FAST. FLEXIBLE. FREE.

GROMACS

A 379 Party oneAPI Case Study: GROMACS

Andrey Alekseenko

KTH Royal Institute of Technology & ScilLifelab
Stockholm, Sweden

GROMACS

* Open source molecular dynamics engine
* One of the most used HPC codes worldwide
* High-performance for a wide range of modeled systems

* ...and on a wide range of platforms:
« from supercomputers to laptops (Folding@Home)
« x86, x86-64, ARM, POWER, SPARC, RISC-V
* 11 SIMD backends
« AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
* Windows, MacOQ§5, included in many Linux distros

GROMACS 2023 (upcoming)

* (Mostly) modern C++17 codebase
e 449k lines of C++ code
« With a bit of legacy (first release: 1991)

* MPI for inter-node parallelism
* OpenMP for multithreading
* SIMD for low-latency operations on CPU

* GPU offload for high-throughput operations
 CUDA: NVIDIA
 OpenCL: AMD, Apple, Intel, NVIDIA
 SYCL: AMD, Intel, NVIDIA

2022-11-10

Molecular dynamics

* [terative problem
 Like N-body, but with fancier physics

* One step ~1fs, need to simulate ps to ms
* 102-10" steps

N [Domain decomp

Pair search

Non-bondedpair F]

PME F

Bonded F

Other F

=

v

LTEET TR

\\“'/‘/

[R

educ
F

%]—-—-—[Integration

LRZ Intel oneAPI Workshop

Pall et al., J.

Chem. Phys. 153, 134110 (2020)

4

https://aip.scitation.org/doi/abs/10.1063/5.0018516

Heterogeneous parallelization

* Minimize latency
e Minimize CPU and GPU stalls

* Minimize data exchange between host and device
* And between nodes

* Optimal offloading scheme depends on simulated system
 And on available hardware

e Must be maintainable

Molecular dynamics: real schedule

Pair-search &

MPI comm: |} domain-decompaosition ‘ MPI comm:
receive non- every 10-250 steps ! send non-
local x _: local F
I e i --- n
' 1]
: ' MD step . ;
1 1 []
' g L oDoono .]
! :4 DD ' iiiiAAAABDFFT . ﬂconstraint '
: " comm 6 ""E ' E ' comm ' " comm :
!_ Domain Pair Wait | 1| g Integration :
SRR LR = ISPl EEEEEEE 4——— PMEmeshF —{Other FH non- R e 2
CPU decomp.| | search loval | ezl 2 A Constraints
ad 1= = LU
N = S 18 % =
T e |e k<] G
a|s 5 8
™~ c c
= o g =)
Local List \ ——— Rolling| | clear
.......................... L - - — I] ted _ —— -
stream pruning by o local kernel Local non-bonded F prune | [buffers >
Non-local * Non-locall
stream (Righ priority) =~ """ TTTTTTTTT I T | g = >

Average CPU-GPU overlap:
70-90% per step

Pall et al., J. Chem. Phys. 153, 134110 (2020)

2022-11-10 LRZ Intel oneAPI Workshop 6

https://aip.scitation.org/doi/abs/10.1063/5.0018516

Molecular dynamics: real schedule

Frequency can be adjusted ' Pair-search &

: : ; ——— ! domain-decompaosition ‘ ;
e N T w0200
: ' MD step :
1
id DD l : Pt AMMADFFT : : 4 constraint
' y:i comm 6 yyyy:iiiicomm ' ¥:comm
woo.d..|Domain | | Pair | ____| i [Wit |5 | wait Integration .
CPU ! decomp.|] search PME mesh F U g e 4 1= | Constrainis >
az |x | x L W
: | 5 g 18 ~ PME and NB work g L
Only if the list — a]s can be balanced § S
g g . I
has changed / T E / by tuning pair list E =
Local /[ist \ E—— Rolling| | ci
Stream” 77T pruning [] "t e o Localnon-bonded F i e buters >
Non-local * Non-local
i 11 | BondedF non-bonded F >
Send data ASAP
Average CPU-GPU overlap: to remote ranks
Transfer local 70-90% per step
coordinates
while waiting Should be scheduled before
for remote ones the big local NB kernel Pall et al., J. Chem. Phys. 153, 134110 (2020)

2022-11-10 LRZ Intel oneAPI Workshop 7

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GPU feature support in GROMACS 2020

V4 a
NVIDIA OpenCL
CUDA
Non-bonded offload Vv v
PME offload) v
Update offload vV X
Bonded offload Vv X
Direct GPU-GPU comm) X
Hardware support NVIDIA NVIDIA, AMD, Intel

2022-11-10 LRZ Intel oneAPI Workshop

Why another GPU framework?

Data Center GPU Max
AMD Instinct GPU Intel PerteVeecckio-&lU-

—

%4 RIDcE Arzonn; A

FAINTER

0 ENERGY

2022-11-10 LRZ Intel oneAPI Workshop

Why not OpenCL?

* OpenCL kernels are C99, the rest of GROMACS is C++17

* C++ kernels are not widely supported

* Separate-source model
* Hard to maintain

* Supported by all vendors, preferred by none

Why SYCL?

* Open standard, free (libre) implementations

* Implemented on top of existing backend
* Intel® oneAP| DPC++: OpenCL and LevelZero; CUDA; HIP
* hipSYCL: CUDA, HIP; LevelZero (via DPC++)
» Leverage existing profiling and debugging tools
* And device compilers

e Standard C++ with a custom library
* No need for extra support in linters, IDEs, etc.

* Logically similar to OpenCL

 (Almost) no need to deeply modify existing code

SYCL enablement plan (late 2020)

e Step 1:
* Target oneAP| DPC++ / Intel GPUs, but stay standard-compliant
* Device detection and initialization
 Remove code specific to CUDA/OpenCL

e Step 2:

* Port kernels accounting for majority of run time
 Step 3:

* Expand support to AMD GPUs

* Port the rest of the kernels

* Add support for GPU-aware MPI
* Optimize kernels and runtime

2022-11-10

SYCL enablement plan

e Step 1:
* Target oneAPI DPC++ / Intel GPUs, but stay mostly standard-compliant
* Device detection and initialization
 Remove code specific to CUDA/OpenCL: still ongoing...
e Step 2:
* Port kernels accounting for majority of run time
 Step 3:
* Expand support to hipSYCL; AMD and NVIDIA GPUs
* Port the rest of the kernels

* Add support for GPU-aware MPI
* Optimize kernels and runtime: we're here

LRZ Intel oneAPI Workshop

13

Automatic conversion?

 \We want to have both CUDA and SYCL in the same codebase

* Already have abstraction layer for Device, Queue, etc
e Supports CUDA and OpenCL
* CUDA kernels heavily optimized for NVIDIA
* OpenCL kernels have Intel-optimized code paths
* Rewriting kernels is ~trivial

* Conclusion: manual porting

Scheduling

NVIDIA.

CUDA

in-order queue
or explicit DAG

GPU framework comparison

7 A
OpenCL

in-order and
out-of-order queues

GyeL

implicit DAG and
in-order queues

Synchronization event

separate pseudo-task

associated with a task
or a pseudo-task

associated with a task

Timing measurement

regions

of a single event

of a single event

Timing enablement

at event creation

at queue creation

at queue creation

Device selection

stateful per-thread

explicit in each call

explicit in each call

Native float3 size

12 bytes

16 bytes

16 bytes

2022-11-10

LRZ Intel oneAPI Workshop

15

Scheduling

GPU framework comparison

We already had an abstraction layer

4 N
<3 e
NVIDIA. OpenCL

_ CUDA y

in-order queue
or explicit DAG

in-order and
out-of-order queues

GyeL

implicit DAG and
in-order queues

Synchronization event

separate pseudo-task

associated with a task
or a pseudo-task

associated with a task

Timing measurement

regions

(of a single event

of a single event)

Timing enablement

at event creation

at queue creation

at queue creation

Device selection

stateful per-thread

explicit in each call

explicit in each call

Native float3 size

12 bytes

\ 16 bytes

16 bytes Y,

2022-11-10

LRZ Intel oneAPI Workshop

16

Scheduling

<3

NVIDIA.

CUDA

in-order queue
or explicit DAG

GPU framework comparison

7 A
OpenCL

in-order and
out-of-order queues

GyeL

implicit DAG and
in-order queues

Synchronization event

separate pseudo-task

associated with a task
or a pseudo-task

associated with a task

2022-11-10

LRZ Intel oneAPI Workshop

17

2022-11-10

JAG-based scheduling

Good: Prevent bugs and improve performance

Bad: GROMACS is built around for in-order queues, with explicit barrier
synchronizations:

* Performance: synchronizing twice

* Correctness: device-to-host copies

Bad: Runtime must be smart
Ugly: Additional divergence between backends

LRZ Intel oneAPI Workshop

18

2022-11-10

JAG-based scheduling

Good: Prevent bugs and improve performance

Bad: GROMACS is built around for in-order queues, with explicit barrier
synchronizations:

» Performance: synchronizing twice

* Correctness: device-to-host copies

Bad: Runtime must be smart
Ugly: Additional divergence between backends

LRZ Intel oneAPI Workshop

19

2022-11-10

JAG-based scheduling

Good: Prevent bugs and improve performance

Bad: GROMACS is built around for in-order queues, with explicit barrier
synchronizations:

* Performance: synchronizing twice

* Correctness: device-to-host copies

Bad: Runtime must be smart
Ugly: Additional divergence between backends

LRZ Intel oneAPI Workshop

20

JAG-based scheduling

Pair-search &
domain-decomposition
every 10-250 steps

MPI comm:
send non-
local F

MPI comm:
receive non-
local x

: MD step E
E iA DD P11 iAMMAGDFFT : & constraint ;
: ¥i comm FEVyiiiicomm YECS :
!_ Domain Pair Wz Wait Integration '
PR o I TEEEEER PME mesh F —Other FH non- : —o--
CPU decomp.| | search local F = A Constraints
B Il e = w
8= |Ig 0T g -
o Jas]
S s |z
rel = o o
b o g a
Local List \ — Rolling| | clear
-------------------------- > H-- EEE ted - — - -
stream pruning by ngﬁﬁ::zgl?(emel Local non-bgnded F prune buffers

Non-local Non-local

Average CPU-GPU overlap:
70-90% per step

Pall et al., J. Chem. Phys. 153, 134110 (2020)

2022-11-10 LRZ Intel oneAPI Workshop 21

https://aip.scitation.org/doi/abs/10.1063/5.0018516

JAG-based scheduling

* Ugly: Additional divergence between backends

JAG-based scheduling

* No, just use in-order queues and USM

* Bonus:
* Accessors hard to optimize for compiler
e Easier interop with GPU-aware MPI

Scheduling

<3

NVIDIA.

CUDA

in-order queue
or explicit DAG

GPU framework comparison

7 A
OpenCL

in-order and
out-of-order queues

GyeL

implicit DAG and
in-order queues

Synchronization event

separate pseudo-task

associated with a task
or a pseudo-task

associated with a task

2022-11-10

LRZ Intel oneAPI Workshop

24

Synchronization Events

* Event can be recorded far from the last submission
* Not easy to tell which operation should be used for synchronization

 Custom extensions to mark events:
e oneAP| DPC++: SYCL_EXT_ONEAPI_ENQUEUE_BARRIER

* hipSYCL: hipSYCL_enqueue_custom_operation to submit empty jobs
acting as barriers

* hipSY(CL's coarse-grained events

Scheduling

NVIDIA.

CUDA

in-order queue

GPU framework comparison

7 A
OpenCL

in-order and

GyeL

implicit DAG and
in-order queues

Synchronization event

or explicit DAG out-of-order queues
associated with a task
separate pseudo-task or a pseudo-task

associated with a task

2022-11-10

LRZ Intel oneAPI Workshop

26

Other differences to keep in mind

* Exceptions vs return codes
* Different and variable (for Intel) sub-group sizes

* Thread indexing order:
« CUDA and OpenCL: thread (x, v, z) is adjacent to (x+1, v, z)
« SYCL: thread (x, v, z) is adjacent to (x, v, z+1)

* No SYCL implementation is fully standard-compliant yet
 Some standardized features still implemented as extensions
* |t's getting better

* No SYCL implementation is fully optimized
e Less of anissue for compilers, more of an issue for the runtime

SYCL beyond oneAP|

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

Uses LLVM/Clang

Part of oneAP|

ox
e
nviDia

cuDA

NVIDIA
GPUs

RO|
ICﬁi

S AMD GPUs
[L E——
Intel CPUs
Intel GPUs
Intel FPGAs
2022-11-10

GreL.

Source Code

SYCL enables Khronos to influence
ISO C++ to (eventually) support
heterogeneous compute

(codeplay’ € ComputeCpp

ComputeCpp
Multiple

"ﬁq“mm
~
~

-

NVIDIA GPUs

.
OpenCL
‘SPIFI.
Intel CPUs
Intel GPUs
Intel FPGAs
AMD GPUs
(depends on driver stack)
Arm Mali
IMG PowerVR

Renesas R-Car

OsenCE NVIDIA.

UNIVERSITAT
HEIDELBERG

hipSYCL
Multiple Backends

OpenMP

Any CPU

R9'|
Crn

AMD GPUs

LRZ Intel oneAPI Workshop

Level Zero

Intel GPUs

=
nviDIA
cupa

SYCL, OpenCL and SPIR-Y, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

Huawei
SYCLops

Vulkan

-

(GicL.

Source Code J

trisYCL

Open source MotorSYCL

N

%
XILINX Versal
ACAP LLVM IR
FPGA LLVM IR
HLS

SYCL enables Khronos to influence
I1SO C++ to (eventually) support
heterogeneous compute

Inteon neoSYCL
Poligeist SX-AURORA
SYCL TSUBASA

Intel CPUs
NEC VEs

SYCL/DPC++
Huawei
Ascend Al

Ascend 910
Al processor

Multiple Backends in Development
SYCL on even more low-level frameworks.
For more information: http://sycl.tech

https://www.khronos.org/sycl/

28

https://www.khronos.org/sycl/

Jortability in practice: FFT

* 3D real-to-complex, forward and backward FFT

* Intel GPUs: oneMKL
e AMD GPUs: rocFFT/vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
 NVIDIA GPUs: vKFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION

* Future: HeFFTe to decompose FFT over multiple nodes

Portability in practice: hipSYCL

* At start, only Intel oneAPI DPC++ and Intel GPUs supported
* hipSYCL added later to target AMD devices

e Effort:

* Workarounds due to backend / compiler issues
» Different parts of SYCL 2020 implemented

Fix a few bugs not triggered with oneAPI
CMake scripting

Kernel optimizations mostly ported from OpenCL
* Still, some time with profiler was required

Runtime profiling/tuning
 When the GPU FLOPS are not the bottleneck

Portability in practice: results

e GROMACS can use SYCL to run on:
* Intel GPUs via oneAPI,
« AMD and NVIDIA GPUs via oneAPIl and hipSYCL

* Performance, compared to native CUDA/HIP/OpenCL:
 Complex kernels are somewhat slower, require attention
* Less complex kernels on par, sometimes faster
* Extra runtime overhead

* Vendor-specific code
* Sub-group-size-dependent algorithms
* Workarounds for compiler issues
 FFT invocation, a lot of related CMake scripting

2022-11-10

Performance: NVIDIA

V100, CUDA 11.5, hipSYCL develop and IntelLLVM vs CUDA

PME electrostatics, 384k atoms

Non-bonded F
Non-bonded FV
NB list pruning

PME Spread

PME Solve

PME Gather

Integration
Conv. form X
Conv. Red. F

Constraints

B hipSYCL
B IntelLLVM

1.8 A

1.6

1.4 1

1.2 1

Run time relative to native CUDA (less is faster)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.0 A

= \Whole application, hipSYCL
== \\hole application, IntelLLVM

Kernel time, relative to native CUDA (less is faster)

LRZ Intel oneAPI Workshop

System size

32

2022-11-10

Performance: NVIDIA

V100, CUDA 11.5, hipSYCL develop and IntelLLVM vs CUDA

PME electrostatics, 384k atoms

Non-bonded F
Non-bonded FV
NB list pruning

PME Spread

PME Solve

PME Gather

Integration
Conv. form X
Conv. Red. F

Constraints

B hipSYCL
B IntelLLVM

1.8 A

1.6

1.4

1.2

Run time relative to native CUDA (less is faster)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.0 A

= \NWhole application, hipSYCL
== \\hole application, IntelLLVM

HIPSYCL_RT_MAX_CACHED_NODES=1

Kernel time, relative to native CUDA (less is faster)

LRZ Intel oneAPI Workshop

System size

33

Performance: AM

)

older GROMACS version

MI100, ROCm 4.5.2, hipSYCL 0.9.2 vs experimental HIP port by AMD/StreamHPC

PME electrostatics, 384k system size

Non-bonded F

Non-bonded FV

NB list pruning
PME Spread
PME Gather

Integration
Conv. form X
Conv. Red. F

Constraints

2022-11-10

0.0 0.2 0.4 0.6 0.8 1.0
Kernel time, relative to native HIP (less is faster)

LRZ Intel oneAPI Workshop

Run time relative to native HIP (less is faster)

1.6 A

1.5 -

1.4

1.3

1.2

1.1 A

1.0 A

0.9 -

== \Nhole application
Sum of kernels

System size

34

2022-11-10

older GROMACS version, low-end GPU

Performance: Intel

Xe MAX (DG1), oneAPI 2022.1, oneAPI (LevelZero, OpenCL) vs OpenCL

PME electrostatics, 384k system size

Non-bonded F

Non-bonded FV

NB list pruning

PME Spread

PME Solve

PME Gather

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.3 1

Run time relative to native OpenCL (less is faster)

B oneAPI/OpenCL
B oneAPl/Level0

=== \Nhole application, oneAPIl/OpenCL (PME)
Sum of kernels, oneAPI/OpenCL (PME)
=== \\hole application, oneAPI/Level0
Sum of kernels, oneAPI/Level0

Kernel time, relative to OpenCL (less is faster)
LRZ Intel oneAPI Workshop

104 10°

System size

35

Missing features / Wishlist

* Queue/task priorities

Fine control of host scheduling
Hardware topology information
nter-node communication: Celerity?
_ibraries: oneMKL?

Robustness: installation, error messages, ...

2022-11-10

>

°U feature support in GROMACS 2023

NVIDIA. OTDGHEE @CLW
cuDA
Non-bonded offload)))
PME offload) Vv)
Update offload) X v
Bonded offload Vv X)
Direct GPU-GPU comm) X V*
Hardware support NVIDIA AMD, Intel, NVIDIA AMD, Intel, NVIDIA

LRZ Intel oneAPI Workshop

37

Conclusions

* “\Write once, run anywhere"” mostly works

* Trivial changes to support all three major vendors with oneAPI
and hipSYCL

* But running fast is not easy
« Still need vendor-specific code branches to get high performance
* Runtime might behave sub-optimally by default

* APl is similar to OpenCL in spirit, but usually nicer
* The whole ecosystem is rapidly evolving

Acknowledgements

* Intel Corporation
* Heinrich Bockhorst and Roland Schulz (Intel)
« Aksel Alpay (Heidelberg University Computing Centre)

* GROMACS dev team, in particular Mark Abraham, Paul Bauer,
Szilard Pall, and Artem Zhmurov

Learn more

* https://www.gromacs.org/

 https://gromacs.bioexcel.eu/

 https://manual.gromacs.org/documentation/2022.3/index.html

e Pdll et al.,). Chem. Phys. 153, 134110 (2020)

* If you have questions: andrey.alekseenko@scilifelab.se

https://www.gromacs.org/
https://gromacs.bioexcel.eu/
https://manual.gromacs.org/documentation/2022.3/index.html
https://aip.scitation.org/doi/abs/10.1063/5.0018516

