
1Deep Learning and GPU programming using OpenACC | 14 – 17 July 2020

Deep Learning and GPU
programming using OpenACC
14 – 17 July 2020

Dr. Volker Weinberg | LRZ | 16.07.2020

MODULE TWO:
PROFILING

Vorführender
Präsentationsnotizen
Screenshots are all taken from PGI/PGPROF on Ubuntu 16.04
Feel free to use any profiler that you prefer.

MODULE OVERVIEW
Topics to be covered

 Compiling and profiling sequential code

 Explanation of multicore programming

 Compiling and profiling multicore code

Vorführender
Präsentationsnotizen
This Module was originally designed for the PGI compiler.

COMPILING SEQUENTIAL CODE

Vorführender
Präsentationsnotizen
Simply how to compiler C/C++ code. For the most part, students will be able to use Makefiles for lab exercises, and do not have to worry about compiling the codes themselves.

PGI COMPILER BASICS

 The command to compile C code is ‘pgcc’

 The command to compile C++ code is ‘pgc++’

 The command to compile Fortran code is ‘pgfortran’

 The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90

Vorführender
Präsentationsnotizen
Makefiles for lab exercises

PGI COMPILER BASICS

 The Minfo flag will instruct the compiler to print feedback about the compiled code

 -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

 -Minfo=opt will give information about all code optimizations

 -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90

Vorführender
Präsentationsnotizen
-Minfo=accel will only show any feedback if there are OpenACC optimizations.
-Minfo=opt will give us a lot of information regarding optimizations (this includes non-parallel optimizations as well!)
-Minfo=all will give more feedback, and will even give feedback about the sequential code. It can be overwhelming for individuals who are not used to things such as loop unrolling, or fused instructions. It will also give negative feedback (where code couldn’t be optimized, for example)

PROFILING SEQUENTIAL CODE

Vorführender
Präsentationsnotizen
Running sequential code before any code edits to get baseline results.

OPENACC DEVELOPMENT CYCLE
 Analyze your code to determine

most likely places needing
parallelization or optimization.

 Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

 Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Vorführender
Präsentationsnotizen
This is the OpenACC development cycle. Analyze -> Parallelize -> Optimize. Rinse and repeat. It is slightly over-simplified, however. It is very important to profile you code before beginning, however, it is equally important to continue profiling your code as you make changes. It is important to verify that changes you are making are impacting the code in a way that you expected.

The Modules are designed to follow this format. This Module will include the Analyze portion. We are expecting students to profile for every module, however.

Record the time it takes for your
sequential program to run.

PROFILING SEQUENTIAL CODE
Step 1: Run Your Code

Note the final results to verify
correctness later.

Always run a problem that is
representative of your real jobs.

$ pgcc –fast jacobi.c laplace2d.c
$./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 39.432648 s

Terminal Window

Vorführender
Präsentationsnotizen

UNIX time command
Timestepping loop around core of the program

3 main takeaways from this slide:
We need to know the application runtime to compare against later. If the program doesn’t have built-in timers the UNIX time command can be used, but in real applications this is often not representative of the important part of the code because it include initial, one-time setup and teardown. It’s best to add a timer around the core of the program, such as a timestepping loop.
Running faster doesn’t matter if your answers aren’t correct. Get a baseline of what the expected results are so that at each step you can verify that your changes still produce correct results.
You want to run a problem that executes fairly quickly, but it still needs to be realistic. For instance, we don’t want to cut back the size of our computation, but we may want to reduce the number of steps. Running a significantly smaller problem may emphasize different parts of the code than a full problem, leading to wasted effort.

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your Code

This can include information such as:
 Total runtime
 Runtime of individual routines
 Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

! pgprof ./laplace

Jacobi relaxation Calculation: 4096 x 4096 mesh
0, 0.250000

100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269

total: 60.611229 s

======== CPU profiling result (bottom up):
Time(%) Time Name
54.51% 32.43s calcNext
54.51% 32.43s | main
45.40% 27.01s __c_mcopy8_avx
0.05% 30ms swap
0.05% 30ms | main
0.03% 20ms __c_mcopy8

======== Data collected at 100Hz frequency

Vorführender
Präsentationsnotizen
The chart is from another sample code, one that the students are not expected to work with. We will create a similar graph with our lab code once we explain the profiling process.

PROFILING SEQUENTIAL CODE

 Gives visual feedback of how the
code ran

 Gives numbers and statistics, such
as program runtime

 Also gives runtime information for
individual functions/loops within the
code

 Includes many extra features for
profiling parallel code

Introduction to PGProf

Vorführender
Präsentationsnotizen
The profiler will gives us feedback of which portions of our code we should focus on. (the most time consuming)

When we start parallelizing our program (especially if using a GPU) the profiler will give us a lot of extra information, such as a visual timeline, occupancy, data movement, etc.

PROFILING SEQUENTIAL CODE

 Please make sure to choose "Profile
current process only" from the
dropdown instead of "Profile child
process". The CPU details will not be
displayed in the profiler otherwise.

CPU Details

PROFILING SEQUENTIAL CODE
First sight when using PGPROF

 Profiling a simple, sequential code

 Our sequential program will run on
the CPU

 To view information about how our
code ran, we should select the
“CPU Details” tab

Vorführender
Präsentationsnotizen
This is what you’re greeted with when opening an executable in PGPROF. The screenshots will be of the laplace lab code, so when students go through the lab, they should see very similar results.

Since we are running the code sequentially, only the CPU will be active. We can select “CPU Details” to view additional information about the CPU.

PROFILING SEQUENTIAL CODE
CPU Details

 Within the “CPU Details” tab, we
can see the various parts of our
code, and how long they took to run

 We can reorganize this info using
the three options in the top-right
portion of the tab

 We will expand this information, and
see more details about our code

Vorführender
Präsentationsnotizen
NEW: This is a view of the CPU details, where we can see which parts of our code took the longest to run, and how long each portion took. I have highlighted a few options in the top-left hand corner of the CPU Details window, these are different views, and will display the CPU Details in a different way.

PROFILING SEQUENTIAL CODE
CPU Details
 We can see that there are two

places that our code is spending
most of its time

 33.2 seconds in the “calcNext”
function

 28 seconds in a memcpy function

 The c_mcopy8_avx that we see is
actually a compiler optimization that
is being applied to our “swap”
function

Vorführender
Präsentationsnotizen
We are seeing that the majority of our program is spend in a function called “calcNext” and “__c_mcopy8”

The calcNext is our code from the laplace code, while the __c_mcopy8 is a memory copy. We can also see that the calcNext takes slightly longer than the memcpys.

PROFILING SEQUENTIAL CODE
PGPROF

 We are also able to select the
different elements in the CPU
Details by double-clicking to open
the associated source code

 Here we have selected the
“calcNext” element, which opened
up the source file in the top part of
the windo

Vorführender
Präsentationsnotizen
NEW: The code is opened, and the line in question is highlighted. The code that is being detected is the code within our main loop. This is exactly what we were expecting.

Knowing this information, it makes sense why we focused on parallelizing this loop in the lab assignment, because it accounts for our entire program.

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your Code

This can include information such as:
 Total runtime
 Runtime of individual routines
 Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

Vorführender
Präsentationsnotizen
Same slide as earlier – a recap. Now with the chart that matches our laplace code.

Observe the loops contained within the
identified hotspots

PROFILING SEQUENTIAL CODE
Step 3: Identify Parallelism

Are these loops parallelizable?
Can the loop iterations execute
independently of each other?

Are the loops multi-dimensional, and
does that make them very large?

Loops that are good to parallelize tend
to have a lot of iterations to map to

parallel hardware.

void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4
input

output
9 17 6

Vorführender
Präsentationsnotizen
Identifying parallelism is a bit of a manual step. Once the hotspots are identified the programmer needs to look at the loops and determine which are good candidates for directives.

PLEASE START LAB NOW!

TRAINING SETUP

 To get started, follow these steps:

 Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in
with my NVIDIA Account" and then '"Create Account“ (done yesterday)

 Visit http://courses.nvidia.com/dli-event and enter the event code

HLRS_OACC_AMBASSADOR_JUL20

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

PROFILING MULTICORE CODE

PROFILING MULTICORE CODE

 Multicore refers to using a CPU with multiple
computational cores as our parallel device

 These cores can run independently of each
other, but have shared access to memory

 Loop iterations can be spread across CPU
threads and can utilize SIMD/vector instructions
(SSE, AVX, etc.)

 Parallelizing on a multicore CPU is a good
starting place, since data management is
unnecessary

What is multicore?

CPU

Vorführender
Präsentationsnotizen
The two parallel architectures we will be focusing on is multicore CPUs and GPUs. We will start with multicore CPUs because it is relatively easy to program compared to GPUs, since there’s only one memory space. In this module, we will also focus on profiling multicore code, with more GPU profiling in later modules.

PROFILING MULTICORE CODE

 OpenACC’s generic model involves a
combination of a host and a device

 Host generally means a CPU, and the device
is some parallel hardware

 When running with a multicore CPU as our
device, typically this means that our
host/device will be the same

 This also means that their memories will be
the same

Using a multicore CPU with OpenACC

Host
Device

Host
Memory Device

Memory

=

=

Vorführender
Präsentationsnotizen

Intro: General Parallel Model
Now: Applying to multicore CPU

Thinking back to our introduction of OpenACC as a general parallel model, we can now apply this model to a multicore CPU.

PROFILING MULTICORE CODE

 The ‘-ta’ flag will allow us to compile our code for a specific, target parallel hardware

 ‘ta’ stands for “Target Accelerator,” an accelerator being another way to refer to a
parallel hardware

 Our OpenACC code can be compiled for many different kinds of parallel hardware
without having to change the code

Compiling code for a specific parallel hardware

$ pgcc –fast –Minfo=accel –ta=multicore laplace2d.c
calcNext:

35, Generating Multicore code
36, #pragma acc loop gang

Vorführender
Präsentationsnotizen
For right now, we will be focusing on a multicore target. Multicore is easier to program for, and serves much better as an introduction. It is still important to recognize that even if we are running our code on a multicore CPU, we could take the same code and run it on many different architectures.

PROFILING MULTICORE CODE
PGPROF

 The first difference we see in this
multicore profile is that there is now
a “timeline”

 This timeline will show when our
parallel hardware is being used,
and how it is being used

 Each of the blue bars represent a
portion of our program that was run
on the multicore CPU

Vorführender
Präsentationsnotizen
NEW: This is a screenshot of PGPROF when profiling the multicore code.

The main difference we see now is the inclusion of the blue timeline bar.

PROFILING MULTICORE CODE
CPU Details

 Looking at our CPU Details, we can
see that there is a lot more
happening compared to our
sequential program

 For the most part, these extra
details revolve around the need for
the CPU cores to communicate with
each other

Vorführender
Präsentationsnotizen
NEW: This is the CPU details for our multicore code. Our main function still takes up majority of the programs runtime. However, now we have additional factor. The most important being the “_mp_barrier”. This should be familiar to anyone who has done OpenMP programming.

Explanation of MP Barrier:
Thinking back to the real-world example from Module 1, when the professors and the TAs were exchanging the exams, there was a lot of communication happening. This is especially true if the graders finish grading at different times. This is essentially what is happening with MP Barrier. The CPU cores are finishing their computation at slightly different times, and have to wait for each other.

Another thing to notice is that the time taken in main is roughly the same as our sequential version. Even though our code is significantly faster. We will discuss why soon.

PROFILING MULTICORE CODE
View of computational threads

 You can see statistics for all threads
or select a specific thread in the box
on the top left of the CPU Details
tab.

Vorführender
Präsentationsnotizen
When profiling multicore code, we have options of how to view it. The view we were looking at was the “TOTAL” view. This combines all CPU cores.

We also have the option to view each individual core. Each core will have slightly different runtimes.

 When moving the mouse on the % value, one can see

 Mean across all threads
 Total across all threads
 Total as a percentage of all the time spent on one / all threads.

PROFILING MULTICORE CODE
View of all computational threads

PROFILING MULTICORE CODE
OpenACC Details

Vorführender
Präsentationsnotizen
NEW:

LAPLACE HEAT TRANSFER
Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

LAPLACE HEAT TRANSFER
Introduction to lab code - technical

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew
The lab simulates a very basic

2-dimensional heat transfer problem.
We have two 2-dimensional arrays,

A and Anew.

The arrays represent a 2-
dimensional, metal plate. Each

element in the array is a double
value that represents temperature.

We will simulate the distribution of
heat until a minimum change value

is achieved, or until we exceed a
maximum number of iterations.

Vorführender
Präsentationsnotizen
Our code has two 2-dimensional arrays, A and Anew. These arrays contain double values, and these doubles represent a temperature. The 2-D array itself represents a flat metal plate, and each element is some portion of that plate that contains a temperature.

We initialize our arrays be “heating” one side of the plate. So, on the top side of the plate, we set all of the values to 1.0.

Our calcNext function will look at each of the inner positions of the plate, and update its temperature based on its neighbors. The temperature will be set to the average temperature of its four neighbors.
�Then lastly, the contents of Anew will be copied back to A. Then calcNext will be called again, until our answer is computed.

We will take the average of the
neighboring cells, and record it in

Anew.

LAPLACE HEAT TRANSFER
Introduction to lab code - technical

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.25 0.25

We initialize the top row to be a
temperature of 1.0

The calcNext function will iterate
through all of the inner elements of

array A, and update the
corresponding elements in Anew 0.0 0.0

0.0 0.0

The swap function will copy the
contents of Anew to A

Vorführender
Präsentationsnotizen
Our code has two 2-dimensional arrays, A and Anew. These arrays contain double values, and these doubles represent a temperature. The 2-D array itself represents a flat metal plate, and each element is some portion of that plate that contains a temperature.

We initialize our arrays be “heating” one side of the plate. So, on the top side of the plate, we set all of the values to 1.0.

Our calcNext function will look at each of the inner positions of the plate, and update its temperature based on its neighbors. The temperature will be set to the average temperature of its four neighbors.
�Then lastly, the contents of Anew will be copied back to A. Then calcNext will be called again, until our answer is computed.

0.25

1.0 1.0

LAPLACE HEAT TRANSFER
Introduction to lab code

1.0 1.0

0.0 0.25 0.25 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0

1.0 1.0 1.0 1.0

0.0 0.25 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew

0.0
The swap function will copy the

contents of Anew to A

KEY CONCEPTS
In this module we discussed…

 Compiling sequential and parallel code

 CPU profiling for sequential and parallel execution

 Specifics of our Laplace Heat Transfer lab code

LAB GOALS

 Build and run the example code using the PGI compiler

 Use PGProf to understand where the program spends its time

In this lab you will do the following…

THANK YOU

TRAINING SETUP

 To get started, follow these steps:

 Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in
with my NVIDIA Account" and then '"Create Account“ (done yesterday)

 Visit http://courses.nvidia.com/dli-event and enter the event code

HLRS_OACC_AMBASSADOR_JUL20

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

PROFILING SEQUENTIAL CODE

 Please make sure to choose "Profile
current process only" from the
dropdown instead of "Profile child
process". The CPU details will not be
displayed in the profiler otherwise.

CPU Details

	Foliennummer 1
	MODULE two:�profiling
	Module OVERVIEW
	Compiling sequential code
	PGI Compiler Basics
	PGI Compiler Basics
	Profiling sequential code
	Openacc development CYCLE
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	�Please start LAB now!
	TRAINING SETUP
	TRAINING SETUP
	profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	KEY concepts
	Lab Goals
	THANK YOU�
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	Profiling sequential code

