@ DEEP
LEARNING
NVIDIA. | INSTITUTE

MULTI-GPU PROGRAMMING
FOR CUDA C++

Dr. Momme Allalen | LRZ | 30.11.2021

COPY/COMPUTE
OVERLAP
CONSIDERATIONS

COPY/COMPUTE OVERLAP CONSIDERATIONS

Copy/Compute Overlap with Streams

Copy/Compute Overlap Indexing

COPY/COMPUTE
OVERLAP WITH
STREAMS

streamO

stream1

stream2

stream3

Using the default stream, a typical 3-step

CUDA program will perform HtoD copy,
compute, and DtoH copy serially

streamO

stream1

stream2

stream3

Using the default stream, a typical 3-step
CUDA program will perform HtoD copy,
compute, and DtoH copy serially

memcpy (HtoD)

Note: we will be using shorthand code in
these slides for ease of presentation

memcpy (HtoD)

streamO

stream1

stream2

stream3

streamO

stream1

stream2

stream3

Using the default stream, a typical 3-step
CUDA program will perform HtoD copy,
compute, and DtoH copy serially

memcpy (HtoD)
compute<<<>>>>()

streamO

stream1

stream2

stream3

Using the default stream, a typical 3-step
CUDA program will perform HtoD copy,
compute, and DtoH copy serially

memcpy (HtoD)
compute<<<>>>>()

memcpy (DtoH)

Let’s consider how we might perform
copy/compute overlap

compute

streamO

stream1

stream2

stream3

One naive approach might be to simply

issue each of these 3 operations in
different non-default streams

One naive approach might be to simply
issue each of these 3 operations in
different non-default streams

memcpy (HtoD, streaml)

streamO

stream1

stream2

stream3

streamO

stream1

stream2

stream3

One naive approach might be to simply
issue each of these 3 operations in
different non-default streams

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

streamO

stream1

stream2

stream3

One naive approach might be to simply
issue each of these 3 operations in
different non-default streams

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

memcpy (DtoH, stream3)

Would this work?

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

memcpy (DtoH, stream3)

streamO

stream1

stream3

Would this work?
No

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

memcpy (DtoH, stream3)

streamO

stream1

stream3

streamO

stream1

stream2

stream3

Recall that operations in non-default
streams have no guaranteed order,
therefore...

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

memcpy (DtoH, stream3)

...something like this could occur

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

streamO
memcpy (DtoH, stream3)

stream1

stream2

stream3

...and compute might begin before the
data it needs is present on the GPU

memcpy (HtoD, streaml)
compute<<<stream2>>>>()

streamO
memcpy (DtoH, stream3)

stream1

stream2

stream3

Another naive approach might be to issue

them all in the same non-default stream,
to guarantee data/compute order

streamO

stream1

stream2

stream3

Another naive approach might be to issue
them all in the same non-default stream,
to guarantee data/compute order

memcpy (HtoD, streaml)
streamO

stream1

stream2

stream3

streamO

stream1

stream2

stream3

Another naive approach might be to issue
them all in the same non-default stream,
to guarantee data/compute order

memcpy (HtoD, streaml)
compute<<<streaml>>>>()

streamO

stream1

stream2

stream3

Another naive approach might be to issue
them all in the same non-default stream,
to guarantee data/compute order

memcpy (HtoD, streaml)
compute<<<streaml>>>>()

memcpy (DtoH, streaml)

However, this results in the same
behavior as using the default stream: no
overlap

memcpy (HtoD, streaml)
compute<<<streaml>>>>()

memcpy (DtoH, streaml)

streamO

stream2

stream3

Consider if we were to take the existing

program...

streamO

stream1

stream2

stream3

streamO

stream1

stream2

stream3

Consider if we were to take the existing
program...

memcpy (HtoD)
compute<<<>>>>()

memcpy (DtoH)

streamO

stream1

stream2

stream3

com_a com_b

...and split the data into 2 chunks

memcpy (chunk_a, HtoD)
memcpy (chunk_b, HtoD)
compute<<<>>>>(chunk_a)
compute<<<>>>>(chunk_b)
memcpy (chunk_a, DtoH)
memcpy (chunk_b, DtoH)

streamO

stream1

stream2

stream3

com_a com_b

If we now move all operations for each
chunk into their own separate non-
default stream...

memcpy (chunk a, HtoD)

memcpy (chunk b, HtoD)
compute<<<>>>>(chunk_ a)
compute<<<>>>>(chunk b)
memcpy (chunk a, DtoH)
memcpy (chunk b, DtoH)

streamO

stream1

stream2

stream3

If we now move all operations for each
chunk into their own separate non-
default stream...

memcpy (chunk _a, HtoD, streaml)
compute<<<streaml>>>>(chunk_a)
memcpy (chunk _a, DtoH, streaml)

memcpy (chunk b, HtoD)
compute<<<>>>>(chunk b)
memcpy (chunk b, DtoH)

streamO

stream1

stream2

stream3

com_a

com_b

If we now move all operations for each
chunk into their own separate non-
default stream...

memcpy (chunk a, HtoD, streaml)

compute<<<streaml>>>>(chunk a)
memcpy (chunk a, DtoH, streaml)

memcpy (chunk b, HtoD, stream2)
compute<<<stream2>>>>(chunk_b)
memcpy (chunk b, DtoH, stream2)

streamO

stream1

stream2

stream3

com_a

com_b

...data/compute order is maintained, and,
we can achieve some overlap

memcpy (chunk a, HtoD, streaml)
compute<<<streaml>>>>(chunk a)
memcpy (chunk a, DtoH, streaml)

memcpy (chunk b, HtoD, stream2)
compute<<<stream2>>>>(chunk b)
memcpy (chunk b, DtoH, stream2)

...data/compute order is maintained, and,
we can achieve some overlap

memcpy (chunk a, HtoD, streaml)
compute<<<streaml>>>>(chunk a)

memcpy (chunk a, DtoH, streaml)

memcpy (chunk b, HtoD, stream2)
compute<<<stream2>>>>(chunk b)
memcpy (chunk b, DtoH, stream2)

streamO

stream1

stream2

stream3

HNE

Hypothetically, the number of chunks

could be increased for perhaps even
better overlap

Hypothetically, the number of chunks

could be increased for perhaps even
better overlap

The ideal chunking is best learned by

observing program performance

COPY/COMPUTE
OVERLAP INDEXING

When chunking data to use in multiple

streams, indexing can be tricky

Let’s look at a couple examples of how it

can be done

We will start by allocating the data

needed for all chunks, here a small size
to make the example clear

TR ED e
needed for all chunks, here a small size

to make the example clear

cudaMallocHost (&data cpu, N)

DEODEEODE0O0RON
DNODEEOODOR O

Of course we would allocate for the GPU
as well, but here we will only present one
image of the data

cudaMallocHost (&data cpu, N)
cudaMalloc(&data gpu, N)

n n n n Of course we would allocate for the GPU
as well, but here we will only present one

image of the data

cudaMallocHost (&data cpu, N)

TR ED e —
streams, and loop to create and collect

them in an array

TR ED e —
streams, and loop to create and collect

them in an array

num streams = 2

// for stream i in num_streams
cudaStreamCreate(stream)
streams[stream i] = stream

e e

DooEDooEoOon e ot et kot e
depend on the number of data entries

and the number of streams

e e
O

num_streams

TR ED e g f s oo
depend on the number of data entries

and the number of streams

chunk_size = N / num streams

O R

(e A
N e

TR ED s i e vt
chunk of data. We need to calculate its

index into the whole data set

num_streams

chunk_size N/num_streams

n n n n To do this we will range over the number

of streams, starting at 0...

// for stream i in num_streams

chunk_size N/num_streams

L] B B B B
...and multiply by chunk size

// for stream i in num_streams

lower = chunk size*stream i

chunk_size N/num_streams
lower chunk_size*stream_i _

DB ooEne tartin a the lowr index and utlzing 2
chunk size worth of data will give us the

stream’s data within all data

// for stream i in num_streams

lower = chunk size*stream i

chunk_size N/num_streams
lower chunk_size*stream_i _

o 0 E BB
This method will work for each stream_i

// for stream i in num_streams

lower = chunk size*stream i

n n n n Having calculated these values, we can

now perform non-default stream HtoD
memory copies...

cudaMemcpyAsync (
data_ cpu+lower,
data gpu+lower,
sizeof (uint64_ t)*chunk size,
cudaMemcpyHostToDevice,
streams[stream 1i]

chunk_size N/num_streams
3 . .
lower chunk_size*stream_i _
>

n n n n Having calculated these values, we can

now perform non-default stream HtoD
memory copies...

cudaMemcpyAsync (
data_ cpu+lower,
data gpu+lower,
sizeof (uint64_ t)*chunk size,
cudaMemcpyHostToDevice,
streams[stream 1i]

chunk_size N/num_streams
3 . .
lower chunk_size*stream_i _
>

n n n n Having calculated these values, we can

now perform non-default stream HtoD
memory copies...

cudaMemcpyAsync (
data_ cpu+lower,
data gpu+lower,
sizeof (uint64_ t)*chunk size,
cudaMemcpyHostToDevice,
streams[stream 1i]

3
>

o 0 E BB
...non-default stream kernel launches...

kernel

<<<G, B, 0,streams[stream 1i]>>>(
data gpu + lower,
chunk_size

chunk_size N/num_streams
3 . .
lower chunk_size*stream_i _
>

o 0 E BB
...non-default stream kernel launches...

kernel

<<<G, B, 0,streams[stream 1i]>>>(
data gpu + lower,
chunk_size

chunk_size N/num_streams
3 . .
lower chunk_size*stream_i _
>

o 0 E BB
...non-default stream kernel launches...

kernel

<<<G, B, 0,streams[stream 1i]>>>(
data gpu + lower,
chunk_size

_
>

L] oy and ron-deaut sream ot merry

copies

cudaMemcpyAsync (

data cpu + lower,

data gpu + lower,

sizeof (uint64_ t)*chunk size,
cudaMemcpyHostToDevice,
streams[stream 1i]

_
I CR
3
I T
>

L] oy and ron-deaut sream ot merry

copies

cudaMemcpyAsync (

data cpu + lower,

data gpu + lower,

sizeof (uint64_ t)*chunk size,
cudaMemcpyHostToDevice,
streams[stream 1i]

_
I CR
3
I T
>

L] oy and ron-deaut sream ot merry

copies

cudaMemcpyAsync (

data cpu + lower,

data gpu + lower,

sizeof (uint64_ t)*chunk size,
cudaMemcpyHostToDevice,
streams[stream 1i]

_
3
>

L] o ye g For thisexampl, N vas evenly divided by

number of streams

10
num_streams 2
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

o B EDEB
But what if this is not the case?

10
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

L] o ye g Ty ——

rounded down if necessary, as in this case

1
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

n n n n Now as we iterate through the streams to

get lower, and then apply chunk size...

10
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

n n n n Now as we iterate through the streams to

get lower, and then apply chunk size...

10
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

n n n n Now as we iterate through the streams to

get lower, and then apply chunk size...

10
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

n n n n Now as we iterate through the streams to

get lower, and then apply chunk size...

10
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

\/
o B E B e
A ...we fail to access all values in the data

10
num_streams 3
chunk_size N/num_streams

stream_i

lower chunk_size*stream_i

L] o ye g To ix s e us roun-up diviont

calculate chunk size

10
num_streams 3
chunk_size ceil_div(N/num_streams)

stream_i

lower chunk_size*stream_i

o 0 E BB
Now as we iterate...

10
num_streams 3
chunk_size ceil_div(N/num_streams)

stream_i

lower chunk_size*stream_i

o 0 E BB
Now as we iterate...

10
num_streams 3
chunk_size ceil_div(N/num_streams)

stream_i

lower chunk_size*stream_i

o 0 E BB
Now as we iterate...

10
num_streams 3
chunk_size ceil_div(N/num_streams)

stream_i

lower chunk_size*stream_i

n n n n We actually access all data, but we have
a new problem: chunk size is too large for

our last chunk of data

10
num_streams 3
chunk_size ceil_div(N/num_streams)

stream_i

lower chunk_size*stream_i

n n n n If, however, we calculate an upper index

for each chunk that is bound by N...

upper = min(lower+chunk size, N)

Sl

lower chunk_size*stream_i _
upper min(lower + chunk_size, N)

L] o ye g o then calctte 3 chunk width usin

upper and lower...

width = upper - lower

Sl

R CO
jover | [ehwnkszewean o
min(lower + chunk_size, N)

instead of chunk size...

"
chunk_size ceil_div(N/num_streams) 4

instead of chunk size...

:
chunk_size ceil_div(N/num_streams) 4

instead of chunk size...

:
chunk_size ceil_div(N/num_streams) 4

instead of chunk size...

:
chunk_size ceil_div(N/num_streams) 4

[] O a0 e it th ot perfectly,no matter s

size or the number of streams

:
chunk_size ceil_div(N/num_streams) 4

@ DEEP
LEARNING

NVIDIA. | INSTITUTE

www.nvidia.com/dli

