<3

NVIDIA.

Deep Learning and '

L R

High-Performance Computing Center | Stuttgart

DEER
LEARNING
INSTITUTE

s it TN

1st day morning
(09:00-12:00)

1st day afternoon
(13:00-17:00)

Fundamentals of Deep Learning for
Computer Vision

2nd day morning
(09:00-12:00)

2nd day afternoon
(13:00-17:00)

Fundamentals of Deep Learning for
Multiple Data Types

3rd day morning
(09:00-12:00)

3rd day afternoon
(13:00-17:00)

Fundamentals of Accelerated Computing
with OpenACC

4th day morning
(09:00-12:30)

4th day afternoon
(13:30-16:30)

ML Examples and Methods on HLRS
SYRICINE

GPU programming using OpenACC

14 — 17 July 2020

Workshop material:
https://tinyurl.com/dl-openacc

@ DEER
LEARNING

NVIDIA. | INSTITUTE

. i
-
S by
]
3
i

Deep Learning and GPU
programming using OpenACC

14 — 17 July 2020

Tentative Agenda Day 3: Fundamentals of
Accelerated Computing with OpenACC

S DEEP
@% LEARNING
NVIDIA. INSTITUTE

e 09:00-10:30 Guest Lecture Dr.-Ing. Andrea Beck

e 10:30-10:45 Coffee Break T
e 10:45-11:00 Intro E
e 11:00-12:00 Profiling

e 12:00-13:00 Lunch Break

e 13:00-13:30 Introduction into NVIDIA® Nsight™ Systems

e 13:30-15:00 OpenACC Directives

e 15:00-15:30 Coffee Break

e 15:30-16:15 GPU Programming

* 16:15-16:45 Data Management and Loop Optimizations

¢ 16:45-17:00 Q&A, Final Remarks

Deep Learning and GPU programming using OpenACC | 14 — 17 July 2020

MODULE OVERVIEW

Topics to be covered

Introduction to parallel programming

Common difficulties in parallel programming

Introduction to OpenACC

Parallel programming in OpenACC

OpenACC

INTRODUCTION TO PARALLEL
PROGRAMMING

OpenACC

WHAT IS PARALLEL PROGRAMMING?

= “Performance Programming”

- | JA+B+C+D|
= Parallel programming involves exposing an _
algorithm’s ability to execute in parallel Sequential Parallel

= This may involve breaking a large operation ? Yy G U €

into smaller tasks (task parallelism)

= Or doing the same operation on multiple
data elements (data parallelism)

= Parallel execution enables better <
performance on modern hardware teps

3 Steps
OpenACC

AMDAHL'S LAW

OpenACC

AMDAHL’S LAW

Serialization Limits Performance

= Amdahl’s law is an observation that how much Amdahl's Law
speed-up you get from parallelizing the code is s 0% e 759 o 60% e 95
limited by the remaining serial part. . i i i i °
e o 0 —0—0—0—0—9
= Any remaining serial code will reduce the 315 7
possible speed-up & 10 e e S SRS
< o °
= Y o © ©6 ¢ o @ o o o o o o ¢
= This is why it’s important to focus on g o =t §ise00 008880803y
parallelizing the most time consuming parts, o1 8 64 512 4096 32768
not jUSt the easiest. Number of Processors

OpenACC

APPLYING AMDAHL'S LAW

Estimating Potential Speed-up

= What's the maximum speed-up that can be
obtained by parallelizing 50% of the code?

1/(100% - 50%) =1/(1.0-0.50) = 2.0X

= What's the maximum speed-up that can be
obtained by parallelizing 25% of the code?

1/(100% - 25%)=1/(1.0-0.25) = 1.3X

= What's the maximum speed-up that can be
obtained by parallelizing 90% of the code?

1/(100% - 90%)=1/(1.0-0.90) = 10.0X
OpenACC

Maximum Parallel Speed-up

Total Parallel

Runtime (50%)

Total Parallel
Runtime (25%)

Total Parallel

Runtime (90%)

Total Serial Runtime

INTRODUCTION TO OPENACC

OpenACC

OpenACC is a directives-

based programming approach
to parallel computing

designed for performance

and portability on CPUs
and GPUs for HPC.

Add Simple Compiler Directive

main()

{

<serial code>
#pragma acc kernels

{

<parallel code>

r L

OpenACC

OpenACC

STANDARDS-BASED PARALLELISM

MPI standard OpenMP standard OpenACC standard

https://www.mpi-forum.org/docs/ https://www.openacc.org/specification
OpenACG https://www.openmp.org/specifications/

DEVELOPMENT OF OPENMP STANDARD

Number of Pages in OpenMP Standard

700

600

500

400

300

200

100 .
= B = 100

Fortran 1.0 Fortran 1.1 C/C++1.0 Fortran 2.0 C/C++2.0 3.0 (2008) 3.1(2011) 4.0(2013)+ 4.0(2013)+ 5.0(2018)
(1997) (1999) (1998) (2000) (2002) Exam. 4.0.1 Exam. 4.0.2
(2014) (2015)

M Standard ® Examples

COMPLEXITY OF RECENT STANDARDS

Comparison of Number of Pages in Recent

Standards

900
800
700
600
500
400
300
200
’ L
0

MPI 3.1 (2015) OpenMP 4.0 (2013) + Exam. 4.0.2 OpenMP 5.0 (2018) OpenACC 2.6 (2017)

(2015)

OpenACC

Morn ficlence, Laws Srogrameming

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Compiler Programming
Directives Languages

Libraries

Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

OpenACC \ OpenACC /

OPENACC PORTABILITY

Describing a generic parallel machine

OpenACC is designed to be portable to many
existing and future parallel platforms Device

The programmer need not think about specific '
hardware details, but rather express the
parallelism in generic terms

An OpenACC program runs on a host '
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and

device(s) are logically thought of as having Device
separate memories. “ Memory

OpenACC

OPENACC

Three major strengths

Incremental Single Source Low Learning Curve

\ J \ J \ J
OpenACC

OPENACC

Incremental

\

Maintain existing
sequential code

Add annotations to
expose parallelism

After verifying
correctness, annotate
more of the code

OpenACC

Enhance Sequential Code
#pragma acc parallel loop
for(i = 0; i < N; i++)
{

}

< loop code >

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

+

< loop code >

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,
remove/alter OpenACC
code as needed.

OPENACC

Incremental Single Source Low Learning Curve

» Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying
correctness, annotate
more of the code

\ J \ J \ J

OpenACC

OPENACC

_ The compiler can ignore your
Single Source OpenACC code additions, so the same

Supported Platforms

code can be used for parallel or
POWER sequential execution.
» Rebuild the same code
sunway on multiple
%86 CPU archit(?ctures | int main(){
= Compiler determines
X86 Xeon Phi how to parallelize for
the desired machine ﬁpr?gmg acc pa"‘f‘lleﬁ 1‘?°P)
or(int 1 = ©; 1 < N; 1i++
NVIDIA GPU = Sequential code is < loop code >
PEZY-SC maintained
\, J

OpenACC

OPENACC

Incremental Single Source Low Learning Curve

= Rebuild the same code
on multiple
architectures

= Maintain existing
sequential code

) dioignogfgl?gfsﬁg = Compiler determines
P P how to parallelize for

= After verifying the desired machine
correctness, annotate . Sequential code is

more of the code maintained

\ J \ J \ J

OpenACC

OPENACC

Parallel Hardware
'S

CPU

Low Learning Curve

i

= OpenACC is meant to
! : be easy to use, and
/ The_ programmer will easy to learn
int main(){ / give hints to the _
compiler about which | ® Programmer remains
<sequential code> y parts of the code to in familiar C, C++, or
H#pragm cc kernels <— Compiler parallelize. Fortran
{p agma @ Hint The compiler will then | * No reason to learn i
<parallel code> generate parallelism low-level details of the
} for the target parallel hardware.
hardware.
} \, J

OpenACC

OPENACC

Incremental

* Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying

more of the code

\

correctness, annotate

OpenACC

Single Source

Rebuild the same code
on multiple
architectures

Compiler determines
how to parallelize for
the desired machine

Sequential code is
maintained

Low Learning Curve

= OpenACC is meant to
be easy to use, and
easy to learn

= Programmer remains
in familiar C, C++, or
Fortran

= No reason to learn
low-level details of the
hardware.

EXPRESSING PARALLELISM WITH
OPENACC

OpenACC

CODING WITH OPENACC

Array pairing example- serial

void pairing(int *input, int *output, int N){

for(int 1 = @; 1 < N; i++)
output[i] = input[i*2] + input[i*2+1];
}
6 | 3|10 7|24]| 3] 8] 9 1
“input

OpenACC

CODING WITH OPENACC

Array pairing example - parallel

void pairing(int *input, int *output, int N){
#pragma acc parallel loop
for(int 1 = @; 1 < N; i++)
output[i] = input[i*2] + input[i*2+1];

OpenACC

DATA DEPENDENCIES

Not all loops are parallel
void pairing(int *a, int N){

for(int 1 = 1; 1 < N; i++)
a[i] = a[i] + a[i-1];

¥

i i i i=6 i=7 i=8 i=9

i=1 i=2 i=3 i i=5

I
I

OpenACC

DATA DEPENDENCIES

Not all loops are parallel

void pairing(int *a, int N){ If we attempted to parallelize this
#pragma—accparallelJloop loop we would get wrong answers
for(int 1 = 1; 1 < N; i++) due to a forward dependency.
a[i] = a[i] + a[i-1];

¥

v B Beh bbb bbb

1 1316 |10]115|21]128|36|45]|55

Sequential

11321 31 9|8 | B|18|4d|YY|20

~—p4lpa b lpalpel bdlpal bl

OpenACC

MODULE 1 REVIEW

OpenACC

CLOSING SUMMARY

Module One: Introduction

Parallel programming is a technique of utilizing modern hardware to do lots of work
all at once.

Amdahl’s law is the gravity of parallel programming, break this law at your own peril.

Not all loops are parallel, but often can be rewritten to be parallelizable

OpenACC is a high level model for generating parallel code from serial loops

OpenACC

OPENACC RESOURCES

Guides o Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

Resources Success Stories

https://www.openacc.org/resources https://www.openacc.org/success-stories
OpenACC

OpenACC

Success Stories

-nmmm:\gmnm

FREE
Compilers = T

Resources

B Tutorials
Programming Massively Paraliel Processers, Third
Edition: A Hands-on Approach

PG I Compilers and Tools Events

‘ Community ' https://www.openacc.org/tools https://www.openacc.org/events
'—— EDITION Upenﬂcc Uper‘IAUC

Downloads & Tools

Commercial Compilers

¥ slack

https://www.openacc.org/community#slack = cmes

OpenACC

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

	Foliennummer 1
	Foliennummer 2
	Tentative Agenda Day 3: Fundamentals of �Accelerated Computing with OpenACC
	MODULE ONE:�INTRODUCTION
	Module OVERVIEW
	Introduction to parallel programming
	What is parallel programming?
	Amdahl’s Law
	Amdahl’s Law
	Applying Amdahl’s Law
	Introduction to Openacc
	Foliennummer 22
	Standards-based parallelism
	Development of OpenMP STandard
	Complexity of Recent Standards
	3 Ways to Accelerate Applications
	Openacc portability
	openacc
	openacc
	openacc
	openacc
	openacc
	openacc
	openacc
	Expressing parallelism with openacc
	Coding with openacc
	Coding with openacc
	Data Dependencies
	Data Dependencies
	Module 1 Review
	Closing Summary
	OPENACC Resources
	THANK YOU�

