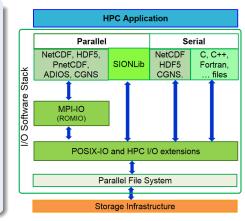
Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

PRACE PATC Course: Advanced Topics in HPC Topic: I/O Profiling with the Darshan Tool

Sandra Mendez, PhD - HPC Group, LRZ

sandra.mendez@lrz.de

Outline



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

I/O Performance Analysis

- One of the main performance limiting factor for applications is the storage systems.
- The I/O problem could be in I/O Software Stack or the configuration of the underlying I/O system.
- Understanding the I/O behavior of parallel scientific applications is critical for improving the performance on HPC systems.

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

I/O Profiling and Tracing tools

© 2019 LRZ

PRACE PATC - Advanced Topics in HPC

March 19-20, 2019 3 / 48

I/O Profiling Tools

- $\bullet\,$ Characterize I/O performance of HPC applications by counting I/O-related events.
- $\bullet\,$ Less intrusive and useful in identifying potential I/O bottlenecks in the performance.

Profiling vs. Tracing

• Not provide enough information for a detailed understanding of I/O.

I/O Tracing Tools

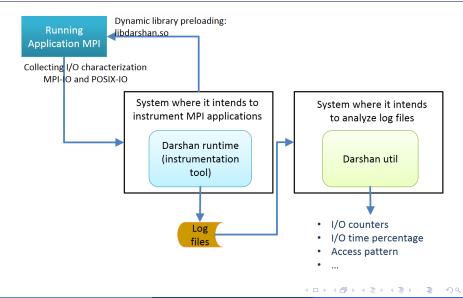
- Save individual event records with precise timestamps and per process
- $\bullet\,$ Log the timing of each I/O function calls and their arguments.
- Represent as Timeline

(日)

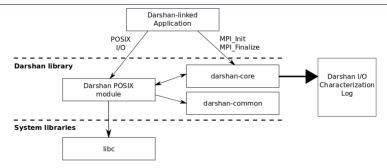
Darshan Tool

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Darshan ••••••••••


Darshan is a lightweight, scalable I/O characterization tool that transparently captures I/O access pattern information from production applications

- Developed by the Argonne Leadership Computing Facility (ANL). http://www.mcs.anl.gov/darshan
- Profile I/O (C and Fortran) calls including: POSIX and MPI-IO (Limited to HDF5 and PnetCDF)
- Darshan does not provide information about the I/O activity along the runtime.
- It uses LD_PRELOAD mechanism to wrap the I/O calls


(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Darshan Components

PRACE Darshan 3.x - runtime component

- intercepting I/O functions of interest from a target application;
- extracting statistics, timing information, and other data characterizing the application's I/O workload;
- compressing I/O characterization data and corresponding metadata;
- \bullet logging the compressed I/O characterization to file for future evaluation

Darshan

How to use Darshan (1)?

• Using LD_PRELOAD Fortran Program

export LD_PRELOAD=libfmpich.so:\$DARSHAN_INTALL/lib/libdarshan.so

For C/C++ Program

export LD_PRELOAD=\$DARSHAN_INTALL/lib/libdarshan.so

• Setting DARSHAN_LOGPATH_ENV if it was configured with:

--with-log-path-by-env=DARSHAN_LOGPATH_ENV.

- Once executed application, a log file is generated in DARSHAN_LOGPATH_ENV if the execution finishes without errors.
- Analyzing the *.darshan file using darshan-util. The log file can be analyzed in another system.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Darshan

• To make use of Darshan in its version 3.x, the module appropriate must be loaded.

module load darshan

• Set up the variable FORTRAN_PROG in "true" if the program is a Fortran program and false if it is not.

FORTRAN_PROG=false

- Set up environment variable DARSHAN_JOBID to environment variable name that contain the job identifier of the job manager.
- Set up Darshan log path.

export LOGPATH_DARSHAN_LRZ='darshan-logpath.sh'

March 19-20, 2019 1

Darshan in IvyMUC (2)

Current Version

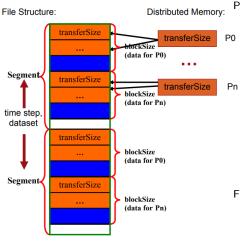
• Default version 3.1.4

Example

Darshan

Darshan Utils

- Using Darshan analysis tools. See online documentation: http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
- Key tools:
 - darshan-job-summary.pl: creates pdf file with graphs useful for initial analysis
 - darshan-summary-per-file.sh: creates a separate pdf file for each file opened by the application
 - darshan-parser: dumps all information into ascii (text) format


```
>darshan-parser --help
Usage: darshan-parser [options] <filename>
--all : all sub-options are enabled
--base : darshan log field data [default]
--file : total file counts
--file-list : per-file summaries
--file-list-detailed : per-file summaries with additional detail
--perf : derived perf data
--total : aggregated darshan field data
```

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Darshan

IOR Benchmark

Parameters:

- -a set the api to one of: POSIX, MPIIO, HDFS5 or NCMPI.
- -s number of segments (a segment is a contiguous chunk of data accessed by multiple clients each writing/reading their own contiguous data; comprised of blocks accessed by multiple tasks),
- -b block-size (contiguous bytes written per task),
- -t transfersize (size in bytes of a single data buffer to be transferred in a single I/O call)
- -i number of repetitions of the whole test.

File Size:

- Shared File: #MPI_Procs × s × b
- 1 File per Process: $s \times b$

Figure: IOR benchmark Spatial Pattern (Source "Using IOR to Analyze the I/O performance for HPC Platforms".

© 2019 LRZ

< □ ▷ < @ ▷ < 필 ▷ < 필 ▷ March 19-20, 2019

I/O Benchmark

IOR can be used for testing performance of parallel file systems using various I/O libraries: MPI-IO, POSIX-IO, HDF5 and PnetCDF.

Analyzing a strided Pattern(1)

- MPI processes = 64, request size = 1 MiB, 16 MPI processes per Compute Node, a MPI process per core, 1GiB of data per process.
- I/O Pattern

Logical View of a File - Strided Access Pattern

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

• IOR Configuration for MPIIO

IOR-MPIIO-ibmmpi -a MPIIO -s 1024 -b 1m -t 1m

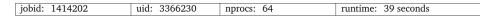
Analyzing a strided Pattern(2)

Experiments

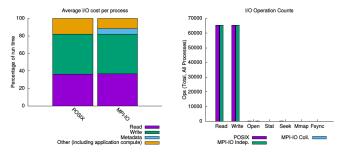
- Using independent I/O operations (IOR-Ind-Strided)
- Using collective I/O operations by default (IOR-Coll-Strided)
- Using collective I/O operations (IOR-Coll-Strided-Hint) by setting:

export ROMIO_HINTS=romio-hints

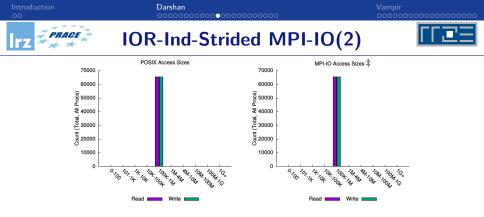
Where romio_hints contains:


romio_cb_read enable
romio cb write enable

Darshan



IOR-Ind-Strided MPI-IO(1)



I/O performance estimate (at the MPI-IO layer): transferred 131072.0 MiB at 3456.22 MiB/s

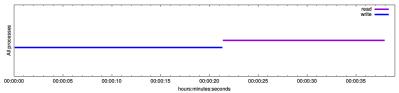
3

< 47 ▶

File Count Summary
(estimated by POSIX I/O access offsets)

< /⊒> <

				,		,
Most Common Access Sizes			type	number of files	avg. size	max size
	access size	count	total opened	1	64G	64G
POSIX	1048576	131072	read-only files	0	0	0
MPI-IO ‡	1048576	131072	write-only files	0	0	0
[‡] NOTE: MPI-IO accesses are given in terms		read/write files	1	64G	64G	
of aggregate datatype size.		created files	1	64G	64G	


→ < ∃→

IOR-Ind-Strided MPI-IO(3)

⊓ਾ⊇≘

Timespan from first to last access on files shared by all processes (POSIX)

Average I/O per process (POSIX)

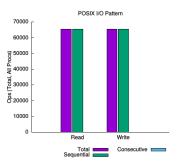
	Cumulative time spent in	Amount of I/O (MB)
	I/O functions (seconds)	
Independent reads	0	0
Independent writes	0	0
Independent metadata	0	N/A
Shared reads	14.213397015625	1024
Shared writes	17.769705890625	1024
Shared metadata	0.047554546875	N/A

Data Transfer Per Filesystem (POSIX)

File System	Write		Read		
File System	MiB	Ratio	MiB	Ratio	
/gpfs	65536.00000	1.00000	65536.00000	1.00000	

March 19-20, 2019 18 / 48

▶ < ∃ >


Image: A matrix and a matrix

PRACE

Darshan

IOR-Ind-Strided MPI-IO(4)

sequential: An I/O op issued at an offset greater than where the previous I/O op ended. consecutive: An I/O op issued at the offset immediately following the end of the previous I/O op.

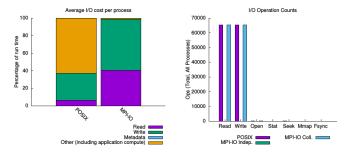
Variance in Shared Files (POSIX)

File	Processes	Fastest		Slowest			σ		
Suffix		Rank	Time	Bytes	Rank	Time	Bytes	Time	Bytes
IIO/testFile	64	19	29.098880	2.0G	15	34.476520	2.0G	1.72	0

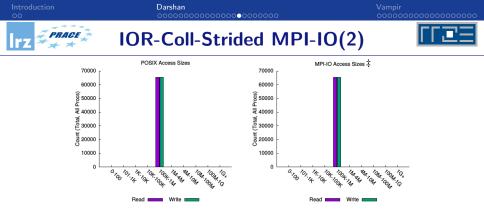
э

< □ > < @ >

Darshan



IOR-Coll-Strided MPI-IO(1)


jobid: 1389652	uid: 3366230	nprocs: 64	runtime: 71 seconds

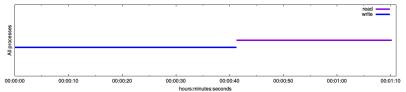
I/O performance estimate (at the MPI-IO layer): transferred 131072.0 MiB at 1868.17 MiB/s

3

< 47 ▶

File Count Summary						
(estimated by POSIX I/O access offsets)						

< 177 ▶


				, , , , , , , , , , , , , , , , , , , ,		,
Most Common Access Sizes			type	number of files	avg. size	max size
	access size	count	total opened	1	64G	64G
POSIX	1048576	131072	read-only files	0	0	0
MPI-IO ‡	1048576	131072	write-only files	0	0	0
NOTE: MPI-IO accesses are given in terms of aggregate datatype size.		read/write files	1	64G	64G	
		created files	1	64G	64G	

IOR-Coll-Strided MPI-IO(3)

Timespan from first to last access on files shared by all processes (POSIX)

Average I/O	per	process	(POSIX)
-------------	-----	---------	---------

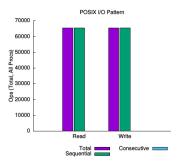
	Cumulative time spent in	Amount of I/O (MB)
	I/O functions (seconds)	
Independent reads	0	0
Independent writes	0	0
Independent metadata	0	N/A
Shared reads	4.52837978125	1024
Shared writes	21.705210609375	1024
Shared metadata	0.025636546875	N/A

File System	Write		Read	
File System	MiB	Ratio	MiB	Ratio
/gpfs	65536.00000	1.00000	65536.00000	1.00000

© 2019 LRZ

March 19-20, 2019 22

э


< □ > < 同 > < 回 > < 回 > < 回 >

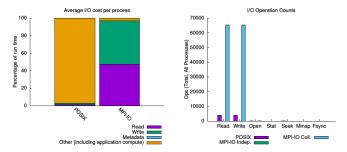
PRACE

Darshan

sequential: An I/O op issued at an offset greater than where the previous I/O op ended. consecutive: An I/O op issued at the offset immediately following the end of the previous I/O op.

Variance in Shared Files	(POSIX)
--------------------------	---------

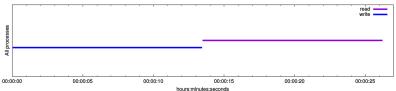
File	Processes		Fastest			Slowest		(τ
Suffix		Rank	Time	Bytes	Rank	Time	Bytes	Time	Bytes
IIO/testFile	64	51	10.173873	2.0G	12	36.705539	2.0G	8.87	0


< □ > < 同 >


27 seconds

I/O performance estimate (at the MPI-IO layer): transferred 131072.0 MiB at 5001.21 MiB/s

э


< 1 k

	Most Common Access Sizes access size count POSIX 16777216 8192 MDLIO + 1049576 121072		type	number of files	avg. size	max size		
		access size	count	total opened	1	64G	64G	
1	POSIX	16777216	8192	read-only files	0	0	0	
1	MPI-IO ‡	1048576	131072	write-only files	0	0	0	
	‡ NOTE: MP	I-IO accesses are	ziven in terms	read/write files	1	64G	64G	
 NOTE: MPI-IO accesses are given in terms of aggregate datatype size. 		created files	1	64G	64G			

Z FRACE IOR-Coll-Strided-Hint MPI-IO(3)

Timespan from first to last access on files shared by all processes (POSIX)

Average I/O per process (POSIX)

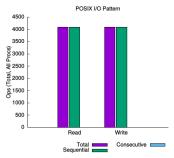
	Cumulative time spent in	Amount of I/O (MB)
	I/O functions (seconds)	
Independent reads	0	0
Independent writes	0	0
Independent metadata	0	N/A
Shared reads	0.33923846875	1024
Shared writes	0.434844890625	1024
Shared metadata	0.021452546875	N/A

Data Transfer Per Filesystem (POSIX)

File System	Write		Read		
The System	MiB	Ratio	MiB	Ratio	
/gpfs	65536.00000	1.00000	65536.00000	1.00000	

March 19-20, 2019

э.


< 4[™] ►

26 / 48

Darshan

rz PRAGE IOR-Coll-Strided-Hint MPI-IO(4)

sequential: An I/O op issued at an offset greater than where the previous I/O op ended. consecutive: An I/O op issued at the offset immediately following the end of the previous I/O op.

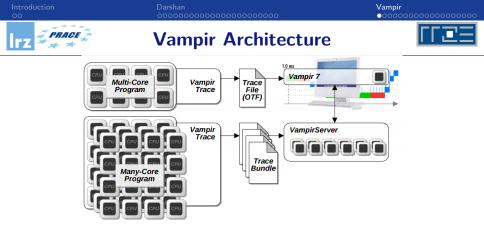
File	Processes		Fastest			Slowest			σ
Suffix		Rank	Time	Bytes	Rank	Time	Bytes	Time	Bytes
INT/testFile	64	9	0.009473	0	0	16.058937	32G	3.05	8.32e+09

Variance in Shared Files (POSIX)

March 19-20, 2019 27 / 48

< 行

Darshan Summary



- Instrumentation is inserted at build time (for static executables) or at run time (for dynamic executables).
- Captures POSIX I/O, MPI-IO, and limited HDF5 and PNetCDF functions.
- Provide a framework to create modules for gathering I/O data from a specific system component (which could be from an I/O library, platform-specific data, etc.)
- Minimal application impact
 - Low memory consumption,
 - Reduces, compresses, and aggregates data at MPI_Finalize() time,
 - Instrumentation enabled via software modules, environment variables, or compiler scripts,
 - No source code or makefile changes and
 - No file system dependencies.

▶ < 클 ▶ < 클 ▶ _ 클 March 19-20, 2019

Vampir Tool

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

VampirTrace

VampirTrace consists of a tool set and a runtime library for instrumentation and tracing of software applications. It is particularly tailored to parallel and distributed High Performance Computing (HPC) applications.

- Instrument your application with VampirTrace
- Run your application with an appropriate test set
- Analyze your trace file with Vampir
 - Small trace files can be analyzed on your local workstation
 - Start your local Vampir
 - 2 Load trace file from your local disk
 - Large trace files should be stored on the cluster file system
 - Start VampirServer on your analysis cluster
 - 2 Start your local Vampir
 - Onnect local Vampir with the VampirServer on the analysis cluster
 - 4 Load trace file from the cluster file system

http://www.vi-hps.org/upload/material/tw08/vi-hps-tw08-Vampir_Overview.pdf

- \bullet Building VampirTrace with I/O tracing support. Recording calls to I/O functions of the standard C library.
- The following functions are intercepted by VampirTrace:

close creat creat64 dup dup2 fclose fcntl fdopen fgetc fgets flockfile fopen fopen64 fprintf fputc fputs fread fscanf fseek fseeko fseeko64 fsetpos fsetpos64 ftrylockfile funlockfile fwrite getc gets lockf lseek lseek64 open open64 pread pread64 putc puts pwrite pwrite64 read readv rewind unlink write writev

- \bullet Setting the environment variable VT_IOTRACE to yes.
- Set the environment variable VT_IOLIB_PATHNAME to the alternative one.
- Environment variable VT_IOTRACE_EXTENDED.

 $http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace$

Image: A math a math

• Instrumentation (automatic with compiler wrappers)

vtf77 [-g] -c <further options> myprog.f

Fortran 90 and higher

vtf90 [-g] -vt:f90 mpif90 -c <further options> myprog.f90

vtcc [-g] -vt:cc mpicc -c <further options> myprog.c

C++

vtcxx [-g] -c -vt:cxx mpiCC <further options> myprog.cpp

• Application Execution Wrapper (vtrun)

mpirun -np 4 vtrun ./a.out

3

< 日 > < 同 > < 三 > < 三 >

```
Introduction
```


Environment Variables

export VT_PFORM_LDIR=/gpfs/work/pr28fa/di98het/vampir-tmp
export VT_FILE_UNIQUE='yes'
export VT_IOTRACE='yes'

 Viewing the results (serial Vampir) After execution of your tracing run, you will find a file filename.otf as well as a number of files *.events.z.

For small traces:

vampir <filename>.otf

For large traces:

vampirserver start -n <tasks>

I/O Benchmark

IOR can be used for testing performance of parallel file systems using various I/O libraries: MPI-IO, POSIX-IO, HDF5 AND PnetCDF.

Analyzing a strided Pattern (1)

- MPI processes = 64, request size = 1 MiB, 16 MPI processes per Compute Node, a MPI process per core, 1GiB of data per process.
- I/O Pattern

Logical View of a File - Strided Access Pattern

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

• IOR Configuration for MPIIO

IOR-MPIIO-ibmmpi -a MPIIO -s 1024 -b 1m -t 1m

Vampir

IOR-Ind-Strided MPI-IO (1)

	0.s	5 s	10 s	15 s	2	0 s	25 s	30 s	35 s	40 s	45 s	
ocessO	pwrite64					MPI Barrier		prepd64	pread64			- 6
ocess 1	Sowrite64			<u> </u>		MPI Barrier		repd64	_			-
ocess 2	owrite64					MPI Barrier		seed64				-
ocess 3	owrite64					MPI Barrier		9192064				-
ocess 4	owrite64					MPI Barrier		Stepd64				.
ocess 5	Dwrite64	nwrite64				MPI Barrier		Vepsi64				.
ocess 6	nwrite64		nwrite64			MPI Barrier		Srepsi64			nreades	
ocess 7	owrite64					MPI Barrier		Srepdi64				a
ocess 8	owrite64					MPI Barrier	_	ad64 pre	2/6/			. .
ocess 9	pwrite64					MPI Barrier	_	303464	pread64			=
ocess 9 ocess 10	owrite64					MPI Barrier		202064	-Dhreenov -D			1
	Dwrite64											1
ocess 11	pwrite64					MPI_Barrier		2064				- 1 8
ocess 12				► ►		MPI_Barrier		2064		P		-
ocess 13	pwrite64			►	>	MPI_Barrier		2064		►		-
ocess 14	pwrite64					MPI_Barrier	_	2064				-
ocess 15	pwrite64			►	>	MPL Barrier		100 2064		>		-
ocess 16	pwrite64_p			►			MPI_Barrier	P-2464		>		
ocess 17	pwrite64_						MPI_Barrier	Sr 2064			MPI_File_open	
ocess 18	pwrite64_						MPI Barrier	St 2064				
ocess 19	pwrite64				>	>	MPI_Barrier	Pad64		>		
ocess 20	pwrite64	<u> </u>	<u> </u>	pwrite64	>		MPI_Barrier	pread6	4	>		
ocess 21	pwrite64	_			-		MPI Barrier	supad64		b		
ocess 22	Sowrite64			<u> </u>			MPI Barrier	Nead64	-		MPI File open	-
ocess 23	write64						MPI Barrier	sred64				
ocess 24	owrite64						MPI Barrier	sr ad64	× ×		MPI_File_oper	. -
ocess 25	owrite64						MPI Barrier	pread64			MPI File oper	
ocess 26	nwrite64						MPI Barrier	N Sd64	-		MPI File open	
ocess 27	nwrite64						MPI Barrier	2402064			MPI File oper	
ocess 28	owrite64				Parit	964	MPI Barrier	545464	oread64		MPI File open	
ocess 29	owrite64	write64					MPI Barrier	3132d64			MPI File oper	
ocess 30	pwrite64						MPI Barrier	303464			MPI File open	-
ocess 30	owrite64						MPL Barrier	919464		prem		
ocess 32	owrite64						we parter	- pr 2d64			PI File open	-
ocess 32	owrite64											-
								prpsd64			Pl_File_open	-
ocess 34	pwrite64			► ►				prpad64			PI_File_open	-
ocess 35	pwrite64				► pw			P/▶3d64			PI_File_open	
ocess 36	pwrite64			▶ ▶		>	-	prp3d64			PI_File_open	
ocess 37	pwrite64	├──		►		Þ		prpsd64	- >		PI_File_open	
ocess 38	pwrite64	<u> </u>		▶ ▶		(perite6	4	prpad64			PI_File_open	- 7
ocess 39	pwrite64			► ►				pr]≥d64	- b preade		PI_File_open	•
ocess 63												
						<u>.</u>					•	-
1		rite at				MPI Barrier		ARL File_read	at			
3								etead64				-
	Printeon							0.04				

© 2019 LRZ

PRACE PATC - Advanced Topics in HPC

March 19-20, 2019

6 / 48

Introduction

IOR-Ind-Strided MPI-IO (2)

All Processes, Acc	umulated Exclus	ive Time per Fur	nction Group	Function	Summary				
2,250 s	2,000 s	1,750 s	1,500 s	1,250 s	1,000 s	750 s	500 s	250 s	0 s
2,417.916 s									LIBC-I/O
							636.64 s		MPI
									<1 s Application
									<1 s VT_API
					1				
				1	1		1		

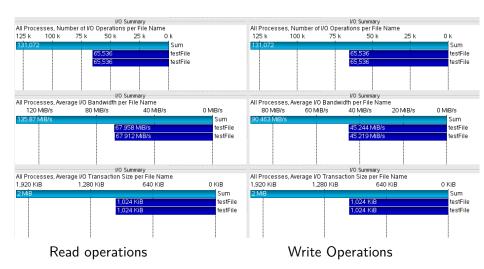
II Processes			Call Iree			
Function	Min Number of Inv	Max Number of Invo	Min Inclusive Time	Max Inclusive 1 🔽	Min Exclusive Time	Max Exclusive Time
∋ 🗖 luser	1	1	47.383 s	47.867 s	8.801 ms	12.248
😑 📕 MPI File write at	1,024	1,024	19.408 s	28.039 s	10.297 ms	13.556
pwrite64	1,024	1,024	19.396 s	28.025 s	19.396 s	28.02
🖻 📒 MPI_File_read_at	1,024	1,024	11.713 s	18.801 s	8.605 ms	11.338
pread64	1,024	1,024	11.703 s	18.792 s		18.79
MPI Barrier	7	7	7.040 ms	8.637 s	7.040 ms	8.63
🖻 🧮 MPI_File_open	4	4	25.793 ms	7.113 s		7.10
open64	4	7	754.812 μs	14.939 ms	754.812 µs	14.939
- close	0	2	0.000 s			26.43
read	0	1	0.000 s	564.437 ns		564.43
🕀 📒 MPI_Init	1	1	0.446 s	0.931 s	0.423 s	0.9
🖻 📕 MPI_File_get_size	2	2	46.303 ms			29.918
Iseek64	4	4	46.283 ms	50.495 ms		50.495
🕀 📒 MPI_File_delete	0	1	0.000 s	5.855 ms		19.06
- unlink	0	1	0.000 s	5.836 ms		5.836
MPI_Allreduce	6	6	361.056 μs	4.389 ms	361.056 µs	4.389
MPI_File_close	4	4	144.887 µs			159.49
close	4	4	77.423 µs			1.574
MPI_Reduce	26		49.370 µs			979.173
MPI_Bcast	6	6	33.365 µs			694.616
MPI_Recv	0	126	0.000 s	520.018 μs		520.018
🕀 📒 MPI_Finalize	1	1	418.618 μs			29.64
MPI_Comm_create	1	1	53.700 µs	160.573 μs	53.700 µs	160.573
						•

© 2019 LRZ

PRACE PATC - Advanced Topics in HPC

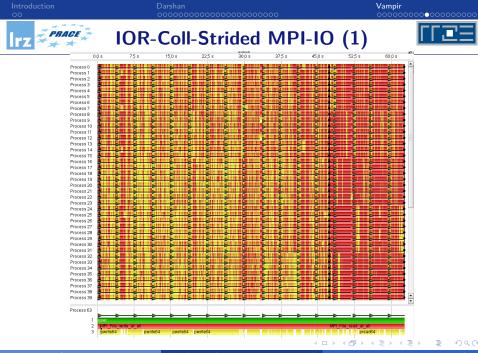
▶ ◀ ≧ ▶ ◀ ≧ ▶ ≧ ∽ March 19-20, 2019 37 /

Image: A matched black


37 / 48

Introduction

IOR-Ind-Strided MPI-IO (3)



イロト イボト イヨト イヨト

38 / 48

э

© 2019 LRZ

PRACE PATC - Advanced Topics in HPC

March 19-20, 2019 39 / 48

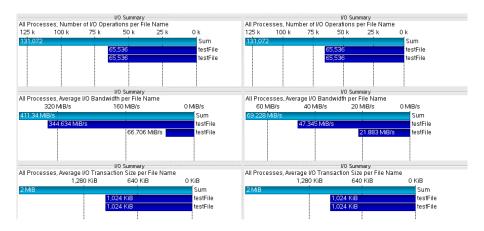
IOR-Coll-Strided MPI-IO (2)

		C	all Tree		
All Processes					
Function	Min Number of Invoc	Max Number of Invo	Min Inclusive Time	Max Inclusive Time 🛛 🗸	Max Exclusive Time
🖻 📕 user	1	1	62.610 s	62.723 s	8.029 ms
MPI_File_write_at_all	1.024	1.024	46.775 s	46.815 s	38.959 s
pwrite64	1,024	1,024	7.835 s	29.115 s	29.115 s
🖻 📕 MPI File read at all	1.024	1,024	15.350 s	15.352 s	13.316 s
pread64	1,024	1,024	2.035 s	3.874 s	3.874 s
🕮 🥅 MPL Init	1	1	0.391 s	0.505 s	0.481 s
MPI Barrier	7	7	7.566 ms	48.867 ms	48.867 ms
🖻 🧮 MPI File open	4	4	22.761 ms	24.446 ms	23.467 ms
open64	4	7	363.637 µs	12.024 ms	12.024 ms
close	0	2	0.000 s	13.613 µs	13.613 µs
read	0	1	0.000 s	632.595 ns	632.595 ns
🖨 📕 MPI File get size	2	2	6.225 ms	11.562 ms	31.548 µs
Iseek64	4	4	6.211 ms	11.550 ms	11.550 ms
🖨 🧧 MPI File delete	0	1	0.000 s	6.185 ms	19.702 µs
unlink	0	1	0.000 s	6.165 ms	6.165 ms
MPI Allreduce	6	6	274.538 µs	5.644 ms	5.644 ms
MPI Reduce	26	26	48.377 µs	1.041 ms	1.041 ms
MPI Bcast	6	6	33.513 µs	920.286 µs	920.286 µs
🖻 🧮 MPI File close	4	4	124.202 µs	812.978 µs	119.296 µs
close	4	4	65.617 µs	722.969 µs	722.969 µs
MPI Recv	0	126	0.000 s	503.195 µs	503.195 µs
🐵 📒 MPI_Finalize	1	1	373.308 µs	398.729 µs	28.568 µs
MPI Comm create	1	1	52.639 µs	151.426 µs	151.426 µs
MPI_Send	0	2	0.000 s	39.714 µs	39.714 µs
MPI_Get_processor_name	2	2	6.213 μs	22.865 µs	22.865 µs
MPI_Group_range_incl	1	1	4.627 µs	11.119 µs	11.119 µs
MPI_Comm_free	1	1	5.402 µs	8.671 µs	8.671 µs -
MPI Comm group	1	1	4.231 µs	7.554 µs	7.554 µs
flush	0	3	0.000 s	3.167 µs	3.167 µs

PRACE

イロト イヨト イヨト イヨト

PRACE PATC - Advanced Topics in HPC

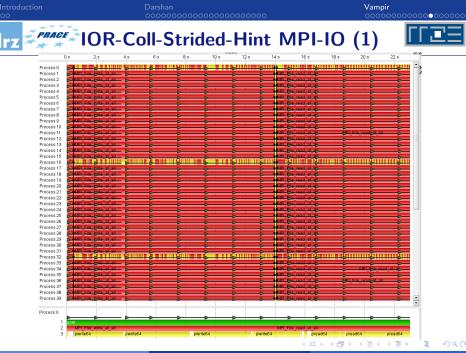

э

Introduction

IOR-Coll-Strided MPI-IO (3)

Read operations

Write Operations

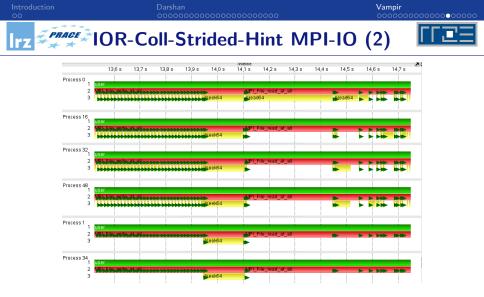

© 2019 LRZ

PRACE PATC - Advanced Topics in HPC

March 19-20, 2019

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

41 / 48



© 2019 LRZ

PRACE PATC - Advanced Topics in HPC

March 19-20, 2019

42 / 48

Zoom in 14s - Green triangles represent I/O events and yellow bars represent the I/O time.

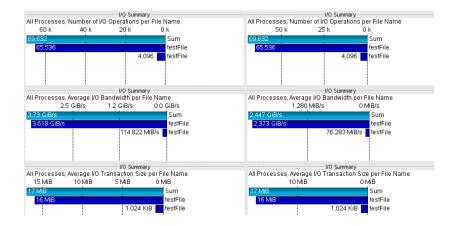
© 2019 LRZ

March 19-20, 2019

43 / 48

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[₽]^{PRACE}^{*} IOR-Coll-Strided-Hint MPI-IO (3)



		Call Tree			
II Processes					
Function	Min Number of Im	Max Number of Inv	Min Inclusive Ti	Max Inclusive Til 🔽	Max Exclusive Time
🖻 📕 (user	1 1	1	22.944 s	23.041 s	15.040 ms
🕀 📕 MPI File write at all	1,024	1,024	13.421 s	13.426 s	13.426 s
pwrite64	0		0.000 s		
😑 📕 MPI File read at all	1,024	1,024	8.913 s	8.920 s	8.920 s
pread64	0	1,024	0.000 s	4.642 s	4.642 s
🕀 🧧 MPI Init	1	1	0.389 s	0.486 s	0.471 s
🕀 📕 MPI File get size	2	2	0.149 s	0.158 s	
Iseek64	4	4	0.149 s	0.158 s	
😑 📕 MPI File open	4	4	34.716 ms	37.116 ms	35.337 ms
open64	4	7	994.967 µs	21.461 ms	21.461 ms
read	0	1	0.000 s	221.539 µs	221.539 μ:
close	0	3	0.000 s		22.466 µ
- MPI Barrier	7	7	189.142 µs	9.490 ms	9.490 m:
MPI Allreduce	6	6	297.113 µs	9.063 ms	9.063 m
😑 🧮 MPI File delete	0	1	0.000 s	7.696 ms	18.973 μ:
- unlink	0	1	0.000 s	7.677 ms	7.677 m
🖻 🧮 MPI File close	4	4	127.275 μs	2.356 ms	121.384 μ:
close	4	4	56.174 µs	2.270 ms	2.270 m
MPI Bcast	6	6	52.433 µs	663.996 µs	663.996 μ:
MPI Recv	0	126	0.000 s	472.305 µs	472.305 μ
🐵 📕 MPI Finalize	1	1	396.337 µs	420.071 µs	38.024 µ
- MPI Reduce	26	26	64.272 µs	385.992 µs	385.992 µ
MPI Comm create	1	1	54.670 µs	158.731 µs	158.731 µ
MPI_Send	0	2	0.000 s	50.346 µs	50.346 µs
MPI Get processor name	2	2	6.089 µs	31.442 µs	31.442 µs
MPI_Group_range_incl	1	1	4.543 µs	29.453 µs	29.453 µs
MPI Comm free	1	1	5.496 µs	9.073 µs	9.073 µs
MPI_Comm_group	1	1	4.330 µs	7.699 µs	7.699 µs
MPI Comm size	2	2	1.508 µs	3.286 µs	3.286 µs

March 19-20, 2019 44 / 48

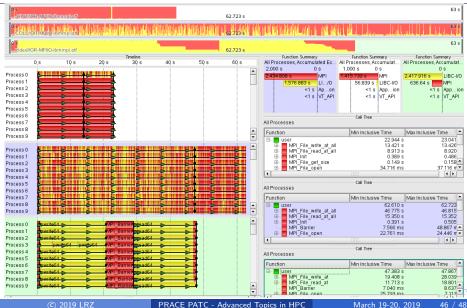
э

PRACE IOR-Coll-Strided-Hint MPI-IO (4)

Read operations

Write Operations

March 19-20, 2019


45 / 48

Vampir

Comparing Traces

Vampir Summary

VampirTrace

- Convenient instrumentation and measurement infrastructure
- Hides complex details
- Highly configurable
 - Provides many options and switches for expert users
- Available under BSD-like license
 - Part of Open MPI >=1.3
 - Standalone download at www.tu-dresden.de/zih/vampirtrace

Vampir GUI and VampirServer

- Interactive trace visualization and analysis
- Intuitive browsing and zooming
- Vampir GUI available for Windows, Linux/Unix, Mac OS X
- Further information: www.vampir.eu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで