@ DEER
LEARNING

NVIDIA. | INSTITUTE

. i
-
S by
]
3
i

Deep Learning and GPU
programming using OpenACC

14 — 17 July 2020

MODULE OVERVIEW

OpenACC Directives

Multicore CPU vs GPU

Introduction to GPU Data Management

CUDA Managed Memory

GPU Profiling with PGProf

OpenACC

CPU VS GPU

OpenACC

CPU VS GPU

Number of cores and parallelism

Both are extremely popular parallel processors, but
with different degrees of parallelism

CPUs generally have a small number of very fast
physical cores

+

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

GPUs have thousands of simple cores able to
achieve high performance in aggregate

Both require parallelism to be fully utilized, but GPUs
require much more

OpenACC

CPU + GPU WORKFLOW

Application Code

\\
y

GPU

Compute-Intensive Functions

e
Small % of Code

Large % of Runtime

] Rest of Sequential
CPU Code

| —

)

p
A\

OpenACC

GPU PROGRAMMING IN OPENACC

Execution always begins and ends on the
host CPU

Compute-intensive loops are offloaded to the
GPU using directives

int main(){ '\\V//'

Offloading may or may not require da_ta comauETEal codes I
movement between the host and device. :
Compiler
#pragma acc kernels <— -
{ Hint
<parallel code>

}
}

OpenACC

CPU + GPU

Physical Diagram

. i TETETE L ETELE
CPU memory is larger, GPU memory has e et i i i i i i i i
more bandwidth
S T gg
T
CPU and GPU memory are usually separate, HHHEE i i a a
connected by an I/O bus (traditionally PCl-e) 8 HHHHHHHE

Any data transferred between the CPU and
GPU will be handled by the I/O Bus

High
The 1/0O Bus is relatively slow compared to Capacity ' |
memory bandwidth Memory
' IO Bus . .
The GPU cannot perform computation until the — I

data is within its memory

OpenACC

BASIC DATA MANAGEMENT

OpenACC

BASIC DATA MANAGEMENT

Between the host and device

= The host is traditionally a CPU

= When our target hardware is multicore, the
host and device are the same, meaning that
their memory is also the same

= There is no need to explicitly manage data t
when using a shared memory accelerator,

such as the multicore target

= The device is some parallel accelerator I Device

Device
Memory

OpenACC

BASIC DATA MANAGEMENT

Between the host and device

A ——uw,

= When the target hardware is a GPU data will) — AHHERBHE

usually need to migrate between CPU and ﬁégéﬁg
GPU memor o

o s I

= The next lecture will discuss OpenACC data [| HEHARBEEE

management, for now we’ll assume a unified

Host/Accelerator memory NEERERE

High

Capacity : |
Memory

IO Bus

—

High Bandwidth

Viemo

OpenACC

CUDA MANAGED MEMORY

OpenACC

CU DA MANAG E D M E M O RY Commonly referred to as “unified

Simplified Developer Effort memory.”

Without Managed Memory With Managed Memory

CPU and GPU memories are
combined into a single, shared pool

Managed Memory

OpenACC

CUDA MANAGED MEMORY

Usefulness

= Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

= The PGI compiler can utilize CUDA Managed Memory to defer data management

= This allows the developer to concentrate on parallelism and think about data
movement as an optimization

$ pgcc -fast -acc -ta=tesla:managed -Minfo=accel main.c

$ pgfortran -fast -acc -ta=tesla:managed -Minfo=accel main.f90

OpenACC

MANAGED MEMORY

Limitations

With Managed Memory

= The programmer will almost always be able to
get better performance by manually handling
data transfers

= Memory allocation/deallocation takes longer
with managed memory

= Cannot transfer data asynchronously

= Currently only available from PGI on NVIDIA
GPUs.

Managed Memory

OpenACC

OPENACC WITH MANAGED MEMORY

An Example from the Lab Code

while (error > tol && iter < iter_max)

{

error = 0.0;
#pragma acc kernels

{ for(int j = 1; j < n-1; j++)

{ for(int i = 1; i < m-1; i++)

{ Anew[j][i] = ©.25 * (A[j][i+1] + A[][i-1]

+ A[J-11[1] + A[J+1][1i]);
error = fmax(error, fabs(Anew[j]1[i] - A[FI[i]));

, }
for(int j = 1; j < n-1; j++)
{ for(int i = 1; i < m-1; i++)

i A[31[1] = Anew[]1[i];
}

}
}

OpenACC

Without Managed Memory the
compiler must determine the size of
A and Anew and copy their data to
and from the GPU each iteration to
ensure correctness

With Managed Memory the
underlying runtime will move the
data only when needed

INTRODUCTION TO DATA CLAUSES

OpenACC

BASIC DATA MANAGEMENT

Moving data between the Host and Device using copy

= Data clauses allow the programmer to tell the compiler which data to move and
when

= Data clauses may be added to kernels or parallel regions, but also data, enter
data, and exit data, which will discussed shortly

#pragma acc kernels

for(int 1 = 0; 1 < N; i++){
a[i] = ©;

}

OpenACC

BASIC DATA MANAGEMENT

Moving data between the Host and Device using copy

= Data clauses allow the programmer to tell the compiler which data to move and
when

= Data clauses may be added to kernels or parallel regions, but also data, enter
data, and exit data, which will discussed shortly

#pragma acc parallel loop copyout(a[@:n])

for(int 1 = 9; 1 < N; i++){ .
a[i] = U, | don’t need the initial value

} of a, so I'll only copy it out
of the region at the end.

OpenACC

BASIC DATA MANAGEMENT

Moving data between the Host and Device using copy

Allocate ‘a’ on Copy a Execute Copy ‘a Dfea’tllocate
GPU from CPU Kernels from GPU a’ from
to GPU to CPU GPU

#pragma acc parallel loop copy(a[@:N])
for(int 1 = @; 1 < N; i++){

a[i] = 2 * a[i];
}

OpenACC

BASIC DATA MANAGEMENT

Moving data between the Host and Device using copy

Allocate ‘a’ on Copyes Execute Copy ‘a D‘ez’illocate
GPU from CPU Kernels from GPU a’ from
to GPU to CPU GPU

CPU MEMORY GPU MEMORY

OpenACC

copy(list)

copyin(list)

copyout(list)

create(list)

OpenACC

DATA CLAUSES

Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine

Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.
Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

‘copy(array[starting_index:length]) ‘cmn+

‘copy(array(starting_index:ending_index)) ‘RMMn

OpenACC

BASIC DATA MANAGEMENT

Multi-dimensional Array shaping

|copy(array[@:N][0:M]) CICH+

|copy(array(1:N, 1:M)) Fortran

OpenACC

PROFILING GPU CODE

OpenACC

PROFILING GPU CODE (PGI)

Obtaining information about your GPU

= Using the pgaccelinfo command will

display information about available Terminal Window

accelerators $ pgaccelinfo

Device Number: 0
Device Name: Tesla P100-PCIE-16GB

Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

OpenACC

PROFILING GPU CODE

Obtaining information about your GPU

= Using the pgaccelinfo command will

display information about available Terminal Window
accelerators

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB

= Each device is numbered starting with
0

Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

OpenACC

PROFILING GPU CODE

Obtaining information about your GPU

= Using the pgaccelinfo command will

display information about available Terminal Window

accelerators $ pgaccelinfo

Device Number: ©
| Device Name: Tesla P100-PCIE-16GB|

= Each device is numbered starting with
0

. : : . Méﬁaged Memory: Yes
The Device Name identifies the type of PGI Compiler Option: -ta=tesla:cc6@

accelerator

OpenACC

PROFILING GPU CODE

Obtaining information about your GPU

Using the pgaccelinfo command will

display information about available Terminal Window

accelerators .
$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB

Each device is numbered starting with
0

. . . Méﬁaged Memory: Yes |
The Device Name identifies the type of Lmompller Option: -ta=tesla:cc6@

accelerator

Can Managed Memory be used?

OpenACC

PROFILING GPU CODE

Obtaining information about your GPU

= Using the pgaccelinfo command will
display information about available
accelerators

= Each device is numbered starting with
0

= The Device Name identifies the type of
accelerator

= Can Managed Memory be used?

= What compiler options should be used
to target this device?

OpenACC

Terminal Window

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB

Managed Memory: Yes
|PGI Compiler Option:

-ta=tesla:cc60]|

Without Manage Memory
$ pgcc -ta=tesla:cc60 main.c

With Manage Memory
$ pgcc -ta=tesla:cc60,managed main.c

COMPILING GPU CODE

Terminal Window

$ pgcc -fast -ta=tesla:cc60 -Minfo=accel jacobi.c laplace2d.c

calcNext:
37,
41,
swap:
56,
60,

Generating copy(Anew[:m*n],A[:m*n]) -
Accelerator kernel generated

Generating Tesla code

37, Generating reduction(max:error)

38, #pragma acc loop gang /* blockIdx.x */

41, #pragma acc loop vector(128) /* threadIdx.x */
Loop is parallelizable

Generating copy(Anew[:m*n],A[:m*n]) -
Accelerator kernel generated

Generating Tesla code

57, #pragma acc loop gang /* blockIdx.x */

60, #pragma acc loop vector(128) /* threadIdx.x */
Loop is parallelizable

OpenACC

We can see that our data
copies are being applied by
the compiler

COMPILING GPU CODE

Terminal Window

$ pgcc -fast -ta=tesla:cc60 -Minfo=accel jacobi.c laplace2d.c

calcNext:
37,
41,
swap:
56,
60,

Generating copy(Anew[:m*n],A[:m*n])

Accelerator kernel generated

Generating Tesla code -

37, Generating reduction(max:error)

38, #pragma acc loop gang /* blockIdx.x */

41, #pragma acc loop vector(128) /* threadIdx.x */
Loop is parallelizable

Generating copy(Anew[:m*n],A[:m*n])

Accelerator kernel generated

Generating Tesla code

57, #pragma acc loop gang /* blockIdx.x */

60, #pragma acc loop vector(128) /* threadIdx.x */
Loop is parallelizable

OpenACC

We also see that the
compiler is generating code
for our GPU

COMPILING GPU CODE

Terminal Window

$ pgcc -fast -ta=tesla:cc60 -Minfo=accel jacobi.c laplace2d.c

calcNext:
37,
41,
swap:
56,
60,

Generating copy(Anew[:m*n],A[:m*n])

Accelerator kernel generated

Generating Tesla code

37, Generating reduction(max:error)

38, #pragma acc loop gang /* blockIdx.x */-
41, #pragma acc loop vector(128) /* threadIdx.x */
Loop is parallelizable

Generating copy(Anew[:m*n],A[:m*n])

Accelerator kernel generated

Generating Tesla code

57, #pragma acc loop gang /* blockIdx.x */

60, #pragma acc loop vector(128) /* threadIdx.x */
Loop is parallelizable

OpenACC

This is the parallelization of
the outer loop

PROFILING GPU CODE (PGPROF)

Using PGPROF to profile GPU code

= PGPROF presents far more
information when running on a GPU

= We can view CPU Detalils, GPU
Detalls, a Timeline, and even do
Analysis of the performance

OpenACC

"l Applications 1 PGI Profiler --- 15:30ﬂ
P PGI Profiler v lm %
File View Window Run Help |
CEHEBsS-IaaalelfF RIEZEIA-
T *NewSessionl W *NewSession2 52 = [a]

ii) s 25I s SQ s 7§ s 10.0 s 12|5 s ISP s 17.5 s

[=I Process "laplace_data_clause...
I=| Thread 472664128

- OpenACC

" Driver API
= Profiling Overhead
[=] [0] Tesla V100-5XM2-16GB
[=] Context 1 (CUDA)
L 5F MemCpy (HtoD)
- 5 MemCpy (DtoH)
[=I Compute
L7 47.4% calcNext 4...

~¥ 46.8% swap_56_g...
L 5F 5.8% calcNext_44...

= Streams =
[| ||
Analysis B4 GPU Details (Summar 22 CPU Details OpenACC Details OpenMP Details El Console Settings = 08 = Properties 32 = B
e | B4 Y T swap_56_gpu
Name Invocations | Avg. Duration | Regs | Static SMem | Avg. Dynamic SMem = Duration
swap_56_gpu 1000 374.771ps 16 ' Session 190.83177 ¢
- . Kernel 3747719 m
Invocations 1000
Importance 46.8%

BUG: IGNORE THE WARNING

“m Applications] [PGl Profiler |

ﬁ [Applications PGI Profiler - X

File View Window Run Help |
EEEWsS - QA BIFRIELAZIA-

% *NewSessionl | laplace2d.c | laplace2d.c % wSession2 ‘*NewSessionB 2 == 5
0s 0255 05s 0.75s
. ! .
Progress Information x
m Dropped Invalid Data

profile data are invalid. Those profiling records have been dropped and will not

c The start and end timestamps on 2007 kernels, memcpys, and other collected
be displayed in the timeline

T Analysis GPU Details (Summar [F CPU Details T3] OpenACC Details [T;) OpenMP Details B Console 82 [Settings = B = Properties = 8
EXRIBEFE o8-
<terminated= fopt/pgi/linux86-64-1lvm/2019/cuda/10.1/bin/nvprof Select or highlight a single interval to see
300, 0.000804 |«] properties
400, 0.080603
500, 0.080483
600, 0.080403
700, 0.080345
860, 0.080302
900, 0.000269
total: 1.134571 s
ovprof log: /root/nvvp workspace/.metadata/.plugins/com.nvidia.viper/launch/3/nvprof 461.1log

[l [

OpenACC

PROFILING GPU CODE (PGPROF)

OpenACC

“wi Applications I@ PGl Profiler

o PGI Profiler
File View Window Run Help

CEE WS- ®H &3] F ‘RIIEE_';E_'IAv
% *MewSessionl &2

[=I Process "laplace_unmanage...
[=| Thread 3227076672

- OpenACC

- Driver APl

- Profiling Overhead
= [0] Tesla V100-5XM2-16GB
=| Context 1 (CUDA)
- 57 MemCpy (HtoD)
L 5F MemCpy (DtoH)
[=l Compute
LW 47.4% calcNext_4...

= ae.9%swap 56 oo | ||| [[ILIIITTITEODODDULLELELEVENEEDETEREEDERDARDOREDIPIVEROOPEORPOPOECREOED A0 CELEREEEER AL I LI
e A A R R A A A R AR R AR AR A AR A AR ARARARAA RN A AR ARARARAARNARAY =

[=] Streams

Ad|
[I |

Analysis B4 GPU Details (Summar 2 CPU Details OpenACC Details OpenMP Details El Console Settings = 8 = Properties 3 = 0

s | 024 28 ¥ calcNext_40_gpu

Name Invocations | Avg. Duration | Regs | Static SMem | Avg. Dynamic SMem
calcNext 40 1 1000 376.816us 32

= Duration

Session {165.86158 <
Kernel 137681626 n
Invocations - 1000

Importance 47.4%

PROFILING GPU CODE (PGPROF)

“w Applications [] PGI Profiler m--- 16:28
0

Poi PGI Profiler [Ee
Eile View Window Bun Help |

MNEBNSS - wa@lBlfFRIEELA-
© *NewSessionl &

= 0
P s 25I s 59 s 7-'5I s 10|0 s 12|5 s 15|0 s
[=| Process "laplace_unmanage... [=]
[=I Thread 3227076672
L OpenACC
- orver 4 I
- Profiling Overhead | |
=l [0] Tesla V100-5XM2-16GB
[=| Context 1 (CUDA}
o memepy o) | |
.,
T /BN NN EENNEE B NONENNNNENE KN NNNRN NN NE DENRRNENNE DN
- 74745 cacnext 4. [N EEEEEE RN EEE e
eyl | [[[[[[([[[({110 [[[[JI[I[[[[[™
[=] Streams =
[o1 [
i Analysis GPU Details (Summar [CPU Details [OpenACC Details 22 [75) OpenMP Details El Console Ty Settings = 0O X Properties 52 = B
Iﬁ H, swap_56_gpu
Summary of OpenACC events on process: 416 =] < Duration]
Name % Time Calls = Session 165.86158 s
- laplace2d.c:61 3.15668 5 Kernel 372.52206 n
acc_wait L 1.776% 12916685 | 1000 Invocations £ 1000
acc_enqueue download | 0.146% 10239995 | 18000 Importance £ 46.0%
b laplace2d.c:47 1.914% 3.14388 s 19000 .
b laplace2d.c:36 1.446% 2.37444 5 19001
b laplace2d.c:52 | 1.314% [2.15863s | 18000 |
UpenAcc b laplace2d.c:40 | 0.262% {0.43092s 3000 =l =

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

0s
[=| Process "laplace” (3224)
= MemCpy(HtoD): This includes data [Thread 2863483584
transfers from the Host to the Device L OpenACC =
(CPU to GPU) -
L Driver AP| _
L fili head
= MemCpy(DtoH): These are data - Sl il |
. [=| [O] Tesla P100-PCIE-16GE
transfers from the Device to the Host
GPU to CPU) [=] Context 1 (CUDA)
(C 7 Memcpy (Hton) | [
L MemCpy (DtoH)
= Compute: These are our — i:izm:::lt:y ° =
computational functions. We can B T O
see our calcNext and swap function 5 45.9% swap_56... |
L7 0.7% caleNext_... ||| NN
[=] Streams
KT —

OpenACC

PROFILING GPU CODE

Recelving unexpected code results

= Here we can see the runtime of our Terminal Window

application: 151 seconds $ pgcc -ta=tesla:cc60 jacobi.c laplace2d.c
: _ $./a.out
= The program is now performing over 3 9, 0.250000
times worse than the sequential 100, 0.002397
Version 200, 0.001204
300, 0.000804
= A profiler can help us understand why 400, 0.000603
this performance is worse 500, 0.000433
600, ©.000403
700, ©.000345
800, 0.000302
900, 0.000269
total: 151.772627 s

OpenACC

PROFILING GPU CODE

Inspecting the PGPROF timeline

= Zooming in gives us a better view
of the timeline

= At a first glance, it looks like our
program is spending a significant
amount of time transferring data
between the host and device

= We also see that the compute
regions are very small and spread
out

= What if we try Managed Memory?

OpenACC

Fle Wiew wWindew Bun Help

COW By & - [

&2 § *Haplace.map 2 = 0 &
T [0.3255 0.355 0.375 5 045 04255 0.45 5 0.4755 &
B4 [= Process “laplace” (3224)
|= Thread 2863483584
=] * Openacc t_data@ @lapl... it_data@
- NARRARNIARRNARRY R RRRRRNERANREE HANAARIARIAEN RERNERRARERRREN 10N
- Driver AP1 AR ARRARRRY | NN RN NN TN NRRNRANRNAARANRN RO RANRUUNRNRRAN R

L Profiling Overhead
[= [0] Tesla P1OO-PCIE-16GB
[= Context 1 (CUDA)
L 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

|=| Compute

L 5F 53.4% calcNext...
L 5F 45.9% swap_56...

L5F 0.7% calchext_..
= Streams
L Stream 13

KT [2

PROFILING GPU CODE

Using managed memory

Terminal Window

= Using managed memory $ pgcc -ta=tesla:cc60,managed jacobi.c
drastically improves performance laplace2d.c
$./a.out
= This managed memory version Is 9, 0.250000
performing over 20x better than 100, 0.002397
the sequential code 200, ©.001204
300, ©.000804
n - 400, 0.000603
:/r\]/irslef;\)t does the profiler tell us about 500, 0.000483
' 600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 1.474951 s

OpenACC

PROFILING GPU CODE

Using managed memory

Fle Miew Window Bun Help

FEHEBsS - Q@ F RIEEETA-

= The data no longer needs to transfer ° Lotpiconn -0 -

Ll ‘ 0.978 s 0.98s 0,983 s 0.985s 0,988 5 0.99s i=]
| f I I I i

between each kernel ey

=1} [=| Thread 2863485056

I :. B ———
= The data is only moved when it’s first e .

[=] Unified Memaory

accessed on the GPU or CPU

|=| [0] Tesla P100-PCIE-16GB
[=] Unified Memory
L 5F GPU Page Faults

= During the timestepping data remains on

e N I (R I B B

the device - Memcpy Ot I R e e e e I e

= Compute N N N O O O s s
cyssowcalenent.,. [B B OB OB OB OB O E O E O =EH =
- 44.3% swap_56. H EH EH FH FE FE E E E E®E=

) N ow a h I g h o p erce ntag € Of tl me IS S p € nt : SE%E? :ICNEM I-I--:-I-ll-l-ll-l-:--I--:-I-I--l-l--l-:-
computing

OpenACC

ERRATA

= In the section Including Data Clauses in our Laplace Code

= Use !pgcc -fast -ta=tesla;managed -Minfo=accel -0
laplace data clauses jacobi.c laplace2d.c &&
./laplace data clauses 1024 1024

= —-ta=tesla instead of —ta=tesla,managed

OpenACC

KEY CONCEPTS

In this module we discussed...

= The fundamental differences between CPUs and GPUs

= Assisting the compiler by providing information about array sizes for data
management

= Managed memory

OpenACC

	Foliennummer 1
	MODULE OVERVIEW
	CPU vs gpu
	CPU vs gpu
	CPU + GPU Workflow
	GPU PROGRAMMING IN OPENACC
	CPU + GPU
	Basic data management
	Basic data management
	Basic data management
	CUDA Managed memory
	Cuda managed memory
	CUDA Managed memory
	Managed memory
	OpenACC with Managed Memory
	Introduction to data clauses
	Basic data management
	Basic data management
	Basic data management
	Basic data management
	Data Clauses
	Array Shaping
	Basic data management
	Profiling gpu code
	Profiling gpu code (PGI)
	Profiling gpu code
	Profiling gpu code
	Profiling gpu code
	Profiling gpu code
	Compiling gpu code
	Compiling gpu code
	Compiling gpu code
	Profiling gpu code (PGPROF)
	Bug: ignore the warning
	Profiling gpu code (PGPROF)
	Profiling gpu code (PGPROF)
	Profiling gpu code (PGPROF)
	Profiling GPU code
	Profiling GPU code
	Profiling gpu code
	Profiling gpu code
	ERRata
	KEY concepts
	THANK YOU�

