
Institute of Aerodynamics

and Gas Dynamics

Deep Neural Networks for
Data-Driven Turbulence Models
@HLRS-DL 2020

Andrea Beck



Outline

1 Introduction

2 Machine Learning with Neural Networks

3 Turbulence Models from Data

4 Training and Results

5 Marius Kurz: Sequence Learning

6 Anna Schwarz: Detecting Shocks

7 Summary

A Beck: DNN for LES 2



Introduction

1



Introduction

Numerics Research Group @ IAG, University of Stuttgart, Germany
Primary Focus: High Order Discontinuous Galerkin Methods
OpenSource HPC solver for the compressible Navier-Stokes equations

www.flexi-project.org
A Beck: DNN for LES 4



DG-SEM in a nutshell

Hyperbolic/parabolic conservation law , e.g. compressible Navier-Stokes Equations

Ut + ~∇ · ~F (U, ~∇U) = 0

Variational formulation and weak DG form per element for the equation system

〈J Ut, ψ〉E +
(
f̃∗ ~nξ, ψ

)
∂E
−
〈
~̃F,∇ξψ

〉
E

= 0,

Local tensor-product Lagrange polynomials, interpolation nodes equal to quadrature nodes
Tensor-product structure in multi-D: line-by-line operations

(Uij)t + 1
Jij

[
f̃∗(1, ηj)ψ̂i(1)− f̃∗(−1, ηj)ψ̂i(−1) +

N∑
k=0

D̂ik F̃kj

]

+ 1
Jij

[
g̃∗(ξi, 1)ψ̂j(1)− g̃∗(ξi,−1)ψ̂j(−1) +

N∑
k=0

D̂jk G̃ik

]
︸ ︷︷ ︸

1D DGSEM Operator

= 0

BR1/2 lifting for viscous fluxes, Roe/LF/HLL-type inviscid fluxes, explicit in time by RK/
Legendre-Gauss or LGL-nodes

A Beck: DNN for LES 5



Applications: LES, moving meshes, acoustics, multiphase, UQ, particle-laden flows...

A Beck: DNN for LES 6



Machine
Learning with
Neural Net-
works

2



Rationale for Machine Learning

“It is very hard to write programs that solve problems like recognizing a
three-dimensional object from a novel viewpoint in new lighting conditions in a
cluttered scene.

We don’t know what program to write because we don’t know how its done in our
brain.
Even if we had a good idea about how to do it, the program might be
horrendously complicated.”

Geoffrey Hinton, computer scientist and cognitive psychologist (h-index:140+)

A Beck: DNN for LES 8



Definitions and Concepts

A Beck: DNN for LES 9

An attempt at a definition:

Machine learning describes algorithms and techniques that progressively improve performance on a
specific task through data without being explicitly programmed.

Learning Concepts

Unuspervised Learning
Supervised Learning
Reinforcement Learning

Artificial Neural Networks

General Function Approximators
AlphaGo, Self-Driving Cars, Face recognition,
NLP
Incomplete Theory, models difficult to interpret
NN design: more an art than a science



Types of ML

Different Types of Learning:
Unsupervised learning:
Discover a good internal representation of the input. ⇒ “Segmentation / Clustering Model”
Reinforcement learning:
Learn to select an action to maximize payoff. ⇒ “Behavioral Model”
Supervised learning:
Learn to predict an output when given an input vector. ⇒ “Predictive Model”

A Beck: DNN for LES 10



History of ANNs

Some important publications:
McCulloch-Pitts (1943): First compute a weighted sum of the inputs from other neurons plus
a bias: the perceptron
Rosenblatt (1958): First to generate MLP from perceptrons
Rosenblatt (1962): Perceptron Convergence Theorem
Minsky and Papert (1969): Limitations of perceptrons
Rumelhart and Hinton (1986): Backpropagation by gradient descent
Cybenko (1989): A NN with a single hidden layer and finite neurons can approximate
continuous functions
LeCun (1995): “LeNet”, convolutional networks
Hinton (2006): Speed-up of backpropagation
Krizhevsky (2012): Convolutional networks for image classification
Ioffe (2015): Batch normalization
He et al. (2016): Residual networks
AlphaGo, DeepMind...

A Beck: DNN for LES 11



Neural Networks

Artificial Neural Network (ANN): A non-linear mapping from inputs to ouputs: M : X̂ → Ŷ
An ANN is a nesting of linear and non-linear functions arranged in a directed acyclic graph:

Ŷ ≈ Y = M(X̂) = σL
(
WL

(
σL−1

(
WL−1

(
σL−2

(
...W1(X̂)

)))))
, (1)

with W being an affine mapping and σ a non-linear function
The entries of the mapping matrices W are the parameters or weights of the network: improved
by training
Cost function C as a measure for

∣∣Ŷ − Y ∣∣, (MSE / L2 error) convex w.r.t to Y , but not w.r.t W :
⇒ non-convex optimization problem requires a lot of data

A Beck: DNN for LES 12



Advanced Architectures

Convolutional Neural Networks
Local connectivity, multidimensional trainable filter kernels, discrete convolution, shift
invariance, hierarchical representation
Current state of the art for multi-D data and segmentation

A Beck: DNN for LES 13



Advanced Architectures

Convolutional Neural Networks

A Beck: DNN for LES 14



What does a CNN learn?

Representation in hierarchical basis

from: H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. “Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations.” In ICML 2009.

A Beck: DNN for LES 15



Residual Neural Networks

He et al. recognized that the prediction performance of CNNs may deteriorate with depths (not
an overfitting problem)
Introduction of skip connectors or shortcuts, most often identity mappings
A sought mapping, e.g. G(Al−3) is split into a linear and non-linear (residual) part
Fast passage of the linear part through the network: hundreds of CNN layers possible
More robust identity mapping

He, Kaiming, et al. ”Deep residual learning for image recognition.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016.

A Beck: DNN for LES 16



Turbulence
Models from
Data

3



Turbulence in a nutshell

Turbulent fluid motion is prevalent in naturally occurring flows and engineering applications:
multiscale problem in space and time
Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)
Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary
Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term /
regularization dependent on the filtered full scale solution ⇒ Model depending on the coarse scale
data needed!
Two filter concepts: Averaging in time (RANS) or low-pass filter in space (LES)
An important consequence: RANS can be discretization independent, LES is (typically) not!
50 years of research: Still no universal closure model

A Beck: DNN for LES 18



Turbulence in a nutshell

Turbulent fluid motion is prevalent in naturally occurring flows and engineering applications:
multiscale problem in space and time
Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)
Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary
Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term /
regularization dependent on the filtered full scale solution ⇒ Model depending on the coarse scale
data needed!
Two filter concepts: Averaging in time (RANS) or low-pass filter in space (LES)
An important consequence: RANS can be discretization independent, LES is (typically) not!
50 years of research: Still no universal closure model

A Beck: DNN for LES 18



Turbulence in a nutshell

Turbulent fluid motion is prevalent in naturally occurring flows and engineering applications:
multiscale problem in space and time
Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)
Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary
Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term /
regularization dependent on the filtered full scale solution ⇒ Model depending on the coarse scale
data needed!
Two filter concepts: Averaging in time (RANS) or low-pass filter in space (LES)
An important consequence: RANS can be discretization independent, LES is (typically) not!
50 years of research: Still no universal closure model

A Beck: DNN for LES 18



Turbulence in a nutshell

Turbulent fluid motion is prevalent in naturally occurring flows and engineering applications:
multiscale problem in space and time
Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)
Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary
Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term /
regularization dependent on the filtered full scale solution ⇒ Model depending on the coarse scale
data needed!
Two filter concepts: Averaging in time (RANS) or low-pass filter in space (LES)
An important consequence: RANS can be discretization independent, LES is (typically) not!
50 years of research: Still no universal closure model

A Beck: DNN for LES 18



Turbulence in a nutshell

Turbulent fluid motion is prevalent in naturally occurring flows and engineering applications:
multiscale problem in space and time
Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)
Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary
Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term /
regularization dependent on the filtered full scale solution ⇒ Model depending on the coarse scale
data needed!
Two filter concepts: Averaging in time (RANS) or low-pass filter in space (LES)
An important consequence: RANS can be discretization independent, LES is (typically) not!
50 years of research: Still no universal closure model

A Beck: DNN for LES 18



Idea

Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional
input data to an output ⇒ ANN

A Beck: DNN for LES 19



Idea

Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional
input data to an output ⇒ LES closure

A Beck: DNN for LES 19



Problem Definition

Choice of LES formulations:
Scale separation filter: implicit ⇔ explicit, linear ⇔ non-linear, discrete ⇔ continuous...
Numerical operator: negligible ⇔ part of the LES formulation, isotropic ⇔ non-isotropic,
commutation with filter...
Subgrid closure: implicit ⇔ explicit, deconvolution ⇔ stochastic modelling,...

A Beck: DNN for LES 20



Problem Definition

Choice of LES formulations:
Scale separation filter: implicit ⇔ explicit, linear ⇔ non-linear, discrete ⇔ continuous...
Numerical operator: negligible ⇔ part of the LES formulation, isotropic ⇔ non-isotropic,
commutation with filter...
Subgrid closure: implicit ⇔ explicit, deconvolution ⇔ stochastic modelling,...

A Beck: DNN for LES 20



Problem Definition

Choice of LES formulations:
Scale separation filter: implicit ⇔ explicit, linear ⇔ non-linear, discrete ⇔ continuous...
Numerical operator: negligible ⇔ part of the LES formulation, isotropic ⇔ non-isotropic,
commutation with filter...
Subgrid closure: implicit ⇔ explicit, deconvolution ⇔ stochastic modelling,...

A Beck: DNN for LES 20



Problem Definition

Choice of LES formulations:
Scale separation filter: implicit ⇔ explicit, linear ⇔ non-linear, discrete ⇔ continuous...
Numerical operator: negligible ⇔ part of the LES formulation, isotropic ⇔ non-isotropic,
commutation with filter...
Subgrid closure: implicit ⇔ explicit, deconvolution ⇔ stochastic modelling,...

x/D

<
u

>
/U

0.5 1 1.5 2 2.5 3 3.5 4

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Experimental, Parnaudeau
Blackburn & Schmidt
Fröhlich et al
Kravchenko & Moin
Meyer & Hickel
N=7
N=11

A Beck: DNN for LES 20



Problem Definition

Choice of LES formulations:
Scale separation filter: implicit ⇔ explicit, linear ⇔ non-linear, discrete ⇔ continuous...
Numerical operator: negligible ⇔ part of the LES formulation, isotropic ⇔ non-isotropic,
commutation with filter...
Subgrid closure: implicit ⇔ explicit, deconvolution ⇔ stochastic modelling,...

Essential for ML methods: Well-defined training data (both input and output)
Is U known explicitly? ⇒ For practical LES, i.e. grid-dependent LES, it is not most of the time!

A Beck: DNN for LES 20



Problem Definition

Choice of LES formulations:
Scale separation filter: implicit ⇔ explicit, linear ⇔ non-linear, discrete ⇔ continuous...
Numerical operator: negligible ⇔ part of the LES formulation, isotropic ⇔ non-isotropic,
commutation with filter...
Subgrid closure: implicit ⇔ explicit, deconvolution ⇔ stochastic modelling,...

Essential for ML methods: Well-defined training data (both input and output)
Is U known explicitly? ⇒ For practical LES, i.e. grid-dependent LES, it is not most of the time!

A Beck: DNN for LES 20

Definition: Perfect LES

All terms must be computed on the coarse grid
Given U(t0, x) = UDNS(t0, x) ∀x, then U(t, x) = UDNS(t, x) ∀x and ∀ t > 0



Turbulence Closure

Filtered NSE:
∂U

∂t
+R(F (U)) = 0 (2)

Imperfect closure with Û 6= U :

∂Û

∂t
+ R̃(F (Û)) = M̃(Û , Ck)︸ ︷︷ ︸

imperfect closure model

, (3)

Perfect closure with U
∂U

∂t
+ R̃(F (U)) = R̃(F (U))−R(F (U))︸ ︷︷ ︸

perfect closure model

. (4)

A Beck: DNN for LES 21



Turbulence Closure

Filtered NSE:
∂U

∂t
+R(F (U)) = 0 (2)

Imperfect closure with Û 6= U :

∂Û

∂t
+ R̃(F (Û)) = M̃(Û , Ck)︸ ︷︷ ︸

imperfect closure model

, (3)

Perfect closure with U
∂U

∂t
+ R̃(F (U)) = R̃(F (U))−R(F (U))︸ ︷︷ ︸

perfect closure model

. (4)

Note R̃(F (U)) is necessarily a part of the closure, but it is known
Perfect LES and perfect closure are not new concepts: introduced by R. Moser et al in a series of
papers∗, termed ideal / optimal LES

∗Langford, Jacob A. & Robert D. Moser. ”Optimal LES formulations for isotropic turbulence.” JFM 398 (1999): 321-346.
A Beck: DNN for LES 21



Perfect LES

∂U

∂t
+

coarse grid operator︷ ︸︸ ︷
R̃(F (U)) =

coarse grid operator︷ ︸︸ ︷
R̃(F (U)) −R(F (U))︸ ︷︷ ︸

perfect closure model

.

The specific operator and filter choices are not relevant for the perfect LES
Note that the coarse grid operator is part of the closure (and cancels with the LHS)
We choose:

DNS-to-LES operator (): L2 projection from DNS grid onto LES grid: We choose a discrete
scale-separation filter
LES operator (̃): 6th order DG method with split flux formulation and low dissipation Roe flux

A Beck: DNN for LES 22



Perfect LES

Perfect LES runs with closure term from DNS
Decaying homogeneous isotropic turbulence
DNS grid: 643 elements, N = 7 ; LES grid: 83 elements, N = 5 ;

Left to right: a) DNS, b) filtered DNS, c) computed perfect LES d) LES with Smagorinsky model
Cs = 0.17

A Beck: DNN for LES 23



Perfect LES

Perfect LES runs with closure term from DNS
Decaying homogeneous isotropic turbulence
DNS grid: 643 elements, N = 7 ; LES grid: 83 elements, N = 5 ;

t

E
k

in

1.4 1.45 1.5 1.55 1.6

0.5

0.55

0.6

0.65

DNS filtered

LES, perfect model

LES, no model

LES, no model, KEP

LES, Cs=0.17

k

E
(k

)

2 4 6 8 10 12 14 16

0.01

0.02

0.03

0.04

0.05

DNS Filtered

DNS

LES, perfect model

LES, no model

LES, KEP

LES, Cs=0.17

3
 P

P
W

4
 P

P
W

⇒ Perfect LES gives well-defined target and input data for supervised with NN

A Beck: DNN for LES 23



Training and
Results

4



Data Acquisition: Decaying Homogeneous Isotropic Turbulence

Ensemble of DNS runs of decaying homogeneous isotropic turbulence with initial spectrum defined
by Chasnov (1995) initialized by Rogallo (1981) procedure and Reλ = 180 at start
Data collection in the range of exponential energy decay: 25 DHIT realizations with 134 Mio DOF
each computed on CRAY XC40 (approx. 400,000 CPUh, 8200 cores)
Compute coarse grid terms from DNS-to-LES operator

Wavenumber k

E
(k

)

10 20 30 40 50 60

10
­3

10
­2

10
­1

T
start

I

T
end

t

E
k

in

1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Run 2

Run 6

Run 12

Run 16

t
(­2.2)

A Beck: DNN for LES 25



Features and Labels

Each sample: A single LES grid cell with 63 solution points
Input features: velocities and LES operator: ui, R̃(F (U))
Output labels: DNS closure terms on the LES grid R(F (U))

A Beck: DNN for LES 26



Networks and Training

CNNs with skip connections (RNN), batch normalization, ADAM optimizer, data augmentation
Different network depths (no. of residual blocks)
For comparison: MLP with 100 neurons in 1 hidden layer∗

Implementation in Python / Tensorflow, Training on K40c and P100 at HLRS
Split in training, semi-blind validation and blind test DHIT runs

∗Gamahara & Hattori. ”Searching for turbulence models by artificial neural network.” Physical Review Fluids 2.5 (2017)
A Beck: DNN for LES 27



Training Results I: Costs

Cost function for different network depths
RNNs outperform MLP, deeper networks learn better
The approach is data-limited! NNs are very data-hungry!

A Beck: DNN for LES 28



Training Results II: Correlation

Network a, b CC(a, b) CCinner(a, b) CCsurf (a, b)

RNN0 R(F (U))1, R(F (U))1ANN 0.347676 0.712184 0.149090
R(F (U))2, R(F (U))2ANN 0.319793 0.663664 0.134267
R(F (U))3, R(F (U))3ANN 0.326906 0.669931 0.101801

RNN4 R(F (U))1, R(F (U))1ANN 0.470610 0.766688 0.253925
R(F (U))2, R(F (U))2ANN 0.450476 0.729371 0.337032
R(F (U))3, R(F (U))3ANN 0.449879 0.730491 0.269407

High correlation achievable with deep networks
For surfaces: one-sidedness of data / filter kernels

A Beck: DNN for LES 29



Training Results III: Feature Sensitivity

Set Features CC1 CC2 CC3

1 ui, R̃(F (U i)), i = 1, 2, 3 0.4706 0.4505 0.4499
2 ui, i = 1, 2, 3 0.3665 0.3825 0.3840
3 R̃(F (U i)), i = 1, 2, 3 0.3358 0.3066 0.3031
4 ρ, p, e, ui, R̃(F (U i)), i = 1, 2, 3 0.4764 0.4609 0.4580

5 u1, R̃(F (U1)) 0.3913

Feature sets and resulting test correlations. CCi with i = 1, 2, 3 denotes the cross correlation between the targets
and network outputs CC(R(F (U)i), R(F (U))i

ANN
). Set 1 corresponds to the original feature choice; Set 5

corresponds to the RNN4 architecture, but with features and labels for the u−momentum component only.

Both the coarse grid primitive quantities as well as the coarse grid operator contribute strongly to
the learning success
Better learning for 3D cell data than pointwise data

A Beck: DNN for LES 30



Training Results IV: Visualization

”Blind” application of the trained network to unknown test data
Cut-off filter: no filter inversion / approximate deconvolution

CC ≈ 0.47 CC ≈ 0.34

A Beck: DNN for LES 31



LES with NN-trained model I

∂U

∂t
+ R̃(F (U)) = R̃(F (U)) −R(F (U))︸ ︷︷ ︸

ANN closure

.

Perfect LES is possible, but the NN-learned mappings are approximate
No long term stability, but short term stability and dissipation

A Beck: DNN for LES 32



LES with NN-trained model II

∂U

∂t
+ R̃(F (U)) = R̃(F (U)) −R(F (U))︸ ︷︷ ︸

data-based eddy viscosity model

.

Simplest model: Eddy viscosity approach with µANN from
R̃(F (U i))−R(F (U i)) ≈ µANN R̃(F visc(U i,∇U i)) (5)

A Beck: DNN for LES 33



Marius Kurz:
Sequence
Learning

5



Can we do better?

So far, we have not taken the temporal evolution of turbulence and the closure terms into account
NN architectures that make use of ordered, consecutive information are called sequence models or
recurrent NNs: Models dynamic temporal behaviours
Examples of sequence data: Sensor data, spoken language, translation, stock prizes, ...
There are many different architectures and flavours of RecNN, so let us just discuss the basic
ideas!
The general form (of a uni-directional RecNN): an autoregressive non-linear model

Ŷ t+1 = f(Xt+1︸ ︷︷ ︸
input

,m(Ŷ t, Ŷ t−1, ...))︸ ︷︷ ︸
”memory”

(6)

A Beck: DNN for LES 35



Recurrent NNs

Architecture:

Forward pass:

at = σ(Waa a
t−1 +WaxX

t + ba)

Ŷ t = σ(Wya, a
t + by)

(7)

A Beck: DNN for LES 36



Recurrent NNs

RecNN-Architectures differ in the way the hidden layers are structured
Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM)

By Jeblad - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=66225938
and Guillaume Chevalier, https://upload.wikimedia.org/wikipedia/commons/3/3b/The LSTM cell.png

A Beck: DNN for LES 37



Recurrent NNs

GRU and LSTM: learning long range connections through memory lanes
Differ in terms of gates: How and when the memory lane is written, updated or forgotten:

Update gate (GRU, LSTM): How much of the past should matter now?
Relevance gate (GRU, LSTM): Drop previous information?
Forget gate (LSTM): Erase memory?
Output gate (LSTM): How much to reveal of a cell?

Many more technical details, here are some suggestions:
https://stanford.edu/ shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
Hochreiter, Sepp, and Jürgen Schmidhuber. ”Long short term memory.” Neural computation
9.8 (1997): 1735-1780.
Cho, Kyunghyun, et al. ”Learning phrase representations using RNN encoder-decoder for
statistical machine translation.” arXiv preprint arXiv:1406.1078 (2014).
Greff, Klaus, et al. ”LSTM: A search space odyssey.” IEEE transactions on neural networks
and learning systems 28.10 (2016): 2222-2232.

A Beck: DNN for LES 38



Stability of Recurrent NNs

Recurrency introduces possible source of trouble: predicting long term sequential input can lead to
exponential error growth.
Simplified: Ŷ T = A(Ŷ T−1, XT ), of course Ŷ T−1 = A(Ŷ T−2, XT−1), ...: AD stability w.r.t. to
small errors?
Long term stability is currently a problem, some fixes are:

”Scheduled Sampling” by Bengio et al.
”Auto-conditioned recurrent networks” by Zhou et al.
”Stability Training” by Goodfellow et at.

from: Li, Z., Zhou, Y., Xiao, S., He, C., Huang, Z., & Li, H. (2017). Auto-conditioned recurrent networks for
extended complex human motion synthesis. arXiv preprint arXiv:1707.05363.A Beck: DNN for LES 39



Back to LES Closure Preditions

Predict closure terms from time series data
Prediction mode: many-to-one

LSTM LSTM LSTM LSTM

A Beck: DNN for LES 40



Performance of Network Architectures

RNNs outperform MLP and CNN architectures by a lot!
LSTMs and GRUs give similar results

Network # Parameter Time (GPU) Time (CPU) L2-Error CC

MLP 6, 720 6 ms 28 ms 3.0 · 10+1 66.0%

CNN 187, 088 72 ms 198 ms 2.1 · 10+1 78.7%

LSTM (3∆t) 39, 744 62 ms 340 ms 1.3 · 10−1 99.9%

GRU (3∆t) 31, 578 59 ms 319 ms 1.1 · 10−1 99.9%

A Beck: DNN for LES 41



Performance of Network Architectures

RNNs outperform MLP and CNN architectures by a lot!
LSTMs and GRUs give similar results

A Beck: DNN for LES 41



Summary

Perfect / optimal LES framework: well-defined target quantities for learning
Learning the exact closure terms from data is possible
Deeper RNNs learn better
Our process is data-limited, i.e. learning can be improved with more data
Sequence models show superior performance
Achievable CC ≈ 99%, with up to ≈ 79% for CNN
Currently no long term stability due to approximate model
Simplest way to construct a stable model: Data-informed, local eddy-viscosity
Other approaches to construct models from prediction of closure terms under investigation
More Info: Beck, Flad, Munz. ”Deep neural networks for data-driven LES closure models.”
Journal of Computational Physics 398 (2019): 108910.

A Beck: DNN for LES 42



Anna
Schwarz:
Detecting
Shocks

6



Shock Localization through Holistic Edge Detection

Another quick example of combining CFD + ML
Shocks and sharp discontinuities cause Gibb’s oscillations in high order methods due to
non-smoothness
These features need to be treated with special numerical methods to ensure stability

A Beck: DNN for LES 44



Shock capturing

A classical approach:
1. Choose some numerical method for the stable approximation of discontinuities (e.g. FV

subcells, p-reduction, artificial viscosity)
2. Define a ”troubled cell” indicator with empirical parameters
3. Apply the method from (1) in the troubled cells
4. Find ”good” parameters for (2), where good means both stable and as sharp as possible
5. Rinse and repeat for different physics, numerics, etc.

Note that the indicator and the numerics are closely linked
An indicator that leads to a stable simulation for one case (e.g. for one Riemann solver, N, Mach
number) will fail for another case
The troubled cell indicator is an empirically tuned ”tolerance level” fitted to the numerical
scheme: How strong can the discontinuity be for the scheme to survive?

⇒ Shock capturing and shock detection are interdependent
⇒ Experience / Parameter Tuning required

A Beck: DNN for LES 45



A DG method for shock capturing

Hybrid DG / Finite Volume operator
Interpret solution polynomial differently
Introduce virtual FV grid within each DG element
Solve a TVD Finite volume method in troubled cells
Keep high order accuracy wherever possible
Switch DG2FV and vice versa ⇒ Experience / Parameter
tuning required

A Beck: DNN for LES 46



A DG method for shock capturing

A Beck: DNN for LES 47



Shock Detection through ML

General idea: Decouple the shock localization and the shock capturing to ameliorate parameter
tuning
First task: Train a CNN-based binary classifier on element data to detect shocks without
regarding their numerical representation
Second task: Localize the shock within an element
Training data: Smooth and non-smooth functions

A Beck: DNN for LES 48



Shock Detection through ML

General idea: Decouple the shock localization and the shock capturing to ameliorate parameter
tuning
First task: Train a CNN-based binary classifier on element data to detect shocks without
regarding their numerical representation
Second task: Localize the shock within an element
Training data: Smooth and non-smooth functions

A Beck: DNN for LES 48



Shock Detection through ML

A Beck: DNN for LES 49



Shock Detection through ML

A Beck: DNN for LES 49



Shock Detection through ML

Shocks can be safely detected by the NN indicator, without additional parameter tuning
Consistent detection, not dependent on numerical scheme: not a troubled cell indicator!
Task 2: Localize the shock within an element: Holistic Edge Detection

A Beck: DNN for LES 50



Shock Localization through ML

Task 2: Localize the shock within an element: This is especially beneficial for high order schemes!

A Beck: DNN for LES 51



Shock Localization through ML

Works also on real meshes!

A Beck: DNN for LES 52



NN-guided mesh adaptation

Evaluate indicator on baseline grid (left), then refine accordingly (right)

Beck et al. ”A Neural Network based Shock Detection and Localization Approach for
Discontinuous Galerkin Methods.” arXiv preprint arXiv:2001.08201 (2020).

A Beck: DNN for LES 53



NN-guided mesh adaptation

Evaluate indicator on baseline grid (left), then refine accordingly (right)

Beck et al. ”A Neural Network based Shock Detection and Localization Approach for
Discontinuous Galerkin Methods.” arXiv preprint arXiv:2001.08201 (2020).

A Beck: DNN for LES 53



Summary

7



Some final thoughts on data-informed models, engineering and HPC

Machine Learning is not a silver bullet
First successes: ML can help build subscale models from data, or improve replace
parameter-dependent empirical models
A lot of representative data is needed... maybe we already have the data? Computations,
experiments...
In this work, the computational times were: DNS: O(105) CPUh, data preparation O(103),
Training the RNN: O(101 − 102): Is it worth it?
Incorporating physical constraints (e.g. realizability, positivity) field of research
”Philosophical aspects”: Interpretability of the models and ”who should learn what?”
HPC: Training has to done on GPUs (easy for supervised learning, bit more complicated for
reinforcement learning)
What about model deployment? GPU (native) or CPU (export model)?
Coupling of CFD solver (Fortran) to Neural Network (python): In our case, f2py is a very
cumbersome solution
Hybrid CPU/GPU codes, or rewrite it all for the GPU?
Data storage policy: where to compute/store the data (reproducibility)

A Beck: DNN for LES 55



flexi-project.org

Thank you for your attention!

https://www.flexi-project.org/


Institute of Aerodynamics

and Gas Dynamics

Andrea Beck

eMail beck@iag.uni-stuttgart.de
Telefon +49-711-685 60218
Web nrg.iag.uni-stuttgart.de

mailto:beck@iag.uni-stuttgart.de
https://nrg.iag.uni-stuttgart.de/

	Introduction
	Machine Learning with Neural Networks
	Turbulence Models from Data
	Training and Results
	Marius Kurz: Sequence Learning
	Anna Schwarz: Detecting Shocks
	Summary

