@ DEER
LEARNING

NVIDIA. | INSTITUTE

PRACE Workshop: Deep Learning
and GPU programming workshop

15 - 18 June 2020

VSB TECHNICAL
H|| UNIVERSITY
OF OSTRAVA

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

MODULE OVERVIEW

Topics to be covered

= Compiling and profiling sequential code
= Explanation of multicore programming

= Compiling and profiling multicore code

OpenACC

COMPILING SEQUENTIAL CODE

OpenACC

PGI COMPILER BASICS

pgcc, pgc++ and pgfortran

The command to compile C code is ‘pgcc’

The command to compile C++ code is ‘pgc++’

The command to compile Fortran code is ‘pgfortran’

The -fast flag instructs the compiler to optimize the code to the best of its abilities

$ pgcc -fast main.c
$ pgc++ -fast main.cpp
$ pgfortran -fast main.F90

OpenACC

PGI COMPILER BASICS

-Minfo flag

= The Minfo flag will instruct the compiler to print feedback about the compiled code

= -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

= -Minfo=opt will give information about all code optimizations

= -Minfo=all will give all code feedback, whether positive or negative

$ pgcc -fast -Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran -fast -Minfo=all main.f90

OpenACC

PROFILING SEQUENTIAL CODE

OpenACC

OPENACC DEVELOPMENT CYCLE

[- Analyze your code to determine }

most likely places needing

parallelization or optimization. Analyze

= Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

= Optimize your code to improve
observed speed-up from
parallelization.

Optimize Parallelize

OpenACC

PROFILING SEQUENTIAL CODE

Step 1: Run Your Code Terminal Window

Record the time it takes for your
sequential program to run.

Note the final results to verify
correctness later.

Always run a problem that is
representative of your real jobs.

OpenACC

$ pgcc -fast jacobi.c laplace2d.c
$./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269

total: 39.432648 s

PROFILING SEQUENTIAL CODE

Step 2: Profile Your Code Sample Code: Conjugate Gradient

Obtain detailed information about how
the code ran. Total Runtime: 22.38 seconds

This can include information such as:
= Total runtime

= Runtime of individual routines

= Hardware counters

Matvec The “matvec”
. . 83% fun_ctlon Is our
|dentify the portions of code that took <Jominate hotspot

the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC

PROFILING SEQUENTIAL CODE

Introduction to PGProf

= Gives visual feedback of how the
code ran

= Gives numbers and statistics, such
as program runtime

= Also gives runtime information for
individual functions/loops within the
code

= Includes many extra features for
profiling parallel code

OpenACC

File View
=

window

Run Help

o &y &

< conjugate_gradient.nvvp 2

[=| Process "cg.x" (5127)
|=| Thread 1601578816

" OpenACC

- Driver API
“ Profiling Overhead
=/ [0] Quadro GP100
[=| Conkext 1 (CUDA)

- SF MemCpy (HtoD)
L 5F MemCpy (DtoH)

= compute

L 5F 89.0% _Z6matvecR...
- 5F 7.2% _Z6waxpbydR...
L 97 2.4% _73dotRK6ve...
~ % 1.3% _Z3dotRKéve...

[=| Streams

Y Stream 13

i Analysis B8 GPU Details £

Name

Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]

Start Time
307.712 ms
308.386 ms
310.385ms
312.464 ms
313.983ms
314.374 ms
316.287 ms
318.214 ms

CPU Details B console Settings

1 (X)) K 5 P
A=A 1N | oo | o

0.6|9 s 0.6?5 s 0'.? 5 0‘795 s

= 8

O.YI‘\ s 0.7]5 5 O‘YIE s 0‘7?5 s 0.7‘3 5

acc_update@vector.h... Jacc_compute_construct@vector.... ll]acc_compute_construct@vector.... [illll acc_compute _constructg

|
I | s wait@vectorh:ss Jl| acc wait@vectorh:zs JIl] acc wait@vectort
NI custreamsynchronize cuStreamSynchronize || cuStreamSynchrof
HENEN | | |
| | |
| _Z6matvecRK6matrixRK6vectors...| || Z6matvecRKematrixRK6vectors... | _ZematvecRK6matrixRK(
_Z6matvecRK6matrixRKévectors... _Z6ématvecRK6matrixRK6vectors... | _ZomatvecRKomatrixRKqg
|] i

Duration Grid Size Block Size Regs Static SMem
2.08 s
1.344 ps
1.281ms
1.356 ms
2.848 s

282.264 s
1.351ms

1.351 ms

= Properties 2

Stream 13

¥ Duration
Session

PROFILING SEQUENTIAL CODE

First sight when using PGPROF

e view window R e
r4 B o=y O v o # F I EEEIA-~

= Profiling a simple, sequential code = vweenws

000000000000000000000000000000000

= Qur sequential program will run on
the CPU

= To view information about how our
code ran, we should select the
“CPU Detalls” tab

OpenACC

PROFILING SEQUENTIAL CODE

CPU Detalls

File wview window Run Help

9 b B Moy &y o ® ®

= Within the “CPU Detalls” tab, we © laplace.nvwp 5 - s
can see the various parts of our
code, and how long they took to run

[
i
=
o

= We can reorganize this info using
the three options in the top-right

portlon Of the tab EH CPU Details 2 &l 5 |‘=' B = Properties 2 = 0

. . . . TOTAL ¥ | Use the buttons on the top-right of this view to select how to display prc select or highlight a single
= We will expand this information, and . — interval o see properties
M > /home/ewright/edited_laplacg 53.325% 21.25s
see more details about our code - Joptioaiinnsoosrai] s | mass
> /lib/x86_64-inux-gnu/libc-2.2] 0.125% 10.055

OpenACC

PROFILING SEQUENTIAL CODE

CPU Detalls

= We can see that there are two
places that our code is spending
most of its time

= 21.49 seconds in the “calcNext”
function

= 19.04 seconds in a memcpy
function

= The c_mcopy8 that we see is
actually a compiler optimization that
IS being applied to our “swap”
function

OpenACC

m B Woey &y ® 2 E

© laplace.nvvp 2

5 GPU Details B8 CPU Details 22 El Console Settings

TOTAL

Event

%

R 28 A~

=

=

500000000 s 1000000000 s 1500000000 s 2000000000 s 2500000000

. 8l % = O = Properties X =

= | Use the buttons on the top-right of this view to select how to display profile data More...

Select or highlight a single interval to see

. roperties
Time prop

/home/ewright/edited_laplac

21.519%

¥ Jlaplace2d.c 21.519% 21.51s
A4 i3 21 E‘|Dﬁ.
I calcNext:37 21.499% 21.49s5 I
calcNext:35 0.02% 0.02s
¥ Jopt/pgi/linux86-64/17.4/lib/l: 19.048% 19.04s
¥ Unknown Filename 19.048% 19.045s
¥ _c_mcopy8 19.048% 19.04s
I c mcopys:-i 19.048% 19.04s5 |
> lib/x86_64-linux-gnu/libc-2.2; 0.06% 0.06s

]

s

]

PROFILING SEQUENTIAL CODE
PGPROF

File View Window Help

= We are also able to select the L
different elements in the CPU o -
Details by double-clicking to open | i

the associated source code

double error = 8.8;
for(int j = 1; j < n-1; j++)
{

for(int i = 1; 1 < m-1; i++)
Anew[OFFSET(j, 1, m)] = ©.25 * (A[OFFSET(j, i+1, m)] + A[OFFSET(j, i-1, m)]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m}1);
error = fmax(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m)1));

¥

= Here we have selected the
“calcNext:37” element, which it sopideata e . i et s o .t
opened up our code to show the IR
exact line (line 37) that Is = — S e .

aSSOCI a-ted Wlth th a-t e I e m e nt TOTAL = | Use the buttons on the top-right of this view to select how to display profile data More...

Select or highlight a single interval to see

Event % Time properties
¥ /home/ewright/edited_laplac 21.519% 21.51s
v flaplace2d.c 21.519% 21.51s
¥ calcNext 21.519% 21.51s
calcNext:37 21.499% 21.49s
calcNext:35 0.02% 0.02s
» [opt/pgi/linux86-64/17.4/lib/l 19.048% 19.04s

UpenACG * /lib/x86_64-linux-gnu/libc-2.2; 0.06% 0.065s

PROFILING SEQUENTIAL CODE

Step 2: Profile Your Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:

= Total runtime

= Runtime of individual routines
calcNext

= Hardware counters

21.49s

|dentify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC

PROFILING SEQUENTIAL CODE

Step 3: Identify Parallelism

Observe the loops contained within the vold pairing(int “input, int “output, int N){
identified hotspots for(int i = 6; 1 < Nj i++) _
output[i] = input[i*2] + input[i*2+1];
: }
Are these loops parallelizable?
Can the loop iterations execute
independently of each other? 6 3 10 7 2 4
Are the loops multi-dimensional, and input
does that make them very large?
Loops that are good to parallelize tend
to have a lot of iterations to map to 9 17
parallel hardware. output

OpenACC

PLEASE START LAB NOW!

OpenACC

TRAINING SETUP

= To get started, follow these steps:

= Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log Iin
with my NVIDIA Account" and then "'Create Account” (done yesterday)

= Visit http://courses.nvidia.com/dli-event and enter the event code

PRACE OACC AMBASSADOR JU20

OpenACC

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

© & nttpsy/courses.nvidia.com/courses/course-v1%3ADLI%2BC-AC-03%28V 1 /course/ - Lom @
@a NVIDIA. Courses Volker_Weinberg_Test «
Home Course Progress
Fundamentals of Accelerated Computing with OpenACC
Fundamentals of Accelerated Computing with OpenACC Course Tools

R Bookmarks
— l Click here to get started Resume Course © |
Important Course Dates

Feedback
Today is Jun 15, 2020 17:20 CEST

Course Handouts

No Course Handouts

Fundamentals of Accelerated Computing with OpenACC

[Bookmark this page

7~
DEEP
A DEkRninG — ~
NVIDIA. INSTITUTE RESTART

Please wait 5 - 10 minutes while your interactive GPU enabled environment loads. When the "Launch" button appears, click it to get started.

OpenAC

s Sclance. Laws Programiming

PROFILING MULTICORE CODE

OpenACC

PROFILING MULTICORE CODE

What i1s multicore?

Multicore refers to using a CPU with multiple _ CPU
computational cores as our parallel device

These cores can run independently of each
other, but have shared access to memory

Loop iterations can be spread across CPU
threads and can utilize SIMD/vector instructions
(SSE, AVX, etc.)

Parallelizing on a multicore CPU is a good
starting place, since data management is
unnecessary

OpenACC

PROFILING MULTICORE CODE

Using a multicore CPU with OpenACC

OpenACC'’s generic model involves a
combination of a host and a device

Host generally means a CPU, and the device
IS some parallel hardware

When running with a multicore CPU as our
device, typically this means that our
host/device will be the same

This also means that their memories will be :
the same Device

Memory

OpenACC

PROFILING MULTICORE CODE

Compiling code for a specific parallel hardware

= The ‘-ta’ flag will allow us to compile our code for a specific, target parallel hardware

= ‘ta’ stands for “Target Accelerator,” an accelerator being another way to refer to a
parallel hardware

= Our OpenACC code can be compiled for many different kinds of parallel hardware
without having to change the code

$ pgcc -fast -Minfo=accel -ta=multicore laplace2d.c
calcNext:

35,L§gnerating Multicore code

36, #pragma acc loop gang

OpenACC

PROFILING MULTICORE CODE

PGPROF

= The first difference we see in this
multicore profile is that there is now
a “timeline”

= This timeline will show when our
parallel hardware is being used,
and how it is being used

= Each of the blue bars represent a
portion of our program that was run
on the multicore CPU

OpenACC

File View Window Run Help
CEE oG

Y (= (D)
=&

% *laplace.nvvp = g
0s 0.0755 0.1s 01255 0.155 01755 02s 0.2255
[=I Process "laplace” (6852)
pr—— OO T
- OpenacCC [[| [[| [|
C@ Analysis 2 GPU Details CPU Details = Console settings “%. = O [Properties %2 = 0
B E 1 Results

1. CUDA Application Anal

The guided a ly system wal
th ugh the v sanaty stz
understa dth Dtmlz atio
p rtunities in your applicatio
b come fa m\l rwn:hth pr:rn
Dro ess.you can L ethe
ly tages nguide: d
g you ppt ationitis
Flly tL th comp ute and da
capabilities of the GF‘U T dotl
look at your applica er:
as well as the per Frmanceofir
kernels.

Il Cvamina ~DI11

Select or highlight a single interval to see
properties

PROFILING MULTICORE CODE
CPU Detalls

File View window Run Help

HEE WGy & @ F E&2& &~
W *laplace.nvvp = = g
= Looking at our CPU Detalils, we can e
see that there is a lot more oomce — = = = .
happening compared to our
sequential program
Analysis B GPU Details Bl CPUDetails 23 E Console Cil Settings k(5% = O
- For the mOSt partl these eXtra TOTAL v | Use the buttons on the top-right of this view to select how to display profile data More...
details revolve around the need for L ——
the CPU cores to communicate with |- o mp_barrier 1
eaCh Other > /opt/pgn/lmuxsﬁ—seth:r.4/l|bflé 5.192% 119.2115 — —
" e stimmamufida s oo |aors

E Properties &

OpenACC

PROFILING MULTICORE CODE
PGPROF

File Vview Wwindow Run Help

] H yoag @~ * o & R‘ﬁ‘:é-‘:‘g‘- &

= Just like earlier, we see our O

|=I Process "laplace” (6852)

“CaICNeXt” fu nCtion [= Thread 1806034752
- Openacc L | [. L

= We also see that PGPROF is
reporting this function to take 61.72
seconds to run < Analyss B GPU Detalls s cPUDetalls ¢ [Console 7 Settings |

B
TOTAL v | Use the buttons on the top-right of this view to select how to display profile data More...
- - Event % Time
- LO O kl n g at th e p rog ram n OW, It > fopt/pgiflinux86-64/17.4/lib/l; 26.74% 98.945s
. . » [lib/x86_64-linux-gnu/libpthré 24.337% 90.054s
looks like it performs much worse * Mome/ewright/edited_laplad 160815 | 61,7233
. . ¥ Jlaplace2d.c 16.681% 61.723s
th th t I ¥ calcNext 16.681% 61.723s
an e Sequen Ia Ve rSIOn calcNext:38 16.681% 61.723s
» fopt/pgiflinux86-64/17.4/lib/l; 5.192% 19.211s
» flib/x86_64-linux-gnu/libc-2.2: 0.032% 0.125s
> flib/x86 64-linux-gnu/ld-2.23.: 0.003% 0.015s
E Properties 22 = A

Falack mcbinhliabht o cimalainbam ol o cce bl

OpenACC

PROFILING MULTICORE CODE
PGPROF

Run Help
i W&y @ E R EEE2 A
§ laplace p = laplace2d.c &2 = @ © laplace.nvwp 2« 8 = 8
;(; #detine UFFSELN(x, y, m) (({x)*(m)] + Ly)) 5 IOS 0.0?55 0.0‘55 0‘0:‘,55 0‘]5 0.1%55 0‘-“55 0.1:‘,55 0.?5 0‘2?55
ouble calcNext(double *restrict A, double *restrict Anew, int m, int n) [=| Process "laplace” (6852)
double error = 0.0; [=| Thread 1806034752
for(int j = 1; j < n-1; j++) - OpenACC acc_compute const... - - - - -
for(dnt i = 1; i < m-1; i++)
1{
Anew[OFFSET(j, i, m)] = ©.25 * (A[OFFSET(j, i+l, m)] + A[OFFSET(j, i-1, m)]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)1);
error = fmax(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, 1 , m)1));
¥
v

return error;
[Analysis B GPU Details EH CPU Details 3 E cConsole [Settings k|8l% = B

48= void swap(double *restrict A, double *restrict Anew, int m, int n)
gg t For(int j = 1; j < n-1; j++) TOTAL > Use the buttons on the top-right of this view to select how to display profile data More...
2; { for(int i = 1; i < m-1; i++) Event % Time
B Vool = » Jopt/pgi/linuxse-64/17.4/lib/L; 26.74% 98.945 5
> Jlib/x86_64-linux-gnu/libpthré 24.337% 90.054 5
@ Analysis B8 GPU Details BB CPU Details % [E console [g Settings % 4l |%| = O EProperties X = 8 v /home/ewright/edited laplad 16.681% 61.7235
. o .) v Jlaplace2d.c 16.681% 61.723s
TOTAL =4 Use the buttons on the top-right of this view to select how to display profile data More... Select or highlight a single interval to see v calcNext 16.681% 61.7235
Event % Time properties calcNext:38 16.681% 61.7235
¥ /home/ewright/edited laplac 21.519% i21.51s > [opt/pgiflinux86-64/17.4/lib/l 5.152% 19211
v flaplacezd.c Ee— B > /lib/x86_64-linux-gnu/libc-2.2; 0.032% 0.12s
v calcNext 21.519% 1518 > /lib/x86_64-linux-gnu/ld-2.23. 0.003% 0.01s
calcNext:37 21.499%
calcNext:35 0.02%
» [opt/pgi/linux86-64/17.4/lib/l 19.048%
+ [lib/x86_64-linux-gnu/libc-2.2] 0.06% = Properties = B8
L) J L PR Sy B I PN IR TR P TR P [y SRy

0penACG

s Sclance. Laws Programiming

PROFILING MULTICORE CODE

View of all computational threads

= The program is actually performing
better than the sequential version

= We are only looking at the “TOTAL”
view, which means that PGPROF is
combining information from all of |

TOTAL =4 Use the buttons on the top-right of this view to select how to display profile data More...
[totaL | = Time
| Dl 4/17.4/libfl| 26.74% 98.9455
| o=l nu/libpthre 24.337% 90.054's
+| TirEt 2 ited laplac 16.681% 61.723s
et 16.681% 61.723s
T 16.681% 61.723s
ezt 16.681% 61.723s
» fopt/pqi/linux86-64/17.4/lib/l: 5.192% 19.211s
+ /lib/x86_64-linux-gnu/libc-2.23 0.032% 0.12s
* [lib/x86_64-linux-gnu/ld-2.23.: 0.003% 0.01s

UpenAcc = Properties & -5

PROFILING MULTICORE CODE

View of all computational threads

= The new PGPROF 18.4 installed on VNC changed the dropdown box labeled TOTAL
Into “All threads” and displays min, max and mean values graphically.

= When moving the mouse on the % value, one can see

Mean across all threads
Total across all threads
Total as a percentage of all the time spent on all threads.

OpenACC

PROFILING MULTICORE CODE

View of all computational threads

il Analysis GPU Detalls (Summary) ¥ CPU Details $3 ™ OpenACC Detals & Console Settings ﬂ: &11 HDE = B I Properties £
Il threads ¥ |0
A | — Select or highlight a single intervalto !
Event Y
calcNext 205 N 4= 2185
Function: calchext
Mean across all threads: 2165
Total across all threads: 43.1 s
Tutalas a percentage of all the time spert on all threads: 20.548%
__c_mcopy8 18. 561% 1935 1965

A L‘. Q(“ L

OpenACC

PROFILING MULTICORE CODE

Observing a single thread

= Now we have selected to view a
specific thread (for us, a thread
would be a single CPU core) e e e e e

[=I Process "laplace” (9157)

File View Window Run elp
CEE g G~ & Q@ F E&Z2Z A~

|=| Thread 2993231680

= We can see that this single thread o e
only spent 9.8 seconds running
calcNext B
= Each thread will take a similar ij:;;iifiib‘:g:i,i‘;?:sj;‘:;’:‘.’:g iyl b

amount of time and execute p
simultaneously, resulting in a faster e e o e
run

UpenAcc = Properties &2 -

LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal
plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code - technical

The lab simulates a very basic
2-dimensional heat transfer problem.
We have two 2-dimensional arrays,
A and Anew.

The arrays represent a 2-
dimensional, metal plate. Each
element in the array is a double
value that represents temperature.

We will simulate the distribution of
heat until a minimum change value
IS achieved, or until we exceed a
maximum number of iterations.

OpenACC

A
0.0]100]100]0.0
0.0100]0.0]0.0
0.0]100]100]0.0
0.0]100]100]0.0

Anew
00]00)]0.0]}]0.0
00]00]00]}]0.0
00]00]0.0]}]0.0
00]00]0.0]}]0.0

LAPLACE HEAT TRANSFER

Introduction to lab code - technical

We initialize the top row to be a

temperature of 1.0 A Anew

The calcNext function will iterate
through all of the inner elements of
array A, and update the
corresponding elements in Anew

0.0 0.0) 0.0} @O 0.0

0.0

We will take the average of the
neighboring cells, and record it in
Anew.

0.0

0.0

The swap function will copy the
contents of Anew to A

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code

The swap function will copy the
contents of Anew to A

OpenACC

Anew

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.25

0.25

0.0

0.0

0.25

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

KEY CONCEPTS

In this module we discussed...

= Compiling sequential and parallel code
= CPU profiling for sequential and parallel execution

= Specifics of our Laplace Heat Transfer lab code

OpenACC

LAB GOALS

In this lab you will do the following...

= Build and run the example code using the PGI compiler

= Use PGProf to understand where the program spends its time

OpenACC

TRAINING SETUP

= To get started, follow these steps:

= Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log Iin
with my NVIDIA Account" and then "'Create Account” (done yesterday)

= Visit http://courses.nvidia.com/dli-event and enter the event code

PRACE OACC AMBASSADOR JU20

OpenACC

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

O a https://courses.nvidia.com/courses/course-w1%3ADLI%2BC-AC-03%2BV 1/course/ - i} i N @
@2 NVIDIA. Courses Volker_Weinberg_Test «
Home Course Progress
Fundamentals of Accelerated Computing with OpenACC
Fundamentals of Accelerated Computing with OpenACC Course Tools
R Bookmarks
[Click here to get started Resume Course © |
Important Course Dates
Feedback
Today is Jun 15, 2020 17:20 CEST
Course Handouts
No Course Handouts
Fundamentals of Accelerated Computing with OpenACC
[Bookmark this page
I's |
DEEP
LEARNING ~
NVIDIA. INSTITUTE RESTART

Please wait 5 - 10 minutes while your interactive GPU enabled environment loads. When the "Launch" button appears, click it to get started.

OpenACC

TRAINING SETUP

Fundamentals of Accelerated Computing with OpenACC

[l Bookmark this page

@ EIIEEEENING 1:96:47 ’ .

NVIDIA. INSTITUTE REMAINING TIME LAUNCH TASK STOP TASK

Please wait 5 - 10 minutes while your interactive GPU enabled environment loads. When the "Launch” button appears, click it to get started.

OpenACC

TRAINING SETUP

U £ ec2-18-224-153-130.us-east-2.compute.amazonaws.com,/tree e @ ﬁ’ i [\
— Jupyter Qi
Files Running Clusters
Select items to perform actions on them. Upload || Neww || &
Oo -~ Wi Mame« LastModified File size
0 3 module2 2 months ago
O 3 module3 2 months ago
O 3 moduled 2 months ago
O 3 modules 2 months ago
O O module 2 months ago
[0 & START HERE.ipynb 2 months ago 1.36 kB

OpenAC

s Sclance. Laws Programiming

TRAINING SETUP

Welcome to the OpenACC labs

Please select the appropriate lab below.

‘ « Module 2 - Application Profiling with PGProf Lab - This lab introduces students to application profiling using the PGProf profiler.
Module 3 - OpenACC Directives Basics - This lab introduces OpenACC directives.

Module 4 - GPU Programming with OpenACC - This lab introduces GPU programming with OpenACC.
Module 5 - Data Management with OpenACC - This lab introduces OpenACC data management directives.
Module & - OpenACC Loop Optimizations - This 1ab introduces students to loop optimizations in OpenACC.

Application Profiling with PGProf Lab

This lab is meant to accompany Module 2 of the OpenACC.org teaching materials. The purpose of this lab is to introduce students to application profiling
using the PGProf profiler. Lab instructions and source code is available for C/C++ and Fortran.

Please see the following files to begin the lab:

-
= Fortran

VNC USAGE

&) README-JupyterNc X | & README-JupyterNc X | & README-JupyterNc X @ ec2-18-224-153-130. X @ ec2-18-224-153-130. X | +

(& 0 @ ec2-18-224-153-1 30.us-east-2.compute.amazonaws.com:3000/vnc/

! Apps % LlinuxAcademy % Linux Academy We..

Remove :8000 and
[use /vnc

Diese Seite funktioniert nicht

ec2-18-224-153-130.us-east-2.compute.amazonaws.com hat keine Daten gesendet.

ERR_EMPTY_RESPONSE

OpenACC

horn Sclencs, Lews Sengree

HOW TO EDIT FILES IN MOD2 (METHOD 1)

;___: Jupyter README (autosaved)

File Edit View Insert Cell Kermnel Widgsts Help Mot Trusted | Py
New Notebook » 4 ¥ MRun B C W | Markdown b

‘ Open.. paralienze. _LYYYYVYVYY || YYVYVVVY
Make a Copy... The iterations of the loop will The gangs will then execute in
Save as. be broken up evenly amang parallel with one another.

Rename. the parallel gangs.

Save and Checkpoint)))))))
300N going to move onto the next directive (the kernels directive) which also allows us to parallelize our code. We

. ark the differences between this two directives. With that being said, the following information is completely unigue t
Revert to Checkpoint »

allel directive:
Print Preview rallel directive leaves a lot of decisions up to the programmer. The programmer will decide what is, and isn't,
Download as » izable. The programmer will also have to provide all of the optimizations - the compiler assumes nothing. If any

:5 happen while parallelizing the code, it will be up to the programmer to identify them and correct them.

Trust Notebook
soon see how the kemnels directive is the exact opposite in all of these regards.

Close and Halt [
Optional: Parallelize our Code with the Parallel Directive

It is recommended that you learn all three of the directives prior to altering the laplace code. However, if you wish to try out
parallel directive now, then you may use the following links to edit the laplace code.

jacobi.c
laplace2d.c

(be sure to save the changes you make by pressing cirl+s)

OpenACC

HOW TO EDIT FILES IN MOD2 (METHOD 1)

Files Running Clusters
Select items to perform actions on tham. Upload || New = || &
[Jo -~ ®/ module3 ! English! C Mame & | Last Modified File size
D vor ein paar Sekunden
(] O solutions vor 2 Monaten
(0 & README.ipynb Running vor 12 Minuten 276 kB
O O jacobic vor 2 Monaten 165 kB
O [jacobio vor 14 Minuten 44kB
O O 1aplace vor 14 Minuten 149kB
‘ O D laplace2d.c vor 2 Monaten 179 kB
O B laplace2d.h vor 2 Monaten 1.85kB
O B laplace2d.o vor 14 Minuten 56 kB

OpenACC

HOW TO EDIT FILES IN MOD2 (METHOD 2)

& README - Jupyter Notebook X | & README - Jupyter Notebook X | & README - Jupyter Notebook X . ec2-18-224-153-130.us-east- X +

& ﬁ- (O Micht 5icher| ec2-18-224-153-130.us-east-2.compute.amazonaws.com/files/module3/English/C/laplaced.c

Apps T LinuxAcademy [Linux Academy We...

* Copyright (c) 2019, WVIDIA CORPORATION. All rights reserved.

Licensed under the Apache License, Version 2.8 (the "License");

* you may not use this file except in compliance with the License. Replace /flleS/ Wlth

You may obtain a copy of the License at .
: ledit/ 1]

® http://www.apache.org/licenses/LICENSE-2.8

Unless required by applicable law or agreed to im writing, softwares

OpenACC

	Foliennummer 1
	MODULE two:�profiling
	Module OVERVIEW
	Compiling sequential code
	PGI Compiler Basics
	PGI Compiler Basics
	Profiling sequential code
	Openacc development CYCLE
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	�Please start LAB now!
	TRAINING SETUP
	TRAINING SETUP
	profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	KEY concepts
	Lab Goals
	THANK YOU�
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	VNC Usage
	HOW TO EDIT FILES in mod2 (Method 1)
	HOW TO EDIT FILES in MOD2 (Method 1)
	HOW TO EDIT FILES IN MOD2 (Method 2)

