INTEL” ADVISOR
DEMO

Dr. Fabio Baruffa
Sr. HPC Apps. Engineer, Intel IAGS

INTEL ADVISOR AND ROOFLINE

“*Automatic” Vectorization Often Not Enough

A good compiler can still benefit greatly from vectorization optimization

Compiler will not always vectorize

= Check for Loop Carried Dependencies
using Intel® Advisor

= All clear? Force vectorization.
C++ use: pragma simd, Fortran use: SIMD directive
Not all vectorization is efficient vectorization

= Stride of 1 is more cache efficient than stride of 2 and
greater. Analyze with Intel® Advisor.

= Consider data layout changes
Intel® SIMD Data Layout Templates can help

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Benchmarks on prior slides did
not all “auto vectorize.” Compiler
directives were used to force
vectorization and get more
performance.

Arrays of structures are great for
intuitively organizing data, but
are much less efficient than
structures of arrays. Use the
Intel® SIMD Data Layout
Templates (Intel® SDLT) to map
data into a more efficient layout
for vectorization.

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt

Get Breakthrough Vectorization Performance

Intel® Advisor—Vectorization Advisor

Faster Vectorization Optimization

(@ | Elapsed time 125725

Vectorize where it will pay off most
Quickly ID what is blocking vectorization
Tips for effective vectorization

Safely force compiler vectorization
Optimize memory stride

Not Vectorized

(O Vectorized

FILTER:l All Modules vH All Sources v” Loops And Functions v” All Threads +

Summary %, Survey & Roofline ™) Refinement Reports

@& | ® Peor | seif Timew | Total Time

+l[=] Function Call Sites and Loops lssues

ANITI00Y

loop in main at roofline.cpp:295] | L[] 18538s@0 18.538s0

[loop in main at roofline.cpp:310] O 18.394s @B 18.394s8
40 [loop in main at roofline.cpp:221] 14741 @8 1474150
4/ [loop in main at roofline.cpp:234] O NN7s@ 1111750

[loop in main at roofline.cpp:247] [} 6.967s @ 6.967s)

Optimize for Intel® AVX-512 with or without access to AVX-512 hardware

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data & Guidance You Need

= Compiler diagnostics +
Performance Data + SIMD efficiency
» Detect problems & recommend fixes
» Loop-Carried Dependency Analysis
= Memory Access Patterns Analysis
| . | a]
INTELADVISOR 2019
T -Why No :Vectorized Loops _ . Instruction Set
ype Vectorization? IVed... Efficiency IGa’ln... VL Com...lTraits Da
Vectorized (B... AVX [E100% |534x 4 5.34x F
Vectorized (Bo... Avx [EADDEENT]s534x 4 5.34x 2
Scalar & novector dire... Flo
Scalar @ inner loop w... Flo
Vectorized (Bo... AVX 1.22x 4 1.22x Insers; U.. Flo

http://intel.ly/advisor-xe

http://intel.ly/advisor-xe

ROOFLINE MODEL

Cache-Aware Roofline
Next Ste PS If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

flagstoin FMA usage.
If under or near a FLOPS gs to induce usage Follow the
memory roof... A recommendations to

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler

. Try a MAP analysis. Ll improve it if it's low.
Make any approprlate 4 ? V‘ctor Add Peak
cache optimizations. : I ‘
« If cache optimization 1 | Scalar Add Peak...
is impossible, try I : Check the Survey Report
reworking the : I to see if the loop
algorithm to have a | ‘ vectorized. If not, try to
higher Al. ‘ Scalar Add Peak get it to vectorize if
possible. This may involve
running Dependencies to
see if it's safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find Effective Optimization Strategies

Intel® Advisor—Cache-aware Roofline Analysis

: : IRt © vecoioe] o oo Gy
ROOflIne Performance InSIghtS FILTEIEI All Modules v” All Sources v” Loops And Functions VI AIIT;ITds?:‘ Mﬂmmg

]] Summary 2, Survey & Roofline 1] Rgﬁnementkgpm

= Highlights poor performing loops

RQ @ o« x B -~

Shows performance ‘headroom’
for each loop

— Which can be improved
— Which are worth improving

8 -

FLOP/Byte (Anthmetic Intensity)
T
0.54

T
0.033
Physical Cores: 4 ® App Threads: 1 ¥ Self Elapsed Time: 17.079 s Total Time: 17.079 s

Shows likely causes of bottlenecks

“I am enthusiastic about the new "integrated roofline" i

= Suggests next optimization steps usiast : ,
Intel® Advisor. It is now possible to proceed with a step-by-
step approach with the difficult question of memory transfers

Nicolas Alferez. Software Architect optimization & vectorization which is of major importance.
Onera - The French Aerospace Lab

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ADVISOR DEMO

Validating Vectorization Success I: Compiler report

= -gopt-report[=n]: tells the compiler to generate an optimization report

= n:(Optional) Indicates the level of detail in the report. You can specify values O through 5. If you
specify zero, no report is generated. For levels n=1 through n=5, each level includes all the
information of the previous level, as well as potentially some additional information. Level 5
produces the greatest level of detail. If you do not specify n, the default is level 2, which
produces a medium level of detail.

= -gopt-report-phase[=list]: specifies one or more optimizer phases for which
optimization reports are generated.
= |oop: the phase for loop nest optimization
= vec: the phase for vectorization

= par: the phase for auto-parallelization
= all: all optimizer phases

= -gopt-report-filter=string: specified the indicated parts of your application,
and generate optimization reports for those parts of your application.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Validating Vectorization Success |l

= -S:assembler code inspection
= Most reliable way and gives all details of course

= (Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

= Compiling with -qopt-report-embed (Linux*, macOS*) helps interpret assembly code

= Performance validation

= Compile and benchmark with -no-vec —gno-openmp-simd or on a loop by loop basis via
#pragma novector or 'DIR$ NOVECTOR

= Compile and benchmark with selected SIMD feature
= Compare runtime differences

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo: Nbody gravity simulation

Let’s consider a distribution of point masses locatedatr 1,..,r n and have
massesm 1,..,m n

We want to calculate the position of the particles after a certain time interval using

the Newton law of gravity o
struct Particle @) @ ©
{ | O @ @ ©
public: o
Particle () { init();} @) o @)
\{]oid init () O O O ll'snol“ill;sllhz%gn‘)didea.
pos[0] = 0.; pos[l] = 0.; pos[2] = 0.
vel[0] = 0.; vel[l] = 0.; vel[2] = O. — Gmlmj - o
acc[0] = 0.; acc[l] = 0.; acc[2] =0 F = (r.—r)
mass = 0.; Y = _'|3 J :
.7 r_r.
} j i
real type pos[3];
real type vell[3]; - -
real type acc[3]; - - d \% d 2 X
real type mass; F:m ada=m———m 2
bi dt dt

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo: Nbody kernel implementation

GSimulation.cpp:

;1 < n; i++) | // update acceleration
j = 0; 3 <n; J++) |

real type distance, dx, dy, dz;

real type distanceSqr = 0.0;

real type distancelInv = 0.0;

dx = particles[]j].pos[0] - particles[i].pos[0];
dy = particles[]j].pos[l] - particles[i].pos[l];
dz = particles[]j].pos[2] - particles[i].pos[2];

distSgr = dx*dx + dy*dy + dz*dz + softeningSquared;

distInv = 1.0 / sqgrt(distanceSqr) ;

particles[i] .acc[0] += dx * G * particles[j].mass * distInv * distInv * distInv;
particles[i].acc[1l] +
particles[i].acc[2] +

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo - nbody-sim/verQ

» Go to the folder nbody-sim/verO
= Type make to compile code.
= Type make survey to run the Survey Analysis of Advisor.

= Once you have setup the VNC connection (see previous instructions), open
the Advisor results via the GUI, typing make open-qui .

» For the Roofline Analysis, run make roofline .

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo — nbody-sim/ver0O: Advisor Summary

D Vectorized Not Vectorized m AllModules ~[| All Sources ~ _ z
B Summary L In UYIoUR

@ Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector
parallelism, discover performance issues preventing from effective vectorization and characterize your memory vs.
vectorization bottlenecks with Advisor Roofline model automation.

) Program metrics
Elapsed Time 52.32s
Vector Instruction Set SSE2, SSE Number of CPU Threads 1
Total GFLOP Count 115.20 Total GFLOPS 2.20

Total Arithmetic Intensity @ 1.87452

() Loop metrics

Metrics Total

Total CPU time 52.30s NN 100.0%
Time in 1 vectorized loop 52.28s I 100.0%
Time in scalar code 002s |

Total GFLOP Count 115.20 (I 100.0%
Total GFLOPS 2.20

() Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency 1.80x [EE]

Program Approximate Gain @ 1.80x

) Per program recommendations

A& Higher instruction set architecture (ISA) available
Consider recompiling your application using a higher ISA. Show more

) Top time-consuming loops”

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo — nbody-sim/verQ: Code Analytics

Vectorization @ Elapsed time: 52.32s Not Vectorized |§

[FILTER:| All Modules ~

[AllSources || Loops And Functions ~|[All Threads ~ L | o
INTELADVISOR 2019

Workflow Summary % Survey & Roofline ™i Refinement Reports
orr [l Batch mode A Higher instruction set architecture (ISA) available
C Consider recompiling your application using a higher ISA.
Run Roofline ized
) : < - . Why No Vectorized Loops 2l Cor
+ = Function Call Sites and Loops & @ Performance Issues Self Timev |Total Time Type .
 Collect | L] § & E P Vectorization? Vector... Efficiency | GainE... VL (Ve... Sell
Enable Roofline with Callstacks =1 " [loop in GSimulation:start at GSimulation.cpp:132] [J &4 Unoptimized floating p... 52.281s MM 52.281s B Vectorized (Body) SSE2 90%. 1.80x 2 2.2
[l = O [loop in GSimulation::start at GSimulation.cpp:130] O 0.024s! 52.305s Scalar @ inner loop was alr... 0.0:
1. Survey Target § _start] 0.000s!(52.305s Function
& Collect b, @] 2 f main . ; 0.000s!(52.305s Funct?on
< § GSimulation::start L 0.000s! 52.305s Function
Mark Loops For D An-lvsls G [loop in GSimulation::start at GSimulation.cpp:127] (J @1 Datatype conversions pr... 0.000s(52.305s Scalar @ inner loop was alr...
Select checkboxes in the Survey &
Roofline tab to mark loops for other
Advisor analyses.
- There are no marked loops — :
1.1 Find Trip Counts and FLOP Source I TopDown | Code Analytics | Assembly | < Recommendations | & Why No Vectorization?
< Collect », @ [] :
. Loop in GSimulation:start at GSimulation.cpp:132 i . & - ®
1 Trip Counts Source Trip Counts: 16000 e GFLOPS: 2.20349 2
GINTOPS: 0.07345
FLOP 52.281s
0 - Analyze all loops ~ Vectorized (Body) Total time y g ;
4 A = | 1.80x) Code Optimizations ‘ e
Check Memory Access Patterns ?,SE' ‘ SEVZ‘ S~2.2~81 S 90% Vectorization Efficiency Neckordsstion Gain ICntzren‘;()g)egalntel(R) C++ Intel(R) 64 Compiler for applications running on
f» Collect m [] Version: 19.0.0.117 Build 20180804
s = St on S 2 Compiler estimated gain: 1.79x
- —Noloops selected S Dy ic mmary Traits @ Vectorization/Optimization report by Compiler: no messages
2.2 Check Dependencies Memory 23% (19200000000, 15) Square Roots, Type Conversions, Unpacks
Compute 50% (40960000000, 32) (NN
¥} Collect m [] Mixed 2% (1280000000, 1) |

i No loops selected — Other 25% (20480000000, 16) (D
CPU Total Time
4.08443e-08s 0.00033s

Per Iteration | Per ce

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo — nbody-sim/ver-avx512

» Go to the folder nbody-sim/ver-avx512
= Type make to compile code.
= Type make survey to run the Survey Analysis of Advisor.

= Once you have setup the VNC connection (see previous instructions), open
the Advisor results via the GUI, typing make open-qui .

» For the Roofline Analysis, run make roofline .

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo — nbody-sim/ver-avx512: Code Analytics

All Modules

Loops And Functions All Threads v

% Survey & Roofline

o

Why No Vectorized Loops B FLOPS

o . - : . .

\;‘ # = Function Call Sites and Loops & | ¢ Performance Issues Self Timev Total Time Type Vectorization? | Vecto__| EF fiency |GainE... | VL (Ve... Self GFLOPS | Self A

=4 . [loop in GSimulation:start at GSimulation.cpp:132] [¢ 2 Possible inefficient me... 7.663s = 9.669s Vectorized (B... AVX.. (52]834x 16 8.351 I 0.132

Gl -/ _svml_invsqrtF16_z0 | B3 2.006sm 2.006s® Vector Function AVXS... 8.934 e 1.555
;< § _start [@ 0.000s! 9.669s Function
=15 main [8 0.000s! 9.669s Function

</ § GSimulation::start | a8 0.000st(9.669s Function 0.013

=0 [loop in GSimulation::start at GSimulation.cpp:130] | [J 1 Data type conversions pr.. 0.000s! 9.669s Scalar g inner loop ... 1.015

=@ [loop in GSimulation::start at GSimulation.cpp:127] | [J ¢ 1 Data type conversions pr.. 0.000s! 9.669s Scalar & inner loop ... 0.055

Code Analytics

Loop in GSimulation::start at GSimulation.cpp:132 Average Trip Counts: 1000 © GFLOPS:8.35129 ©

@ 9.669s AVX-512 Mask Usage: 100
Vectorized (Body) Total time . 1
Traits @)
: ; Static Instruction Mix ©
AVX512F 512 7.663s Type Conversions, Blends, Inserts, Extracts, FMA, 2-Source Permutes Momory-E3 Compule:36. | Ofer:62

Instruction Set Self time

» Static Instruction Mix Summary™
¥ Dynamic Instruction Mix Summary”
» Memory 35% (8480000000, 53) EIEED
» Compute 24% (5760000000, 36) (D
Other 41% (9920000000, 62) SN

D 8.34x ©

52% Vectorization Efficiency Vectorization Gain

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo - nbody-sim/ver-avx512: Recommendations

| © Not Vectori | AllModules ~|| AllSources || Loops And Functions || All Threads ~|

% Survey & Roofline

Why No Vectorized Loops Com

‘ = Function Call Sites and Loops (18 @ Performance Issues Self Timev Total Time | Type Vectorization? Vector.. Efficency | Gain E... | VL (Ve... Self

Bi# [loop in GSimulation:start at GSimulation.cp| * 2 Possible inefficient memory access pa...|6.269s | 8.347s 1 Vectorized (Body) |AVX512 Bl s.25x |16

|1 __svml_invsqrtf16_z0 2.078sm 2.078sm Vector Function AVX512 8.6
::start at GSimulation.cpp:1 € 1 Data type conversions present 0.012s! 8.359s mmmmm Scalar @inner loop ... 2.5

DE@aoog

0.000s! 8.359s mmmmm Function
0.000st 8.359s mmmm Function
“ § GSimulation::start 0.000s! 8.359s mmmmm Function
|=® [loop in GSimulation::start at GSimulation.cpp:1 @ 1 Data type conversions present 0.000s!(8.359s mmmm Scalar @ inner loop ...
T y D
¢ Recommendations I
All Advisor-detectable issues: C++ | Fortran :oulb;e inefficient memory access pattems
4 o Issue: Possible inefficient memory access patterns present Confirm Inefficient memory access patterns
S Inefficient memory access patterns may result in significant vector code execution slowdown or block automatic vectorization by the compiler. Improve performance by investigating. Data type conversions present

iaalmemory access pattems Use the smallest data type

i@ are present. To confirm: Runfg Memory Access Patterns analysis.

here are multiple data types within loops. Utilize hardwage

The source loop contains data types of different widths. To fix: Use the smallest data type that gives the needed precision to use the entire vector register width.

Brization support more effectively by avoiding data type conversion.

Intel, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo — nbody-sim/ver-avx512

Go to the folder nbody-sim /ver-avx512

Type make clean-results to delete the previous data.

Generate a new Survey Analysis of Advisor and Roofline:

= make roofline

To run the MAP Analysis: make map

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo - nbody-sim/ver-avx512: Map Analysis

NesEarention [| Elapsed time: 3.62s [ERtir] B R] <~ | FILTER:| All Modules [All Sources
Workflow

B Summary % Survey & Roofline ™) Refinement Reports |NTE|.AW]SUR2U]9

Footprint Estimate
or¢ [l | Batch mode Site Location Loop-Carried Dependencies g fccess Pattern = °
Max. Per-Instruction Addr.... First Instance Sit... Simu.

Run Roofline B - s
» Collect m [i 1

Performance Issues

Site Name

Enable Roofline with Callstacks o . //1flop
i a - /1flop

1. Survey Target
) Collect b, W]

Mark Loops For Deeper Analysis

Select checkboxes in the Survey &
Roofline tab to mark loops for other
Advisor analyses.

4 1 loop is marked

1.1 Find Trip Counts and FLOP
< Collect b, W [

[Trip Counts
ticles[j].pos[@] - particles[i].pos[@];
FLOP e].pos[1] F 1:

Dependencies Report | + Recommendations

% | Stride Type Source Nested Function Variable references Max. Per-Instruction Addr. Range Modules Site Name AccessTy...
@ 40 Constant stride GSimulation.cpp:138 block 0x7F29f3a5d010 allocated at GSimulation.cpp:103 617KB nbody.x loop_site_1 Read
0

type gi#tancelnv

2.1 Check Memory Access Patterns

loop_site_1 Read
I» Collect ™ []

M Gather stride GSimulati block 0x7F29f3a5d010 allocated at GSimulation.cpp:103 617KB nbody.x
tanceInv 1.0f / tf s C ") / /

2.2 Check Dependencies
*; Collect []

P30 Parallel site information GSimulation.cpp:138 nbody.x loop_site_1

*P5 @ 0 Uniform stride GSimulation.cpp:138 64B nbody.x loop_site_1 Read
*P6 @ 0 Uniform stride GSimulation.cpp:143 8B nbody.x loop_site_1 Read
P7 @ 0 Uniform stride nbody.x:0x773a svml_invsqrtf16_z0 _ svml_sinvsqrt_data_internal 64B nbody.x loop_site_1 Read

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory access pattern s AREEEEER

How should | access data ?

For B, 1 cache line load computes 4 DP

= Unit stride access are faster

For Gimo s g N B N B

A[i] = B[i]*d

For B, 2 cache line loads compute 4 DP with
reconstructions

= Constant stride are more complex

for (i=0; i<N; i+=2)
A[i] = B[i]*d

= Non predictable access are usually bad

for (i=0; i<N; i++)
A[i] = B[C[i]]*d

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

o
; |nteI 22

Copyright © 2018, Intel Corporation. All rights reserved.
and brands may be claimed as the property of others.

Non-unit stride load: AoS vs SoOA

The compiler might generate gather/scatter instructions for loops automatically vectorized
where memory locations are not contiguous

AoS - array SoA - structure
struct Particle of structures of arrays
{ b1 Memory Memory
c:
publi

e H ~ p-pos _x[i]
real type pos[3]; H
real type vell[3]; o 7\ p-pos x[i+1]
real type acc[3]; E e e
real type mass; —

} . B .':. P.pos_x[i+3]

' ~ P.pos_x[i+4]
?truct ParticleSoA g = p.pos_x[i+5]
R .
public: E p.pos_x[i+6]
e |[l_i. p.pos_x[i+7]
real type *pos x,*pos y,*pos z; n — - e
- - - - - Vector P.pos_x[i+8] Vector

real type *vel x,*vel y,*vel z; + " Register Register
real type *acc x,*acc y;*acc z =
real type *mass;

}:
Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

a
<

<

Demo - nbody-sim/ver-soa: Report

AllModules ~|| AllSources ~

@ vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector
parallelism, discover performance issues preventing from effective vectorization and characterize your memory vs.
vectorization bottlenecks with Advisor Roofline model automation.

(~) Program metrics
Elapsed Time 2.10s
Vector Instruction Set AVX512 Number of CPU Threads 1
Total GFLOP Count 81.95 Total GFLOPS 39.03

Total Arithmetic Intensity @ 1.48541

) Loop metrics

Metrics Total

Total CPU time 2.08s I 100.0%
Time in 1 vectorized loop 2.06s I 5°.0%
Time in scalar code 0.02s |

Total GFLOP Count 81.95 I 100.0%
Total GFLOPS 39.03

(¥) Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency @ 34.52x (NI

Program Approximate Gain @ 34.20x

() Top time-consuming loops”

Loop Self Time™ Total Time™ Trip Counts®
% [loop in GSimulation::start at GSimulation.cpp:145 1.292s 2.060s 999; 1

© [loop in GSimulation::start at GSimulation.cpp:168] 0.012s 0.012s 16000

@ [loop in GSimulation::start at GSimulation.cpp: 140 0.008s 2.068s 16000

© [loop in GSimulation::start at GSimulation.cpp:137 0s 2.080s 10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo — nbody-sim/ver-soa: Code Analytics

Source | TopDown | Code Anziytics | Assembly | + Recommendations | & Why No Vectorization?

Loop in GSimulation::start at GSimulation.cpp:145 Average Trip Counts: 999; 1 © Statistics for FLOPS And Data Transfers ®
2.060s Giga Floaling-point Operations Per Second
Vectorized {Body; Peeled) Tolal time) Self GFLOPS 49.51577 Seif GFLOPS = Self GFLOP / Self Elapsed
Traits ® Time
Self Al - Self Arithmetic Intensity - Ratio Of
AVX[SJ;?II_:_[S‘ 12 1292‘5 FMA Self Al 1.47054 Self Fioating-Point Operations To Self L1
Instruction Set Self time Mask Manipulations Transterred Bytes

Ratio of Utilized Vector Elements to Total

Static Instruction Mix Summary Mask Utilization 99 Vector Elements
Dy ic I ion Mix Summary’ Giga Floating-Point Operations, Not
Memory 18% (800000000, 5) Self GFLOP 63.96800 Including GFLOP For Functions Called In
Compute 68% (3040320000, 19) (D The Loop Or Function
Mixed " 4% (159840000, 1) 0 Self FLOP Per
F
Other 10% (480320000, 3) @ Jeration 399.8 Floating-point Operations Per Loop Iteration

Elapsed Time Is The Exclusive (Self-
Time-Based) Wall Time From The Beginning

Self Elapsed Time 1.292s To The End Of Loop/Funclion Execution.
For Single-Threaded Applications Elapsed
| - | 34.52x @ Time Is Equal To Self-Time
- iz ati) rmih i Total Elapsed Time Is The Inclusive (Total-
>=100% Vectorization Efficiency Vectorization Gain Time-Based) Wall Time From The Beginning
Total Elapsed Time 2.060s To The End Of Loop/Function Execution.
For Single-Threaded Applications Total
Code Optimizations ® Elapsed Time Is Equal To Total-Time
Compiler: Intel{R) C++ Intel(R) 64 Compiler for applications running on
Intel(R) 64, Data transfers between CPU and memory sub-system (total traffic, including
Version: 18.0.2.199 Build 20180210 L1, L2, LLC and DRAM traffic)
Compiler estimated gain: <14.25x In Giga Bytes, Not Including
. Transfers For Functions Called In 43.49952
Compiler Notes On Vect

_— The Loop Or Function
* Masked Loop Vectorization

« Unaligned Access in Vector Loop In Giga Bytes Per Second 33.67172
In Bytes Per Loop lteration 271.872
Static Instruction Mix ©

Memory: 10 Compute:40 Mixed :1 Other: 8

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Demo - Roofline Comparison

[a]
)
o
o]
3 ?
= oo SP Vector FMA F’Eaé' 125.24 GFLOPS
100
?
= . - SP Vector Add Peak: 62.69 GFLOPS,
DP Vector FMA Peak: 60.72 GFLOPS
% ?
o a8 =] | S O a- = DP Vector Add Peak: 31.26 GFLOPS
10

2

® Jvx-512

ul
)

?
- Scalar Add Peak: 5.3 GFLOPS

@
baseline

FLOP/Byte (Arithmetic Intensity)
T T T
0.01 0.1

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

Performance comparison

= Precision of constant and variables: consistent use of single and double precision

Optimization Options Performance

Baseline 1.3 GFs
-02 -xcore-avx512 —qopt-zmm-usage=high 9.0 GFs
No FP converts 21.1 GFs
Data-layout optimization (100% vec. eff.) 37.7 GFs

Memory alignment 47.7 GFs

Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on Google* Cloud Platform, compute engine, n1-standard-2 (2 vCPUs, 7.5 GB memory), CPU platform Intel® Skylake, Zone us-east1-b, running Ubuntu
16.4 and using the Intel® C++ Compiler version 19.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does
not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice Revision #20110804.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

