (
omp memspace handle t memspace,

int ntraits, const omp alloctrait t traits([]);
- Selection of memory space mandatory

- Empty traits set: use defaults

B Allocators have to be destroyed with * destroy *

B Custom allocator can be made default with
omp set default allocator (omp allocator handle t allocator)

PRACE

Advanced OpenMP

OpenMP Memory Spaces OpenMP

M Storage resources with explicit support in OpenMP:

omp_default_mem_space System’s default memory resource
omp_large_cap_mem_space Storage with larg(er) capacity
omp_const_mem_space Storage optimized for variables with constant value
omp_high bw_mem_space Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency

- Exact selection of memory space is implementation-def.

- Pre-defined allocators available to work with these

PRACE

Advanced OpenMP

OPENMP OFFLOAD PROGRAMMING

Dr.-Ing. Michael Klemm

Principal Engineer Chief Executive Officer
Extreme Computing SW and Systems OpenMP Architecture Review Board

NOTICES AND DISCLAIMERS

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration.

No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete
information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit http://www.intel.com/benchmarks .

Intel Advanced Vector Extensions (Intel AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may
cause a) some parts to operate at less than the rated frequency and b) some parts with Intel Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance
varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

© Intel Corporation and OpenMP Architecture Review Board. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. OpenMP is a trademark of the
OpenMP Architecture Review Board. Other names and brands may be claimed as the property of others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

Agenda

OpenMP Architecture Review Board

Introduction to OpenMP Offload Features

Case Study: NWChem TCE CCSD(T)

INTRODUCTION TO OPENMP OFFLOAD
FEATURES

Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];

double t = 0.0;
double tb, te;
tb = omp_get wtime();
#pragma omp parallel for firstprivate(a)
for (int i = 0; i < SZ; i++) {
y[i] = a * x[1i] + y[i];

}
te = omp_get wtime();
t = te - tb;

printf("Time of kernel: %1f\n", t);

~
Timing code (not needed, just to
have a bit more code to show ©)
<
. This is the code we want to execute on
a target device (i.e., GPU)
Timing code (not needed, just to

ave a bit more code to show ©)

Don't do this at home! Use
a BLAS library for this!

Device Model

As of version 4.0 the OpenMP API supports accelerators/coprocessors

Device model:
= One host for “traditional” multi-threading

= Multiple accelerators/coprocessors of the same kind for offloading

Accelerators

Execution Model

Offload region and data environment is lexically scoped
= Data environment is destroyed at closing curly brace

= Allocated buffers/data are automatically released

Host Device
pA 11
a ocC

N O e

ST

'm 1 —

L 111 1 / #pragma omp target \

@ map (alloc:...) \
from map (to:...) \

— map (from:...)

{ coo }@

OpenMP for Devices - Constructs

Transfer control and data from the host to the device

Syntax (C/C++)
#pragma omp target [clause[[,] clause],..]
structured-block

Syntax (Fortran)
I$omp target [clause[[,] clause],..]
structured-block
I$omp end target

Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] List)
if(scalar-expr)

Example: saxpy

The compiler identifies variables
that are used in the target region.

void saxpy() {
float a, x[SZ] All accessed arrays are copied
double t = 9.0; from host to device and back
double tb, te;
tb = omp_get wtime();
#pragma omp target “map(tofrom:y[0©:SZ])”

for (int i = 0; i < SZ; i++) {
@ a * x[i] + y[i];

jobiey Y

} :
te = omp _get wtime(); x[0:5Z]
t = te - tb; y[e:5Z]

printf("Time of kernel: %1f\n", t);

Copying x back is not
necessary: it was not changed.

icc -gnextgen -fiopenmp -fopenmp-targets=spir64 -o axpy axpy.c

Example: saxpy

The compiler identifies variables
that are used in the target region.

subroutine saxpy(a, x, y, n)
use iso_fortran_env
integer :: n, i
real(kind=real32) :: a
real(kind=real32), dimen i
real(kind=real32) { dimension(n) iy

All accessed arrays are copied

from host to device and back

I$omp target “map(tofrom:y(1l:n))”

do i=
a * x(i) + y(i)
end do

I$omp end target
end subroutine

Copying x back is not

necessary: it was not changed.
ifort -gnextgen -fiopenmp -fopenmp-targets=spiré64 -o axpy axpy.f90

Example: saxpy

void saxpy() {
double a, x[SZ], y[SZ];
double t = 0.0;
double tb, te; X[0:57]
tb = omp get wtime(); y[0:52]
#pragma omp target map(to:x[0:5Z]) \ R
map(tofrom:y[0:SZ])
for (int i = 0; i < SZ; i++) {
y[i] = a * x[1] + y[i];

obJe

} B y[0:57]
te = omp_get wtime();
t = te - tb;

printf("Time of kernel: %1f\n", t);
}

icc -gnextgen -fiopenmp -fopenmp-targets=spir64 -o axpy axpy.c

(inter . 11

Example: saxpy

The compiler cannot determine the
size of memory behind the pointer.

void saxpy(float a, float* x

int sz) {
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[@:sz])
for (int i 0; i< sz; i++) {

CyLiT > a * x[1] + ylil;

}

te = omp_get wtime();

t = te - tb;

printf("Time of kernel: %1f\n", t); Programmers have to help the
} compiler with the size of the data

transfer needed.
icc -gnextgen -fiopenmp -fopenmp-targets=spir64 -o axpy axpy.c

Creating Parallelism on the Target Device

The target construct transfers the control flow to the target device
» Transfer of control is sequential and synchronous

= This is intentionall!

OpenMP separates offload and parallelism
= Programmers need to explicitly create parallel regions on the target device
* In theory, this can be combined with any OpenMP construct

= |n practice, there is only a useful subset of OpenMP features for a target
device such as a GPU, e.g., no I/O, limited use of base language features.

Example: saxpy

void saxpy(float a, float* x, float* y, E
int sz) { _
#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[0@:sz])
#pragma omp parallel for simd
for (int i = 0; i \sz; i++) {
y[i] = a * x[1i

}

} GPUs are multi-level devices:
SIMD, threads, thread blocks

Create a team of threads to execute the
loop in parallel using SIMD instructions.

icc -gnextgen -fiopenmp -fopenmp-targets=spir64 -o axpy axpy.c

intel‘ . 14

teams Construct

Support multi-level parallel devices

Syntax (C/C++):
#pragma omp teams [clause[[,] clause],..]
structured-block

Syntax (Fortran):

I$omp teams [clause[[,] clause],..]
structured-block

Clauses
num_teams(integer-expression), thread_limit(integer-expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list), reduction(operator:Llist)

Multi-level Parallel saxpy

Manual code transformation

* Tile the loops into an outer loop and an inner loop

= Assign the outer loop to “teams” (OpenCL: work groups)

= Assign the inner loop to the “threads” (OpenCL: work items)

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams map(to:x[@:sz]) map(tofrom:y[@:sz])
{

int bs = n / omp_get num_teams();

for (int 1 = 0; 1 < sz; i += bs) {
#pragma omp parallel for firstprivate(i,bs)
for (int ii = i; ii < i + bs; ii++) {
y[ii] = a * x[ii] + y[ii];

}

(inter . 16

Multi-level Parallel saxpy

For convenience, OpenMP defines composite constructs to implement the
required code transformations

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams parallel for \
num_teams(num_blocks) map(to:x[@:sz]) map(tofrom:y[@:sz])
for (int i = 0; i < sz; i++) {
, y[i] = a * x[i] + y[i];

}

subroutine saxpy(a, x, y, n)

I$omp omp target teams parallel do &
I$omp& num_teams (num_blocks) map(to:x) map(tofrom:y)
do i=1,n
y(i) = a * x(i) + y(i)
end do
I$omp end target teams parallel do

end subroutine

(hﬂer . 17

Profiling and Debugging Environment Variables

nucl .../axpy> EY()Y
Libomptarget --> Loading RTLs...
Libomptarget --> Loading library 'libomptarget.rtl.nios2.so'...
Libomptarget --> Unable to load library 'libomptarget.rtl.nios2.so': libomptarget.rtl.nios2.so: cannot open shared object file: No
such file or directory!
Libomptarget --> Loading library 'libomptarget.rtl.x86_64 _mic.so'...
Libomptarget --> Unable to load library 'libomptarget.rtl.x86_64 mic.so': libomptarget.rtl.x86_64 mic.so: cannot open shared object
file: No such file or directory!
Libomptarget --> Loading library 'libomptarget.rtl.opencl.so’'...
Libomptarget --> Successfully loaded library 'libomptarget.rtl.opencl.so'!
Libomptarget --> Optional interface: _ tgt_rtl_data_submit_nowait
Libomptarget --> Optional interface: _ tgt_rtl_data_retrieve_nowait
Libomptarget --> Optional interface: _ tgt_rtl_manifest_data_for_region
Libomptarget --> Optional interface: _ tgt_rtl_data_alloc_base
Libomptarget --> Optional interface: _ tgt_rtl_data_alloc_user
Libomptarget --> Optional interface: _ tgt_rtl_run_target_team_nd_region
Libomptarget --> Optional interface: _ tgt_rtl_run_target_region_nowait
Libomptarget --> Optional interface: _ tgt_rtl_run_target_team_region_nowait
Libomptarget --> Optional interface: _ tgt_rtl_run_target_team_nd_region_nowait
Libomptarget --> Registering RTL libomptarget.rtl.opencl.so supporting 2 devices!
nucl .../axpy> . /axpy
LIBOMPTARGET_PROFILE:
-- DATA-READ: 0.065 msec
DATA-WRITE: ©.188 msec
EXEC-__omp_offloading_34_2fcle3f8_main_1113: 1.470 msec
EXEC-__omp_offloading_34_2fcle3f8_saxpy_offload_target_data_env_186: 0.063 msec
EXEC-__omp_offloading 34 _2fcle3f8_saxpy_offload_target_data_171: 0.070 msec
EXEC-__omp_offloading 34 _2fcle3f8_saxpy_offload_target_154: 0.105 msec

intel, | 18

Optimize Data Transfers

Reduce the amount of time spent transferring data
= Use map clauses to enforce direction of data transfer

= Use target data, target enter data, target exit data constructs to
keep data environment on the target device (see backup for syntax)

void example() { void zeros(float* a, int n) {
float tmp[N], data_in[N], float data_out[N]; #pragma omp target teams distribute parallel for
#tpragma omp target data map(alloc:tmp[:N]) \ for (int i = 0; i < n; i++)
map(to:a[:N],b[:N]) \ a[i] = o.ef;
map (tofrom:c[:N]) }
{
zeros(tmp, N);
compute_kernel_1(tmp, a); void saxpy(float a, float* y, float* x, int n) {
saxpy(2.0f, tmp, b); #pragma omp target teams distribute parallel for
compute_kernel_2(tmp, b); for (int 1 = 0; 1 < n; i++)
saxpy(2.0f, c, tmp); y[i] = a * x[i] + y[i];
}oo} }

(inter . 19

target data Construct Syntax

Create scoped data environment and transfer data from the host to the device and back

Syntax (C/C++)
#pragma omp target data [clause[[,] clause],..]
structured-block

Syntax (Fortran)
I$omp target data [clause[[,] clause],..]
structured-block
I$omp end target data

Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] List)
if(scalar-expr)

target update Construct Syntax

Issue data transfers to or from existing data device environment

Syntax (C/C++)
#pragma omp target update [clause[[,] clause],..]

Syntax (Fortran)
I$omp target update [clause[[,] clause],..]

Clauses
device(scalar-integer-expression)
to(Llist)
from(List)
if(scalar-expr)

Example: target data and target update

#pragma omp target data device(@) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(9)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], i);

[ETIT

update_input_array _on_the host(input);
#pragma omp target update device(®) to(input[:N])

#pragma omp target device(©)
#pragma omp parallel for reduction(+:res)
for (i=0; i<N; i++)
res += final computation(input[i], tmp[i], i)

3obiey |

(inter . 22

Asynchronous Offloads

OpenMP target constructs are synchronous by default
= The encountering host thread awaits the end of the target region before continuing

= The nowait clause makes the target constructs asynchronous (in OpenMP speak: they
become an OpenMP task)

#pragma omp task depend(out:inl)
init_data(inl);

#pragma omp target map(to:inl[:N]) map(from:outl[:N]) nowait depend(in:inl) depend(out:outl)
compute 1(inl, outl, N);

#pragma omp target map(to:in2[:N]) map(from:out3[:N]) nowait depend(out:out2)
compute_3(in2, out3, N);

#pragma omp target map(to:out2[:N]) map(to:out3[:N]) nowait depend(in:outl) depend(in:out2)
compute 4(outl, out2, N);

#pragma omp taskwait

CASE STUDY- NWCHEM TCE CCSD(T]

TCE: Tensor Contraction Engine
CCSD(T): Coupled-Cluster with Single, Double, and perturbative Triple replacements

24

NWChem

Computational chemistry software package

= Quantum chemistry

= Molecular dynamics

Designed for large-scale supercomputers

Developed at the EMSL at PNNL

= EMSL: Environmental Molecular Sciences Laboratory
= PNNL: Pacific Northwest National Lab

URL: http://www.nwchem-sw.org

Finding Offload Candidates

Requirements for offload candidates
= Compute-intensive code regions (kernels)
= Highly parallel

= Compute scaling stronger than data transfer,
e.g., compute O(n3) vs. data size O(n?)

Example Kernel (1 of 27 in total)

sulbrouiing s ik ol SRR 00l il pEe s D5 All kernels expose the same structure
1 h7d,triplesx,t2sub,v2sub)
double precision triplesx(h3d*h2d,hld,péd,p5d,pad) 7 perfectly nested loops

double precision t2sub(h7d,p4d,p5d,hid)
double precision v2sub(h3d*h2d,p6d,h7d)
I$omp target
I$omp teams dis

Some kernels contain inner product loop

e parallel do private(p4,p5,p6,h2,h3,h1,h7)

do pa=1,pad (then, 6 perfectly nested loops)
do p5=1,p5d
e i e 1.5GB data transferred Trip count per loop is equal to “tile size”

do h7=1,h7d (host to device)
do h2h3=1,h3d*h2d
triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,p4s)

(20-30 in production)

e A D Naive data allocation (tile size 24)
end do 1.5GB data transferred = Per-array transfer for each target construct
223 32 (Eviee s o) = triplesx: 1458 MB

I $omp ::j :Zams digute parallel do = t2sub,v2sub: 2.5 MBeach

I$omp end target
end subroutine

Invoking the Kernels / Data Management

Simplified pseudo-code of the actual Reduced data transfers:
I$omp target enter data alloc(triplesx(l:tr_size))

= triplesx:
do ...
call zero_triplesx(triplesx) Allocate 1.5GB data — allocated once
do ... ’)
call comm_and_sort(t2sub, v2sub) once, stays on device. — always kept on the target
I$omp target data map(to:t2sub(t2_size)) map(to:v2sub(v2_size))
if (...) = t2sub, v2sub:
end if — allocated after comm.
Update 2x2.5MB of data for
I -) .
H$omp tagﬁztdind data (U IR QO — kept for (multiple) kernel
Invocations
do ...
end do
call sum_energy(energy, triplesx)
end do

I$omp target exit data release(triplesx(l:size))

intel‘ . 28

Invoking the Kernels / Data Management

Simplified pseudo-code of the actual

I$omp target enter data alloc(triplesx(l:tr_size

1

do ...
call zero_triplesx(triples Allocate 1 &
do ... _ | $omp
call comm_and_sga#{t2sub, v2sub) nnle, stays
I$omp target data mapt#6:t2sub(t2 sizg ap(to:v2sub(v2_size)
if (..
end if
Update 2x2.° L
!$omp target end data CRRU
Nty
end do (poie ally)ﬂ
do ...
end do
call sum_energy(energy, triplesx) |
end do iigmp
I$omp target exit data release(triplesx(l:size)) e

sub

dou
dou
dou
tar

routine sd_t_di_1(h3d,h2d,hld,p6d,p5d,p4d,
h7d,triplesx,t2sub,v2sub)

ble precision triplesx(h3d*h2d,hld,péd,p5d,p4dd)
ble precision t2sub(h7d,p4d,p5d,hid)

ble precision v2sub(h3d*h2d,p6d,h7d)

get

teams distribute parallel do private(p4,p5,p6,h2,h3,h1,h7)

do
do
do
do
do
do
tr

end
end
end
end
end
end
end
end
end

p4=1, pad
p5=1,p5d
p6=1, p6d
hi=1,h1d
h7=1,h7d
h2h3=1,h3d
iplesx(h2h
- t2sub(h7,
do

do

do

do

do

do

teams distribute parallel do
target
subroutine

Summary

OpenMP APl is ready to use Intel discrete GPUs for offloading compute
= Mature offload model w/ support for asynchronous offload/transfer
= Tightly integrates with OpenMP multi-threading on the host

More, advanced features (not covered here)

= Memory management API

= |nteroperability with native data
management

* Interoperability with native streaming
interfaces

= Unified shared memory support

OpenMP

Tools for OpenMP Programming

PRACE

Advance d OpenMP

OpenMP Tools OpenMP

B Correctness Tools
- ThreadSanitizer

—Intel Inspector XE (or whatever the current name is)

B Performance Analysis

- Performance Analysis basics

- Overview on available tools

PRACE

Advanced OpenMP

Data Race OpenMP

B Data Race: the typical OpenMP programming error, when:

—>two or more threads access the same memory location, and
—>at least one of these accesses is a write, and
—>the accesses are not protected by locks or critical regions, and

—>the accesses are not synchronized, e.g. by a barrier.

B Non-deterministic occurrence: e.g. the sequence of the execution of
parallel loop iterations is non-deterministic

—In many cases private clauses, barriers or critical regions are missing

B Data races are hard to find using a traditional debugger

Advanced OpenMP

PRACE

ThreadSanitizer: Overview OpenMP

B Correctness checking for threaded applications
B Integrated in clang and gcc compiler
B L ow runtime overhead: 2x — 15x

B Used to find data races in browsers like Chrome and Firefox

PRACE

Advance d OpenMP

OpenMP

ThreadSanitizer: Usage

module load clang

Module in Aachen.

ECompiIe the program with clang compiler:

clang -fsanitize=thread -fopenmp -g myprog.c -o myprog

clang++ -fsanitize=thread -fopenmp -g myprog.cpp
-0 myprog
gfortran -fsanitize=thread -fopenmp -g myprog.f -c
clang -fsanitize=thread -fopenmp -lgfortran myprog.o
-0 myprog

* Execute:
OMP_NUM THREADS=4 . /myprog

 Understand and correct the detected threading errors p

Advanced OpenMP

https://pruners.github.io/

ThreadSanitizer: Example

1 #include <stdio.h>

WARNING: ThreadSanitizer: data race

1* Read of size 4 at Ox7fffffffdcdc by thread T2:

#0 .omp_outlined. race.c:7
(race+0x0000004a6dce)

#1 _kmp_invoke microtask <null>
(libomp_tsan.so)

« Previous write of size 4 at Ox7fffffffdcdc by

2
3 int main(int argc, char **argv) {
4 inta=0;
5 #pragma omp parallel
6 |
7/ if (a <100){ <
8 #pragma omp critical
9 a++; <
10 }
11 }
12 }

n Advanced OpenMP

main thread:

#0 .omp_outlined. race.c:9
(race+0x0000004a6e2c)

#1 _kmp_invoke microtask <null>
(libomp_tsan.so)

OpenMP

PRACE

Intel Inspector XE OpenMP

B Detection of

—->Memory Errors
—>Deadlocks

—>Data Races
B Support for

—->WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP
B Features

- Binary instrumentation gives full functionality

- Independent stand-alone GUI for Windows and Linux

Advanced OpenMP

PRACE

Pl example / 1 OpenMP

?ouble f(double x) » - . . »
1 "'b..‘.'

return (4.0 / (1.0 + x*x)); . J 4 35/ N hs
} 1+ x2 3 "-.,‘ T
0 25} I 125

double CalcPi (int n) .| T b
const double fH =1.0/ (double) n; e \'5
double fSum = 0.0; I 1
double fX; 05} los
int i; -%.5 0 05 1 1_%

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (i=0;i<n; i++)

fX = fH * gdouble)i + 0.5);
fSum += f(fX);

return fH * fSum;

}

PRACE

n Advanced OpenMP

Pl example / 2 OpenMP

double f(double x)

return (4.0 / (1.0 + x*x));
}

double CalcPi (int n)

const double fH =1.0/(double) n;
double fSum = 0.0;

double fX; @ D
int i;

#pragma omp parallel for private(fX,i) reduction{+:fSum)

for (i=0;i<n; i++)

fX =fH * ((double)i + 0.5);
tSum += H00; < o

return fH * fSum;

}

PRACE

n Advanced OpenMP

Inspector XE: create project / 1 OpenMP

$ module load Inspector ; inspxe-gui

<no current project> - Intel Inspector (as hpclab99) ¥) (o) (X
File View Hel
e Proie
Open 7 Analysis... Ctri+N 5
aice Prvopemes Sl Memory Error Analysis / Detect Leaks
Close Project Memory Error Analysis / Locate Memory Problems
Import Result... _tri+Alt+N} Threading Error Analysis / Locate Deadlocks and Data Races
Recent Projects 4 Project Properties Ctri+P
r = >
Recent Results >
Options...
Exit ctri+Q
@ Getting Started
Memory and Thread Debugging
i .
s e New Project...

Open Project...
& Open Result

Recent Projects: Recent Results:

PRAGE -

Advanced OpenMP

Inspector XE: create project / 2 OpenMP

- ensure that multiple threads are used
- choose a small dataset (really!), @« e smsmmins o :

Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

execution time can increase e e s et ———

Application parameters: |< input | Modify... |

1 OX 1 O O OX M Use application directory as working directory

Working directory: home/hpclab99/C-omp-j

User-defined environment variables:
|OMP_NUM_THREADS=2 | Modify... |

@ Store result in the project directory: ‘/home/hpclab99/intel/inspxe/projects/pi
() Store result in (and create link file to) another directory

99

Result location:
/home/hpclab99/intel/inspxe/projects/pi/r@@@ {at}

® Advanced ——

oK || cancel

PRACE

11 Advanced OpenMP

Inspector XE: configure analysis

Threading Error Analysis Modes _
1. Detect Deadlocks

2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races v

more details,
more overhead

Configure Analysis Type INTEL INSPECTOR 2018

4 A Analysis Type - P

0 10x-40x | Detect Deadlocks ‘M’
v

|:] 20x-80x I“M . Stop]
'"III (8 Close)

Detg S — _ - 2 R

40x-160x)
' Threading Error Analysi n g ysis Time Overheal z =
—r M Reset Growth Tracking |

Memory Overhead
\ MEMORENDE Iy L Locate Deadlocks and Data Races (;opy

‘(4? Measure Growth)

4

Threadmg Error Analysis

Widest scope threading error analysis type. Maximizes the load on the system
‘ Custom Analysis Types and the time and resources required to perform analy5|s however, detects the
widest set of errors and provides context and maximum detail for those errors.
Press F1 for more details.

74> Reset Leak Tracking)

J Find Leaks
[] Terminate on deadlock
Stack frame depth: |16 v |
Scope: [Normal v

Advanced OpenMP

OpenMP

PRACE

Inspector XE: results / 1 OpenMP

1 detected problems
2 filters

/home/hpclab99/intel/inspxe/projects/pi - Intel Inspector (as hpclab99) viiAal X
3 code location File View Help
Timeli) b B @
4 Imeline | Welcome | ro00ti3 (| v
Locate Deadlocks and Data Races
4 @ Target & Analysis Type IiczollectlonLogis @ Ssummary
Problems
m-m Severity 5
& Data race pi.c pi.exe Error 1 item(s)
Data race pi.c:72 pi.exe k New Type
Data race pi.c:72 pi.exe R New Data race 1 item(s)
Source
pi.c 1 item(s)
Module
1 pi.exe 1 item(s)
A4
State
New 1 item(s)
Suppressed
a1 1o0f2 b [All ?
Description | Source | Function | Module | Variable 2
Read pi.c:72 CalcPi pi.exe OMP Worker Thread #1 423717)
70 { pi.exe!CalcPi - pi.c:72
71 fX = fH * ((double)i + 0 ||pi.exe!CalcPi - pi.c:68
72 fSum += f(fX); pi.exe! start
73 }
74 return fH * fSum;
Write pi.c:72 CalcPi pi.exe
70 { pi.exe!CalcPi - pi.c:72 4
71 fX = fH * ((double)i + 0
7174 fSum += f(fX); 3
73 }
74 return fH * fSum; =
Advanced OpenMP

13

Inspector XE: results / 2 OpenMP

1 Source Code producing the issue — double click opens an editor
2 Corresponding Call Stack

alysis Type [Collection Log # @ Summary i §» Sources

Read - Thread OMP Master Thread #0 (23581) (pi.exe!CalcPi - pi.c:72)

Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX) pi.exe!CalcPi - pi.c:68
for (i = iRank; i < n; i += iNumProcs) pi.exe!_start
{
fX = fH * ((double)i + 0.5);
fsum += F(fX);

}

return fH * fSum;

Call Stack
67 //#pragma omp parallel for private(i, fX) reduction(+:fSum) pi.exe!CalcPi - pi.c:72
68 #pragma omp parallel for private(i, fX)
for (i = iRank; i < n; i += iNumProcs)
{
fX = fH * ((double)i + 0.5);
fsum += f(fX);

}

return fH * fSum;

** ¥ > **
-+ PRACE *
* *
Advanced OpenMP * *

Inspector XE: results / 3 OpenMP

1 Source Code producing the issue — double click opens an editor
2 Corresponding Call Stack

I

Read - Thread OMP Master Thread #0 (23581) (pi.exe!CalcPi - pi.c:72)

\JBd Disassembly (pi.exe!0x111f) Call Stack
//#pragma omp parallel for private(i, fX) reduction(+:fSum) pi.exe!CalcPi - pi.c:72
#pragma omp parallel for private(i, fX) pi.exe!CalcPi - pi.c:68

for (i = iRank; i < n; 1 += iNumProcs) pi.exe!_start
{
fX = fH * ((double)i + 0.5);

Call Stack
//#pragma omp parallel for private(i, fX) reduction(+:fSum) pi.exe!CalcPi - pi.c:72
#pragma omp parallel for private(i, fX)
for (i = iRank; i < n; i += iNumProcs)

{

X = fH * ((double)i + 0.5);

}

return fH * fSum;

** ¥ > **
- PRAGE
poa *
Advanced OpenMP * *

Sampling vs. Instrumentation OpenMP

Sampling

B Running program is periodically interrupted to take measurement
WM Statistical inference of program behavior

B Works with unmodified executables

|V 7S S "SR N S A N
— | 0 el IrIr e

Time

Instrumentation

B Every event of interest is captured directly
B More detailed and exact information

B Typically: recompile for instrumentation

b b b b bl b ho hidis b
—_ | L] | 11 | |

Advanced OpenMP

Time
PRACE

Tracing vs. Profiling OpenMP

Trace
B Chronologically ordered sequence of event records
— [|] —
Time
- foo bar baz
Profile from instrumentation
B Aggregated information
1]
Profile from sampling
I8 [t2 [t5 [t8 t4 [t7 t6 | t9
VR N ST "R SR R (A R
— W W T e

PRACE

Advanced OpenMP

OMPT support for sampling OpenMP

B OMPT defines states like barrier-wait, work-serial or work-parallel

—> Allows to collect OMPT state statistics in the profile void foo() {}

—> Profile break down for different OMPT states vo%d bar() {foo();}
void baz() {bar();}
int main()

B OMPT provides frame information {foo();bar();baz();
return 0;}

—> Allows to identify OpenMP runtime frames.

- Runtime frames can be eliminated from call trees

VRN 7SN S "SR T S AN N

n

Time

PRACE
Advanced OpenMP

OMPT support for instrumentation OpenMP

B OMPT provides event callbacks
—> Parallel begin / end

void foo() {}

—> Implicit task begin / end void bar() {
_ _ #pragma omp task
—> Barrier / taskwait foo();}

void baz() {
#pragma omp task

- Task create / schedule

bar();}
B Tool can instrument those callbacks int main() {
#pragma omp parallel sections
{foo();bar();baz();}
B OpenMP-only instrumentation might return 0;}

be sufficient for some use-cases

PRACE

Advanced OpenMP

VI-HPS Tools / 1 OpenMP

® Virtual institute — high productivity supercomputing
B Tool development

B Training:
- VI-HPS/PRACE tuning workshop series
- SC/ISC tutorials

B Many performance tools available under vi-hps.org
- - tools = VI-HPS Tools Guide

- Tools-Guide: flyer with a 2 page summary for each tool

PRACE

Advanced OpenMP

VI-HPS Tools / 2 OpenMP

Data collection
B Score-P : instrumentation based profiling / tracing
B Extrae : instrumentation based profiling / tracing

Data processing
B Scalasca : trace-based analysis

Data presentation

B ARM Map, ARM performance report
B CUBE : display for profile information

B Vampir : display for trace data (commercial/test)
B Paraver : display for extrae data

B Tau : visualization

PRACE

Advanced OpenMP

Performance tools GUI OpenMP

File View Window

File Edit Chart Filter Window Help ¥ Trace View @ 9ot D> 44 0 Y= =0|ncapath =8
H 1 Time Range: [0.05 ,0.474s] Rank Range: [36,48] Cross Hair: (0.214s, 43) 9 <
. i ceaiared =i
0s 10's 20s 30s [Al Processes, Accumulated Exclusi... M pmpLbeast_
H H H H 0 ; Mintra_shmem_Bce
Process 0 [BSBZEE T MODULE ._FIELD s ot
MPID_RecvDatat
¥ p—r——p—— —comtitView Iy e
Process 4 B 1T B pm_imer_canc
Process 5 i 1T AN 5 pmi_om.reqa o
Process 6 jp I NIIE———— || | property Value iy
File /g/g0/blaise/var M psmi_timer_cance
Process 8 THVUEUEISUENUS— s sy
Process 10 ST ction Legend \ 1 ; 2
rocess 11y T
- =g/ Mini Map
Frocess 12 b I —— B v
Absolute ~| Absolute |Absolute v
(4] 11l I Metric tree [Call tree [] Flat view I System tree [l Box Plot
B 1.63e9 Visits 1M 0.01 MAIN_ 2
i} [l 0.82 mpi_setup_ L] - i06r01c20
[_] 0.00 Minimum Inclusive Time 0.00 MPI_Bcast 1 1 - MPI Rank O J [7M of 38M i}

Bl 48.58 Maximum Inclusive Time & Il 0.00 env_setup_ | @ 3.81 CPU thread 0

Bl 5.27e8 bytes_sent 0.00 zone_setup_ - [3.70 CPU thread 1
B 5.27e8 bytes_received -+ [l 0.00 map_zones_ (@ 3.64 CPU thread 2
M 0.00 zone_starts_ L [3.16 CPU thread 3

L+ 1 - MPI Rank 1
| 3.83 CPU thread 0

ni
=1 M 1.11 exact_rhs_ F .
0.00 timer_clear_ H P O O I k I t
b 3 @l 3.67 exch gbc_ L @ 3.62CPUthread 3 - C I

]

2 M 0.04 adi_ & I - MPI Rank 2
(= B 39.91 compute_rhs_ |- [3.84 CPU thread 0
() L 233.49 x_solve_ 8 3.58 CPU thread 1
= 1 239.34 y_solve_ {- [3.66 CPU thread 2
= Il 0.07 z_solve_ L [3.33 CPU thread 3
= Il 0.03 !Somp parallel @z_solve.f.43 & - MPI Rank 3
£+ o 100.67 '$omp do @z_solve.f:52 I @ 3.87 CPU thread 0
M 2.89 Ihsinit_ |- I 3.66 CPU thread 1

(8 3.59 CPU thread 2
1Bl 27.24 matvec_sub_ L 8l 3.41 CPU thread 3
3611 matmulsub
I 5 ™ T
l0.00 767.48 (100.00%) 767.48 [0.00 57.70 (7.52%) 767.48 0.00 57.70)

cube™®

scalasca

22 Advanced OpenMP

Summary OpenMP

Correctness:

B Data Races are very hard to find, since they do not show up every program run.
B Intel Inspector XE or ThreadSanitizer help a lot in finding these errors.
B Use really small datasets, since the runtime increases significantly.

Performance:

W Start with simple performance measurements like hotspots analyses and then focus
on these hot spots.

B [n OpenMP applications analyze the waiting time of threads. Is the waiting time
balanced?

B Hardware counters might help for a better understanding of an application, but they
might be hard to interpret.

Advanced OpenMP

PRACE

OpenMP

OpenMP Parallel Loops

PRACE

Advance d OpenMP

loop Construct OpenMP

B Existing loop constructs are tightly bound to execution model:

#pragma omp parallel for #pragma omp simd #pragma omp taskloop
for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..}

HEEEEEEN generate tasks

i
(111111 ‘:“
barrier ' ‘
- o o { O
join Ll II HEERNR taskwait

B The loop construct is meant to tell OpenMP about truly parallel
semantics of a loop.

PRACE

Advanced OpenMP

OpenMP Fully Parallel Loops OpenMP

int main(int argc, const char* argvl[]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof (float));

// Define scalars n, a, b & initialize x, vy

fpragma omp parallel
#pragma omp loop
for (int 1 = 0; 1 < n; ++1i){

yli] = a*x[1] + yI[1];

PRACE

Advanced OpenMP

loop Constructs, Syntax OpenMP

B Syntax (C/C++)
fprragma omp loop [clause[[,] clause],..]
for—-loops

B Syntax (Fortran)
'Somp loop [clause/[[,] clause],..]
do—-loops
[!Somp end loop]

PRACE

- Advanced OpenMP

loop Constructs, Clauses OpenMP

B bind(binding)

- Binding region the loop construct should bind to
- One of: teams, parallel, thread

B order (concurrent)

- Tell the OpenMP compiler that the loop can be executed in any order.
- Default!

collapse (n)
private (list)

lastprivate (list)

reduction (reduction—-i1d:11st)

Advanced OpenMP

PRACE

Extensions to Existing Constructs OpenMP

B Existing loop constructs have been extended to also have truly parallel
semantics.

B C/C++ Worksharing:

#fpragma omp [for|simd] order (concurrent) \
[clause[[,] clause],..]

for-1loops

B Fortran Worksharing:

'Somp [do|simd] order (concurrent) &
[clause[[,] clause],..]

do-loops

[!Somp end [do|simd}]

- Advanced OpenMP

PRACE

DOACROSS Loops

Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS
Michael Klemm

OpenMP

25 SC19

Denver, |hpc
COlisNOW.

DOACROSS Loops OpenMP

B “DOACROSS’ loops are loops with special loop schedules
- Restricted form of loop-carried dependencies
— Require fine-grained synchronization protocol for parallelism

M | oop-carried dependency:
—> Loop iterations depend on each other
— Source of dependency must scheduled before sink of the dependency

B DOACROSS loop:

- Data dependency is an invariant for the execution of the whole loop nest

& C19

co‘

Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS
Michael Klemm

Parallelizable Loops

OpenMP

B A parallel loop cannot not have any loop-carried dependencies (simplified just a

little bit!)

Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS

Michael Klemm

(int 1 = 1; i < N;

bli][]]

;] < M;
= £ (bl1][3],
b[i][]],

_ Thread 1

++1)

alil[31)7

Thread 2

""" * execution order
— dependency

! 2% SC19

Denver, (hpc
COlisNOW.

Non-parallelizable Loops

OpenMP

M [f there is a loop-carried dependency, a loop cannot be parallelized anymore

(“easily” that is)

for (int i = 1; i < N; ++i) {
for (int j = 1; jJ < M; ++73) {
b[i][]J] = £(b[1-1]1[7],

bli] [J-11, al1][3]);

_ Thread 1
J A .

Thread 2

10 Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS
Michael Klemm

error
""" > execution order
— dependency
N\
2% SC19

Denver, | hpc
CO|isNOw.

Wavefront-Parallel Loops OpenMP

B [f the data dependency is invariant, then skewing the loop helps remove the data
dependency

for (int 1 = 1; i < N; ++i) {
for (int j = i+1; J < 1+N; ++3) {
bli] [j-1] = £(b[1i-1][jJ-1],
bli][J-1-1]1, ali]l[31):

Thread 2

Thread 1

j4
—/ e e e e
error
—> 2erp — - = =\ > .
2353 32 3 . execution order
o LI L * 0 . 9 L *2 —l dependency
/ i

2% SC19
D .

11 Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS
Michael Klemm

DOACROSS Loops with OpenMP OpenMP

B OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried
dependencies
B Syntax (C/C++):

fpragma omp for ordered(d) [clause[[,] clause],..]

for-1loops

and
fpragma omp ordered [clause[[,] clause],..]

where clause is one of the following:

depend (source)
depend (sink:vector)

B Syntax (Fortran):
!'Somp do ordered(d) [clause[[,] clause],..]

do-loops
!'Somp ordered [clause[[,] clause],..] O $19
f/
12 Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS & Denver.l'mc :
Michael Klemm CO|isnow.

Example OpenMP

B The ordered clause tells the compiler about loop-carried dependencies and their
distances

#pragma omp parallel for ordered(2)
for (int 1 = 1; i < N; ++1i) {
for (int j = 1; j < M; ++73) {
#pragma omp ordered depend(sink:i-1,7j) depend(sink:i,j-1)

b[i]([3] = £(b[i-11[3],
bli] [J-1]1, al1][3]);

}

fpragma omp ordered depend(source)

}

2% SC19
13 Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS A Demg(r).lg%w
Michael Klemm o

Example: 3D Gauss-Seidel OpenMP

#fpragma omp for ordered(2) private (j, k)
for (i = 1; i < N-1; ++i) {
for (j = 1; J < N-1; ++73) {
#fpragma omp ordered depend(sink: i-1,3j-1) depend(sink: i-1,73) \
depend(sink: i-1,j+1) depend(sink: i,J-1)
for (k = 1; k < N-1; ++k) {

double tmpl = (p[i-1]1[J-1]1[k-1] + p[i-1][3-1]1[k] + p[i-1][]J-1][k+1]

+ pli-11[3]1[k-1] + pl[i-1]1[3]1[k] + p[i-1]1[J][k+1]

+ pli-1][3+1] [k=1] + p[i-1]1([J+1]1[k] + pl[i-1][3j+1][k+1]);
double tmp2 = (p[i][J-1]1[k-1] + pli][j-11[k] + p[i][J-1][k+1]

+ plil[3]1[k-1] + pli]l[3]1[k] + p[i][3][k+1]

+ pli][J+1][k-1] + p[i][J+1][k] + p[i][J+1][k+1]);
double tmp3 = (p[i+1][jJ-1][k-1] + pli+1][3J-1]([k] + pl[i+1][3-1][k+1]

+ pli+1]1 (3] [k-1] + pl[i+1][3][k] + pl[i+1][J][k+1]

+ pli+1] [J+1] [k=1] + p[i+1]([J+1][k] + pl[i+1][j+1][k+1]);
plil[j]1[k] = (tmpl + tmp2 + tmp3) / 27.0;

}
#fpragma omp ordered depend (source)
}
}

&19

14 Advanced OpenMP Tutorial — Advanced Language Features: DOACROSS Denver|n
Michael Klemm

OpenMP

Cancellation

PRACE

Advance d OpenMP

OpenMP 3.1 Parallel Abort OpenMP

B Once started, parallel execution cannot be aborted in OpenMP 3.1

— Code regions must always run to completion
- (or not start at all)

B Cancellation in OpenMP 4.0 provides a best-effort approach to
terminate OpenMP regions
- Best-effort: not guaranteed to trigger termination immediately
—> Triggered “as soon as” possible

PRACE

Advanced OpenMP

Cancellation Constructs OpenMP

B Two constructs:
- Activate cancellation:

C/C++: #pragma omp cancel
Fortran: 'Somp cancel
—> Check for cancellation:
C/C++: #pragma omp cancellation point
Fortran: 'Somp cancellation point

B Check for cancellation only a certain points
- Avoid unnecessary overheads

- Programmers need to reason about cancellation
- Cleanup code needs to be added manually

PRACE

Advanced OpenMP

Cancellation Semantics OpenMP

Thread A Thread B Thread C
\
» cancellation point
ca_r!gel ;
O
Q)
0
cancellat|on point > @
T @
«Q
=
>
cancellajon point
 / 4 /

PRACE

Advanced OpenMP

Cancellation Semantics OpenMP

Thread A Thread B Thread C
\
cancellatiion point
» ca_rﬁgel

R
*’(cancellatjon point

—

cancellaign point
 / 4 /

Y
uoiba. |9|jeled

PRACE

Advanced OpenMP

Cancellation Semantics OpenMP

Thread A Thread B Thread C

\
cancellation point
ca_rﬁgel
ﬂ l » cancellatjon point

?

cancellaign point

Y
uoiba. |9|jeled

PRACE

n Advanced OpenMP

Cancellation Semantics OpenMP

Thread A Thread B Thread C

\
cancellatiion point
caﬁcel

O
Q
' J
ﬂ l cancellatjon point > ®
- D
Q
2
>
» cance!!aign point
/ A y

PRACE

Advanced OpenMP

cancel Construct OpenMP

B Syntax:

#fpragma omp cancel construct-type-clause [[,]Jif-clause]
!'$Somp cancel construct-type-clause [[,]Jif-clause]

B Clauses:

parallel
sections
for (C/C++)
do (Fortran)
taskgroup

1f (scalar-expression)

B Semantics

- Requests cancellation of the inner-most OpenMP region of the type specified in
construct-type-clause

—> Lets the encountering thread/task proceed to the end of the canceled region

n Advanced OpenMP

PRACE

cancellation point Construct OpenMP

B Syntax:

#pragma omp cancellation point construct-type-clause
!'Somp cancellation point construct-type-clause

B Clauses:

parallel
sections
for (C/C++)

do (Fortran)
taskgroup

B Semantics

- Introduces a user-defined cancellation point

- Pre-defined cancellation points:
— implicit/explicit barriers regions
—> cancel regions

n Advanced OpenMP

PRACE

Cancellation of OpenMP Tasks OpenMP

B Cancellation only acts on tasks grouped by the taskgroup construct

— The encountering tasks jumps to the end of its task region

- Any executing task will run to completion
(or until they reach a cancellation point region)

- Any task that has not yet begun execution may be discarded
(and is considered completed)

B Tasks cancellation also occurs, if a parallel region is canceled.
- But not if cancellation affects a worksharing construct.

PRACE

Advanced OpenMP

Task Cancellation Example OpenMP

binary_tree_t* search_tree_parallel(binary_tree_t* tree, int value) {

binary_tree_t* found = NULL;
#pragma omp parallel shared(found,tree,value)

{

#pragma omp master

{
#pragma omp taskgroup

{

found = search_tree(tree, value);

}
}
}

return found;

}

PRACE

Advanced OpenMP

Task Cancellation Example

Advanced OpenMP

binary_tree_t* search_tree(
binary_tree_t* tree, int value,
int level) {

binary_tree_t* found = NULL;
if (tree) {
if (tree->value == value) {
found = tree;
¥
else {
#pragma omp task shared(found)
{
binary tree_t* found_left;

found_left =
search_tree(tree->left, value);

if (found_left) {

#pragma omp atomic write
found = found_left;
#pragma omp cancel taskgroup

}
}

#pragma omp task shared(found)
{
binary_tree_t* found_right;
found_right =
search_tree(tree->right, value);
if (found _right) {
#pragma omp atomic write
found = found_right;
#pragma omp cancel taskgroup

}
}
#pragma omp taskwait
}
}

return found;

OpenMP

PRACE

OpenMP

Advanced Task Synchronization

PRACE

Advance d OpenMP

Asynchronous API Interaction OpenMP

B Some APlIs are based on asynchronous operations
- MPI asynchronous send and receive
= Asynchronous I/0O
- CUDA and OpenCL stream-based offloading
— In general: any other APl/model that executes asynchronously with OpenMP (tasks)

B Example: CUDA memory transfers

do_something();

cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);
do_something else();

cudaStreamSynchronize(stream);
do_other_important_stuff(dst);

B Programmers need a mechanism to marry asynchronous APIs with the parallel
task model of OpenMP

- How to synchronize completions events with task execution?

Advanced OpenMP

PRACE

Try 1: Use just OpenMP Tasks OpenMP

void cuda_example() {
#pragma omp task // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceToHost, stream);

}
#pragma omp task // task B Race condition between the tasks A & C,
{ task C may start execution before
do_something_else(); task A enqueues memory transfer.
}
#pragma omp task // task C
{
cudaStreamSynchronize(stream);
do_other_ important stuff(dst);
}

B This solution does not work!

Advanced OpenMP

PRACE

Try 2: Use just OpenMP Tasks Dependences OpenMP

void cuda_example() {
#pragma omp task depend(out:stream) // task A

{
do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMenfpyDeviceToHost, stream);
}
#pragma omp task // task B Synchronize execution of tasks through dependence.
{ May work, but task C will be blocked waiting for
do_something_else(); the data transfer to finish
}
#pragma omp task depend(in:stream) // task C
{
cudaStreamSynchronize(stream);
do_other_ important stuff(dst);
}

}

B This solution may work, but
— takes a thread away from execution while the system is handling the data transfer.
- may be problematic if called interface is not thread-safe PRACF

Advanced OpenMP

OpenMP Detachable Tasks OpenMP

B OpenMP 5.0 introduces the concept of a detachable task

— Task can detach from executing thread without being “completed”

- Regular task synchronization mechanisms can be applied to await completion
of a detached task

- Runtime API| to complete a task

B Detached task events: omp_event_t datatype

B Detached task clause
detach(event)

B Runtime API
void omp fulfill event(omp event t *event)

Advanced OpenMP

PRACE

Detaching Tasks

omp_event_t *event;
void detach_example() {
#pragma omp task detach(event)

{

important_code();
'@
#pragma omp taskwait @ @

}

1. Task detaches

2. taskwait construct cannot
complete

n Advanced OpenMP

Some other thread/task:

OpenMP

omp_fulfill event(event); <::>

3. Signal event for completion
4. Task completes and taskwait

can continue

PRACE

Putting It All Together OpenMP

void CUDART_CB callback(cudaStream t stream, cudaError_t status, void *cb dat) {
(:)omp_fulfill_event((omp_event_t *) cb _data);

}
void cuda_example() {
omp_event t *cuda_event;
#pragma omp task detach(cuda event) // task A

{

do_something();
cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceTpHost, stream);
cudaStreamAddCallback(stream, callback, cuda event,M0);

O)!
#pragma omp task // task B
do_something else();
1. Task A detaches
taskwait does not continue
When memory transfer completes, callback is
{ , invoked to signal the event for task completion
do_other_ important stuff(dst); . :
} } 4. taskwailt continues, task C executes

Advanced OpenMP

)

#pragma omp taskwait<:><:>
#pragma omp task // task C

&=

PRACE

Removing the taskwait Construct OpenMP

void CUDART_CB callback(cudaStream t stream, cudaError_t status, void *cb dat) {
(:)omp_fulfill_event((omp_event_t *) cb _data);
}

void cuda_example() {
omp_event t *cuda_event;
#pragma omp task depend(out:dst) detach(cuda event) // tasldA

{

do_something();

cudaMemcpyAsync(dst, src, nbytes, cudaMemcpyDeviceTpHost, stream);
(:) cudaStreamAddCallback(stream, callback, cuda event,®9);

}
#pragma omp task // task B
d thi 1 ; .
o_something_else() 1. Task A detaches and task C will not execute because
#pragma omp task depend(in:dst) /] task C of its unfulfilled dependency on A
{ @ 2. When memory transfer completes, callback is
do_other important stuff(dst); invoked to signal the event for task completion
Y} 3. Task A completes and C’s dependency is fulfilled
PRACE

n Advanced OpenMP

OpenMP

Enabling HPC since 1997

OpenMP APl Version 5.0
State of the Union

OpenMP

Architecture Review Board

o AMDD age® arm (@ SroowmmeE owp
The mission of the OpenMP

: . cRAN == ite)
ARB (Architecture Review ~epcel FUITSU IEEE dew- (it o
Board) is to standardize

. . . |_ Al Y n NEC
directive-based multi-language ﬂ% HORLAIES M e gicron @
high-level parallelism that is X N - cey (] [l
performant, productive and ol e rednat TUUNVERSTY abortores RIS

portable. .
Tuse Tace wip B pymu | T

We adapt. You succeed, rsity of Manchester

OpenMP

Development Process of the Specification

m Modifications of the OpenMP specification follow a (strict) process:

Impl. Merge to P
M

mRelease process for specifications:

Comment ARB
Draft Approval

OpenMP

OpenMP Roadmap

mOpenMP has a well-defined roadmap:
= 5-year cadence for major releases
= One minor release in between
= (At least) one Technical Report (TR) with feature previews in every year

OpenMP 5.0 OpenMP 5.1 OpenMP 6.0

Nov’'17 Nov’'1l8 Nov’19 Nov’20 Nov’21 Nov’22 Nov’23
Public Comment Public Comment Public Comment
Draft (TR7) Draft (TR9) Draft (TR12)

* Numbers assigned to TRs may change if additional TRs are released. 4

OpenMP

Highlights of TR8 and Version 5.1 Plans

m Some significant extensions to existing functionality
" The interop construct improves native device support (e.g., CUDA streams)
= Major improvements to declare variant construct
= Support for mapping (translated) function pointers
" The assume directive supports optimization hints (and well-defined OpenMP subsets)
" The error directive supports user-defined warnings and errors

= Added the tile directive, the first of many possible loop transformation directives
= Expect to add one more transformation in OpenMP 5.1 (probably unrol1 but still TBD)

= |nitial extensions to specify OpenMP directives as C++ attributes (more to come in 5.1)
= Full support for C11, C18, C++11, C++14, C++17, close for Fortran 2008

m OpenMP 5.1 feature freeze will occur in May 2020
* May add taskloop affinity and dependences (inoutset dependences already added)

OpenMP

OpenMP APl Version 6.0 Outlook — Plans

mBetter support for descriptive and prescriptive control
mMore support for memory affinity and complex memory hierarchies
mSupport for pipelining, other computation/data associations

m Continued improvements to device support
= Extensions of deep copy support (serialize/deserialize functions)

m Task-only, unshackled or free-agent threads
m Event-driven parallelism
m7/2in progress 5.1 issues; 19 issues already deferred to 6.0

OpenMP

Printed OpenMP API Specification

m Save your printer-ink and get the full
specification as a paperback book!
= Always have the spec in easy reach.

Qp_enMP I | " Includes the entire specification with the same
Aplication Programming Interface i pagination and line numbers as the PDF.

Specification v
= Available at a near-wholesale price.

ersion 5.0

Edited by Michael Klem

M and Bronis R, de Supinski

mGet yours at Amazon at http://bit.ly/spec-50

OpenMIP

Recent Books about OpenMP

USING OPENMP-
THE NEXT STEP

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP. Simple Again

c
Q 1
4
@
(@)
o
m
z
Z
o
I
-
I
m
zZ
m
X
—
7]
_|
m
o

~
I
m
o
<
m
Z
=
]
(m)
o
=
=
o]
<
)
S
™

Ruud van der Pas, Eric Stotzer,

and Christian Terboven Timothy G. Mattsan, Yun (Helen) He,

and Alice E. Koniges

Covers all of the Introduces the
OpenMP 4.5 features, 2017 OpenMP Common Core, 2019

OpenMP

Help Us Shape the Future of OpenMP

mOpenMP continues to grow
= 33 members currently

mYou can contribute to our annual releases

mAttend IWOMP, become a cOMPunity member

mOpenMP membership types now include less expensive memberships
= Please get in touch with me if you are interested

OpeniVIP

Enabling HPC since 1997

Visit www.openmp.org for more information

10

	00_titlepage
	01_tasking-motivation
	02_tasking-model
	10_tasking-taskloop
	11_tasking-dependences
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

	12_tasking-cutoffs
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

	20_vectorization
	30_memoryaccess
	40_gpu_offload
	50_openmptools
	60_openmp-loop-doacross
	61_tasking-cancellation
	62_tasking-async
	70_outlook
	OpenMP API Version 5.0 State of the Union
	Architecture Review Board
	Development Process of the Specification
	OpenMP Roadmap
	Highlights of TR8 and Version 5.1 Plans
	OpenMP API Version 6.0 Outlook – Plans
	Printed OpenMP API Specification
	Recent Books about OpenMP
	Help Us Shape the Future of OpenMP
	Slide Number 10

