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DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging 
problems using AI and deep learning.

• Developers, data scientists and 
engineers

• Self-driving cars, healthcare, robotics, 
etc.

• Training, optimizing, and deploying 
deep neural networks



NAVIGATING TO THE DLI PLATFORM

1. Navigate to: 
https://courses.nvidia.com/
dli-event

2. Use given event code

1. “Log in with my NVIDIA 
Account”

2. Log in or “Create an 
Account”

3. Note: After confirming 
email address, close the 
newly opened tab!

https://courses.nvidia.com/dli-event


NAVIGATING TO THE DLI PLATFORM

1. You have arrived when you 
have reached the “Course” 
tab

2. Open the first lab: “Image 
Segmentation with 
TensorFlow” and  launch the 
task with the “Start” 
button.

3. “Start” will become 
“Loading” which will 
become “Launch”

4. Launch the task when it is 
ready and begin working 
through Task 1



Today’s Project: Generating Captions



Learning Targets

• Introduce TensorFlow

• Compare Computer Vision Workflows

• Introduce Natural Language Processing

• Highlight the value of mid-network information

• Increase the diversity of solvable problems with 
Deep Learning



This course is not:

• A PhD in Data Science/Deep Learning/etc.

• A deep dive into the role of the GPU or CUDA

• A comparison of 
approaches/frameworks/technology

• A playbook to achieve state-of-the-art 
performance

• Simply a how-to for the workflows taught



Image Segmentation with TensorFlow

PD Dr. Juan J. Durillo 
Certified Instructor, NVIDIA Deep Learning Institute



WHAT THIS LAB IS

• Discussion/Demonstration of Image Segmentation using Deep 
Learning

• Hands-on exercises using TensorFlow for CNN training and 
evaluation of Image Segmentation workflow



WHAT THIS LAB IS NOT

• Intro to machine learning from first principles

• Rigorous mathematical formalism of convolutional neural networks

• Survey of all the features and options of TensorFlow



ASSUMPTIONS

• You are familiar with convolutional neural networks (CNN)

• Helpful to have:

• Image recognition experience

• TensorFlow experience

• Python experience



TAKE AWAYS

• You can setup your own image segmentation workflow in 
TensorFlow and adapt it to your use case 

• Know where to go for more info

• Familiarity with TensorFlow



IMAGE SEGMENTATION



COMPUTER VISION TASKS
Image 

Segmentation
Object Detection

Image 
Classification + 

Localization

Image 
Classification

(inspired by a slide used in cs231n lecture from Stanford University)



On Image Representation



Neural Networks for Image Classification

Fully Connected Neural Network

is a zero

is a one

is a nine

is a five



Neural Networks for Image Classification

It is a three. The idea

in training, modify the

weights from previous

layer to this one, so

this output neuron

provides 1 given that

input and the rest of

output neurons

provides 0 given that

input

Fully Connected Neural Network



Neural Networks for Image Classification

shift to the left



Neural Networks for Image Classification

Fully Connected Neural Network

is a zero

is a one

is a nine

is a five



Neural Networks for Image Classification

Convolutional Neural Networks

3

3 3 3

three



Neural Networks for Image Classification

Convolutional Neural Networks



TENSORFLOW



WHAT IS TENSORFLOW?
Created by Google, tensorflow.org

• “Open source software library for machine intelligence” 

• Available on GitHub

• Flexibility—express your computation as a data flow graph 

• If you can express it in TF syntax you can run it

• Portability—CPUs and GPUs, workstation, server, mobile

• Language options—Python and C++

• Performance—Tuned for performance on CPUs and GPUs  

• Assign tasks to different hardware devices  

• Uses CUDNN
TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.



RUNNING TENSORFLOW

• Construct a graph—this happens before any real computation happens

• Specify your neural network as a graph

• Variables--characteristics of the graph that can change over time

• i.e., learned weights

• Operations—computations that combine the variables and the data

• e.g., convolution, activation, matrix multiply, etc.

• Launch a session

• This is TF verbiage for executing a graph

• Taking data and running it through a previously-created graph



SAMPLE WORKFLOW

• Prepare input data

• Can use numpy arrays but for very large datasets TFRecords are recommended

• Build the computation graph

• Create inference, loss, training nodes

• Train the model

• Inject input data into graph in a TF session and loop over your input data.  

• Specify things like batch size, number of epochs, learning rate, etc.

• Evaluate the model 

• Run inference on graph and then evaluate accuracy based on suitable metric



TENSORBOARD

• TF tool to visualize training progress

• Plots of loss, learning rate, accuracy

• Visualize computation graph

• Will use TensorBoard during this lab

• Extremely useful to aggregate training and evaluation statistics for clear analysis of 
the model behavior



TENSORBOARD GRAPH EXAMPLE

• Evaluation graph for NN with 1 
hidden layer

• Each box clicks to expand

• Shows you the operations and the 
variables in each user-defined 
node



INFERENCE GRAPH EXAMPLE

with tf.name_scope('Hidden1'):

W_fc = tf.Variable(tf.truncated_normal( [256*256, 512],

stddev=0.1, dtype=tf.float32), name='W_fc')

flatten1_op = tf.reshape( images_re, [-1, 256*256])

h_fc1 = tf.matmul( flatten1_op, W_fc )

with tf.name_scope('Final'):

W_fc2 = tf.Variable(tf.truncated_normal( [512, 256*256*2],

stddev=0.1, dtype=tf.float32), name='W_fc2' )

h_fc2 = tf.matmul( h_fc1, W_fc2 )

h_fc2_re = tf.reshape( h_fc2, [-1, 256, 256, 2] )

return h_fc2_re



TASK 1 - NEURAL NETWORK
One hidden layer only

Input layer

65536 (256 x 256) pixels

hidden layer

512

output layer 

256 x 256 x 2



Back to Today’s Lab 1



IMAGE SEGMENTATION

• “Segmentation” sometimes used to describe similar but slightly different tasks

• In this lab, semantic segmentation will be performed

• i.e., in an image, each pixel will be placed into one of multiple classes

• In a sense it’s a classification problem where each pixel has a class, vs image 
recognition where each image (collection of pixels) has a class

• Specifically we’ll be looking at medical imaging data and attempting to determine 
where the left ventricle (LV) is 

• i.e., for each pixel is it part of LV or not?



DATASET

• Cardiac MRI short-axis (SAX) scans

• Sunnybrook cardiac images from earlier competition 
http://smial.sri.utoronto.ca/LV_Challenge/Data.html

• "Sunnybrook Cardiac MR Database" is made available under the CC0 1.0 Universal 
license described above, and with more detail here: 
http://creativecommons.org/publicdomain/zero/1.0/

• Attribution:

• Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA. "Evaluation Framework for 
Algorithms Segmenting Short Axis Cardiac MRI." The MIDAS Journal -Cardiac MR Left 
Ventricle Segmentation Challenge, http://hdl.handle.net/10380/3070

http://smial.sri.utoronto.ca/LV_Challenge/Data.html


IMAGE EXAMPLE



IMAGE EXAMPLES
Complete images and expertly labeled contours of LV



DATA DETAILS

• Original images are 256 x 256 grayscale DICOM format

• Output is a tensor of size 256 x 256 x 2  

• Each pixel belongs to one of two classes

• Training set consist of 234 images

• Validation set consist of 26 images



BACKGROUND DATA SETUP

• Lots of guidance and code for how to setup/extract data taken from here:

• https://www.kaggle.com/c/second-annual-data-science-bowl/details/deep-learning-
tutorial

• Images and contours have been extracted from the raw data and packaged up for 
ingest into TensorFlow

• Data extraction code is included but won’t be demo’d.

• TensorFlow data records provided but raw data is NOT provided for this lab

• If interested you can download yourself



TASK 1
Ensure things are working properly!

• Train and test a fully-connected neural network with one hidden layer

• Visual representation of this network appears on next slide

• For the loss computation we’ll use TF built-in 
sparse_softmax_cross_entropy_with_logits

• Computes softmax of the inference output then cross entropy against the correct 
labels



TASK 1 - TRAINING OUTPUT

!python exercises/simple/runTraining.py –-data_dir /data

Output:

OUTPUT: Step 0: loss = 2.621 (0.169 sec)

OUTPUT: Step 100: loss = 4.958 (0.047 sec)

OUTPUT: Step 200: loss = 4.234 (0.047 sec)

OUTPUT: Done training for 1 epochs, 231 steps.

Lots of messages printed to the screen - look for “OUTPUT”



TASK 1 - EVALUATION

!python exercises/simple/runEval.py –-data_dir /data

Output:

OUTPUT: 2016-08-23 15:37:26.752794: accuracy = 0.504

OUTPUT: 26 images evaluated from file 

/tmp/sunny_data/val_images.tfrecords

• Output shows the accuracy of the predictions and which data was utilized

• 1.0 means the NN classified all the data the same as the label, ie 100% correct



TASK 2 - ADDITIONAL LAYERS

• Convolution layers

• Previous example focused on each input pixel

• What if features encompass multiple input pixels

• Can use convolutions to capture larger receptive fields

• Pooling layers

• Essentially a down-sampling method retaining information while 
eliminating some computational complexity



TASK 2 - FULLY CONVOLUTIONAL NETWORK 
(FCN)

• Image classification layers—Convolutions, pooling, activations, fully connected

• Output is an N-dimensional vector where N == Number_of_classes

• Can we leverage this network to do segmentation?  YES!

• Reconsider the problem as pixel classification 

• i.e., each pixel has a class

• Reuse most of the image classification network

• Replace fully connected layer(s) with deconvolution (transpose convolution)

• Output is a 256 x 256 x N tensor where N == Number_of_classes

• In this lab N == 2



TASK 2 - ADDITIONAL LAYER

• Deconvolution (transpose convolution) layer

• Up-sampling method to bring a smaller image data set back up to it’s original size for 
final pixel classification

• Long et al (CVPR2015) has nice paper re: FCN for segmentation

• Created FCNs from AlexNet and other canonical networks

• Zeiler et al (CVPR2010) describes deconvolution

• Network we will use is very similar to Vu Tran’s kaggle example here: 
https://www.kaggle.com/c/second-annual-data-science-bowl/details/deep-
learning-tutorial

https://www.kaggle.com/c/second-annual-data-science-bowl/details/deep-learning-tutorial


TASK 2
exercises/tf/segmentation/cnn/neuralnetwork.py

• Finish the CNN, replace “FIXME”

• vi / vim the file and type /FIXME to identify where to make changes
• You need to figure out the dimensions

• Convolution1, 5x5 kernel, stride 2; Maxpooling1, 2x2 window, stride 2

• Convolution2, 5x5 kernel, stride 2; Maxpooling2, 2x2 window, stride 2

• Convolution3, 3x3 kernel, stride 1; Convolution4, 3x3 kernel, stride 1

• Score_classes, 1x1 kernel, stride 1; Upscore (DeConv), 31x31 kernel, stride 16

• Optional / Time Permitting: Experiment with num_epochs



TASK 2 - EVALUATION RESULTS

• 1 epoch of training

OUTPUT: 2016-08-26 20:44:55.012370: precision = 0.571

• 30 epochs of training

OUTPUT: 2016-08-26 20:48:16.593103: precision = 0.985

• 98.5% accurate!  

• Very good accuracy, are we done?



TASK 2 - ACCURACY

• How are we determining accuracy  

• We are comparing the pixel value in the label with the value computed by the CNN

• So 98.5% of the time we are predicting the pixel correctly

• However, the size of the contour is relatively small compared to the entire image 
Class imbalance problem  

• If we simply output the notLV class for every pixel we’d have over 95% accuracy

• Clearly this isn’t what we want



TASK 3 - DICE METRIC
• Metric to compare the similarity of two samples:

2𝐴𝑛𝑙
________________________________

𝐴𝑛 + 𝐴𝑙

• Where: 
• An is the area of the contour predicted by the network 
• Al is the area of the contour from the label
• Anl is the intersection of the two

• The area of the contour that is predicted correctly by the network

• 1.0 means perfect score.

• More accurately compute how well we’re predicting the contour against the label

• We can just count pixels to give us the respective areas



TASK 3 - TRAINING PARAMETERS
Important to search the space of parameters

• learning_rate: initial learning rate

• decay_rate: the rate that the initial learning rate decays

• e.g., 1.0 is no decay, 0.5 means cut the decay rate in half each number of (decay) 
steps

• decay_steps: number of steps to execute before changing learning rate

• num_epochs: number of times to cycle through the input data

• batch_size: keep at 1 for now

• Experiment with learning_rate, decay_rate, decay_steps, num_epoch

• Record the parameters that give you the best Dice score



TASK 3 - EVALUTION RESULTS

• Recall result from prior example:

• 1 epoch: precision = 0.501

• 30 epochs: precision = 0.985

• Now with Dice metric (recall 1.0 is perfect accuracy)

• 1 epoch: Dice metric = 0.033

• 30 epochs: Dice metric = 0.579

• Not as good as we originally thought



TASK 3 - RESULT
One possible result

--learning_rate=0.03

--decay_rate=0.75

--num_epochs=100

--decay_steps=10000

OUTPUT: 2016-08-26 21:22:15.590642: Dice metric = 0.861

Accuracy now looking much better!



LAB REVIEW



LAB SUMMARY

• Intro to image segmentation

• Classifying pixels vs images

• Converted image recognition network into FCN for segmentation.

• Used TensorFlow as framework to explore various optimizations to FCN

• Explored new accuracy metric (Dice metric) to better capture true accuracy



WHAT ELSE?

• Run training longer  

• For demo purposes we ran really short training runs

• Need more epochs

• More training data

• We only had 236 images in our training set

• Gather more data

• Augment images that we have with rotations, inversions, etc.  

• TF has functions to flip/rotate/transpose automatically

• Larger more complicated networks



WORD GENERATION WITH TENSORFLOW

Certified Instructor, NVIDIA Deep Learning Institute
NVIDIA Corporation

PD Dr. Juan J. Durillo



TOPICS

• Overview

• Recurrent Neural Networks

• One-Hot Encoding

• Lab 

• Discussion / Overview

• Launching the Lab Environment

• Lab Review



NON-IMAGE DATA

— Convert to images

— Sound waves

— Stock prices

— New workflows

— Different input and output types

— Handle new components like time

— Still learned input->output mappings



NON-IMAGE DATA



IMAGES – INPUT AND OUTPUT

Eagle

Deep Neural Network

Classifier data flow



One-Hot: Turning words into Numbers

• Numerical vector representation for each word

• Dictionary of N words 

• Each word is a vector with N-1 zeros and one 1, at the position of the word in the 

dictionary

• A document can be represented as a sequence of these one-hot vectors

• One interesting property of this representation is that no information gets lost



ONE-HOT ENCODING



RECURRENT NEURAL NETWORKS



Generating Language

‘My’

Ws(t)

[0,0,0,0,1,0,0,0,0,0]

‘pet’

‘pet’

Ws(t)

‘is’

‘is’

Ws(t)

‘called’

‘called’

Ws(t)

‘Messi’

‘Messi’

Ws(t)

‘EOS.’



RECURRENT NETWORK EXAMPLE

Input

Output

Recurrent layer

[1,0,0,0,0,0,0,0,0,0]

W

h(t)

[0,0,0,0,1,0,0,0,0,0]

a 1 0 0 0 0 0 0 0 0 0

cat 0 0 0 0 1 0 0 0 0 0

is 0 0 0 1 0 0 0 0 0 0

on 0 0 1 0 0 0 0 0 0 0

the 0 1 0 0 0 0 0 0 0 0

grass 0 0 0 0 0 0 0 0 1 0

Word prediction example
a

cat



RECURRENT NETWORK EXAMPLE

a the on is cat park play swin

g

grass sitting

0 1 2 3 4 5 6 7 8 9

x(t-1)

o(t)o(t-1) o(t+1)

W W W

x(t) x(t+1)

V V V

U U U

s(t-1) s(t) s(t+1)

[ 0 , 4 , 3 , 2 , 1 , 8 ]

A cat is on the grass.

Unrolled Recurrent Layer 

RNNs learn by reducing the error 
between their predicted next word 

and the actual next word in a corpus. 
RNNs are structured to "remember" the 

words that led to their prediction.



TIME SERIES INFORMATION

Recurrent neural networks are a 
popular approach

Demonstrated effectiveness with 
sentence and code creation as well 
as language translation.

Input

Output

Recurrent layer

[1,0,0,0,0,0,0,0,0,0]

W

s(t)

[0,0,0,0,1,0,0,0,0,0]



LAB TASK 1

• Task 1:

• How does an RNN learn?

• Why use a deeper network?

• What does dropout do?



LAB TASK 1

• Task 1:

• How does an RNN learn?

• Why use a deeper network?

• What does dropout do?



LAB TASK 2

• What could we do to improve performance?

• How many steps are you using?

• How many layers do you have?



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

PART 2 RECURRENT NEURAL NETWORK

• What could we do to improve performance?

• Answer: Increase the number of hidden units, change dropout, change 
learning rate and add a learning policy

• How many steps are you using?

• Answer: 20

• How many layers do you have?

• Answer: 2



IMAGE CAPTIONING

Senior Deep Learning Certified Instructor, NVIDIA Deep Learning Institute
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TOPICS

• Lab Structure

• Image Captioning

• Video Captioning



LAB STRUCTURE



JUPYTER NOTEBOOKS

• Landing notebook contain links to:

• Image Captioning notebook

• Video Captioning notebook

• Reference notebook - from Lab 2



TRAINING DATA / NETWORK

• Microsoft Common Object in Common (MSCOCO)

• Images

• Five captions for each image

• VGG 16 network

• Visual Geometry Group

IMAGE CAPTIONING



THE PROCESS – IMAGE CAPTIONING
1. Import libraries

2. Evaluate data / Pixel to Content

a. Feature vector – FC7

3. Align captions with images

a. Will work with a subset of the data

4. Predict next word

a. Similar to Lab 2

b. Parse, tokenize, etc.



IMAGE CAPTIONING

Output

Recurrent layer

[0.2,0.001,5e-2,….,0.2,0.9,0,0,0,0,0,0,0,0,0,0]

W

h(t)

[1,0,0,0,0,0,0,0,0,0]

image 0 0 0 0 0 0 0 0 0 0

a 1 0 0 0 0 0 0 0 0 0

dog 0 0 0 0 1 0 0 0 0 0

with 0 0 0 1 0 0 0 0 0 0

cake 0 0 1 0 0 0 0 0 0 0

a

a

Input



THE PROCESS – IMAGE CAPTIONING

5. Architect the network (RNN)

6. Train / build model

7. Evaluate a training image & captions

8. Generate a caption for a validation image

9. RUN LAST CODE BLOCK TO FREE GPU MEMORY



Convolution

ReLU

Pooling

Convolution

ReLU

Pooling

Convolution

ReLU

Pooling

Convolution

ReLU

Convolution

ReLU

Pooling

Fully Connected 

Layers

Prediction

Embedded 

Sentence

LSTM 

Layers

a 1 0 0 0 0 0 0 0 0 0

cat 0 0 0 0 1 0 0 0 0 0

is 0 0 0 1 0 0 0 0 0 0

on 0 0 1 0 0 0 0 0 0 0

the 0 1 0 0 0 0 0 0 0 0

grass 0 0 0 0 0 0 0 0 1 0

Generic Schematic of the Modified Reference CNN 

Architecture CaffeNet with two LSTM Layers

LAB 3 - IMAGE CAPTIONING

Long-term Recurrent Convolutional Networks for Visual Recognition and Description 

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini

Venugopalan, Kate Saenko, Trevor Darrell

X



CaffeNet A white bird standing on top of 

a sandy beach.

VGG A small bird standing on the 

ground.

CaffeNet A white horse standing in a 

lush field of grass.

VGG A white horse standing in a 

field next to a fence.

CaffeNet A white cat sitting on a chair.

VGG A white and white cat laying 

on a white chair.

CaffeNet A bunch of bananas that are on 

a table.

VGG A close up of a bunch of white 

flowers. 

EXAMPLE CAPTION RESULTS 

*Results shown here were generated using work from this paper.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description 

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell



CONCLUSION

— Image and video captioning based on two papers 

— Translating Videos to Natural Language Using Deep Recurrent Neural Networks 

— Long-term Recurrent Convolutional Networks for Visual Recognition and Description 

— Multiple approaches for image and video captioning – only one was used here



WHAT’S NEXT

• Use / practice what you learned

• Discuss with peers practical applications of DNN

• Reach out to NVIDIA and the Deep Learning Institute

• Attend local meetup groups

• Follow people like Andrej Karpathy and Andrew Ng



WHAT’S NEXT

…for the chance to win an NVIDIA SHIELD 
TV.

Check your email for a link.

TAKE SURVEY
Check your email for details to access more 
DLI training online.

ACCESS ONLINE LABS

Visit www.nvidia.com/dli for workshops in 
your area.

ATTEND WORKSHOP
Visit https://developer.nvidia.com/join for 
more. 

JOIN DEVELOPER PROGRAM



www.gputechconf.com

DFSFSD

ADVANCE YOUR DEEP LEARNING TRAINING AT GTC
Don’t miss the world’s most important event for GPU developers

http://www.gputechconf.com/
http://www.gputechconf.com/

