
PRACE PATC Course: Advanced Topics in HPC
High-Level I/O Library: HDF5

Sandra Mendez, PhD - HPC Group, LRZ
sandra.mendez@lrz.de

Outline

1 High-Level I/O Library

2 HDF5

3 Summary

High-Level I/O Library HDF5 Summary

High-Level I/O Library

An API which helps to express scientific simulation
data in a more natural way

I Multi-dimensional data, labels and tags, noncontiguous data, typed
data

Offers
I Simplicity for visualization and analysis
I Portable formats - can run on one machine and take output to another
I Longevity - output will last and be accessible with library tools and no

need to remember version number of code

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 3 / 35

High-Level I/O Library HDF5 Summary

High-Level I/O Library (2)

Scientific applications work with structured data and
desire more self- describing file formats
netCDF and HDF5 are two popular ”higher level” I/O
libraries

I Abstract away details of file layout
I Provide standard, portable file formats
I Include metadata describing contents

Parallel version should be built on top of MPI-IO and
can use MPI-IO optimizations.

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 4 / 35

HDF5 - Hierarchical Data Format 5

High-Level I/O Library HDF5 Summary

Hierarchical Data Format 5

HDF5 is designed at three levels:
A data model

I consists of abstract classes, such as files, datasets, groups, datatypes
and dataspaces.

I Developers use them to construct a model of their higher-level
concepts.

A Software library
I designed to provide applications with an object-oriented programming

interface.
I a powerful, flexible and high performance interface.

A file format: provides portable, backward and forward compatible,
and extensible instantiation of the HDF5 data model.

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 6 / 35

High-Level I/O Library HDF5 Summary

File Organization and Data Model

HDF5 files are organized in a hierarchical structure, with two primary
structures: groups and datasets.

I HDF5 group: a grouping structure containing instances of zero or more
groups or datasets, together with supporting metadata.

I HDF5 dataset: a multidimensional array of data elements, together
with supporting metadata.

The primary classes in the HDF5 data model are:
I File
I Dataset
I Group
I Link
I Attribute

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 7 / 35

High-Level I/O Library HDF5 Summary

File Organization and Data Model
HDF5 datasets organize and contain data elements.
HDF5 datatype describes individual data elements.
HDF5 dataspace describes the logical layout of the data elements.

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 8 / 35

High-Level I/O Library HDF5 Summary

The General HDF5 API
Similarities to NetCDF:

I a container for storing
a variety of scientific
data

I HDF5 group: a
grouping structure
containing HDF5
objects

I HDF5 dataset: a
multidimensional
array of data elements

Web site:
www.hdfgroup.org/HDF5
(see especially tutorial)

HDF5 interface conventions
H5 general purpose library functions
H5A annotations: attribute access and mani-

pulation routines
H5D dataset access and manipulation routines
H5E error handling routines
H5F file access routines
H5G group creation and operation routines
H5I identifier routines
H5L link routines
H5O object routines
H5P object property list manipulation routines
H5R reference routines
H5S dataspace definition and access routines
H5T datatype creation and manipulation rou-

tines
H5Z compression routine(s)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 9 / 35

High-Level I/O Library HDF5 Summary

Creation of a HDF5 file
PROGRAM FILEEXAMPLE

USE HDF5
IMPLICIT NONE
CHARACTER(LEN=8), PARAMETER :: &

filename = "filef.h5"
INTEGER(HID_T) :: file_id
INTEGER :: error

! Initialize HDF5
CALL h5open_f(error)

! Create a new file using default
! properties.

CALL h5fcreate_f(filename, &
H5F_ACC_TRUNC_F, file_id, error)

! Terminate access to the file.
CALL h5fclose_f(file_id, error)

! Terminate HDF5.
CALL h5close_f(error)

END PROGRAM FILEEXAMPLE

Creation modes:
I H5F ACC TRUNC if the file

already exists, current contents will
be deleted → rewrite the file with
new data.

I H5F ACC EXCL the open will fail
if the file already exists; ignored of
if the file does not already exist.

all the above → reads and writes
are possible

I H5F ACC RDONLY read only.
I H5F ACC RDWR read and write.

Looking at created (binary) file:
h5dump filef.h5

dumps a DDL- ”data description
language” form of the file.

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 10 / 35

High-Level I/O Library HDF5 Summary

Creating a dataset
PROGRAM DSETEXAMPLE
USE HDF5
IMPLICIT NONE
CHARACTER(LEN=8), PARAMETER :: filename = "dsetf.h5"
CHARACTER(LEN=4), PARAMETER :: dsetname = "dset"
INTEGER(HID_T) :: file_id
INTEGER(HID_T) :: dset_id
INTEGER(HID_T) :: dspace_id
INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/6,4/)
INTEGER :: rank = 2
INTEGER :: error
CALL h5open_f(error)

CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error)

! Create the dataspace:
CALL h5screate_simple_f(rank, dims, &

dspace_id, error)
! Create the dataset with default properties:

CALL h5dcreate_f(file_id, dsetname, &
H5T_NATIVE_INTEGER, dspace_id, dset_id, error)
! End access and release resources:

CALL h5dclose_f(dset_id, error)
! Terminate access to the data space:

CALL h5sclose_f(dspace_id, error)
CALL h5fclose_f(file_id, error)
CALL h5close_f(error)

END PROGRAM DSETEXAMPLE

Datatype of a dataset: use
pre-defined set or user-defined
types
Can then read from and write
to a dataset using:

call h5dread_f(dset_id, &
mem_type_id, buf, dims, error)
call h5dwrite_f(dset_id, &
mem_type_id, buf, dims, error)

I where mem type id, buf and
dims must be consistent with
the values defined for the
dataset

I query routines available

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 11 / 35

High-Level I/O Library HDF5 Summary

Example for DDL output
HDF5 "dsetf.h5" {
GROUP "/" {
DATASET "dset" {

DATATYPE { H5T_STD_I32BE }
DATASPACE { SIMPLE (4, 6) / (4, 6) }
DATA {
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24
}

}
}

}

native integer: 32 bit / big endian

simple array structure (note ordering)
DATASPACE{SIMPLE<current_dims>/<max_dims> }

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 12 / 35

High-Level I/O Library HDF5 Summary

Attributes

Attributes are small datasets
I contained inside ”data” datasets
I usually used for providing information about the nature and/or the

intended usage of the object they are attached to
I attribute creation:

call h5acreate_f(dset_id, attr_nam, type_id, space_id, &
attr_id, hdferr)

call h5aclose_f(attr_id, hdferr)

I reading and writing attributes:
call h5awrite_f(attr_id, mem_type_id, buf, dims, hdferr)

call h5aread_f(attr_id, mem_type_id, buf, dims, hdferr)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 13 / 35

High-Level I/O Library HDF5 Summary

Groups
Create as subgroups of the
default root group:

call h5gcreate_f(loc_id, name, &
group_id, error)

call h5gclose_f(group_id, error)

Create datasets inside groups:
I use group id instead of file id as

an argument for h5dcreate f()

loc id absolute or relative

name may be root group
(file id) or other existing
group

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 14 / 35

High-Level I/O Library HDF5 Summary

Extendible datasets

May want to change the size
of the dataset

I grow or shrink any of the
defined dimensions

I need to enable chunking
via the properties interface
→ no reorganization of
storage required

Call sequence after creation
of file

I see example code
I dims → initial dimension
I dims1 → fixes chunks
I both: integer arrays of size

2

! Create rank 2 data space with
! unlimited dimensions.
maxdims = (/H5S_UNLIMITED_F, &

H5S_UNLIMITED_F/)
CALL h5screate_simple_f(2,&

dims, dataspace, error, &
maxdims)

! Modify dataset creation
! properties (here chunking)
CALL h5pcreate_f(&

H5P_DATASET_CREATE_F, &
crp_list, error)

CALL h5pset_chunk_f(crp_list, &
2, dims1, error)

! continued on next slide

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 15 / 35

High-Level I/O Library HDF5 Summary

Extension procedure
Writing of data

need to keep size of written
data consistent with
presently configured size
chunking size – tune for
performance

Reading data
not shown here
query calls for required
properties are available in
H5S and H5D

! Create a dataset with 3X3 dimensions
! using cparms creation properties:

CALL h5dcreate_f(file_id, dsetname, &
H5T_NATIVE_INTEGER, dataspace, &
dset_id, error, crp_list)

! Extend the dataset:
size = (/ 3, 3 /) ! assured size
CALL h5dextend_f(dset_id, size, error)

! Extend to 10 x 3:
size = (/ 10, 3 /)
CALL h5dextend_f(dset_id, size, error)

! Write data of size 10 x 3 to dataset:
data_dims = (/ 10, 3 /)
CALL h5dwrite_f(dset_id, &

H5T_NATIVE_INTEGER, data_in, &
data_dims, error)

! Close the dataspace, property list,
! the dataset and the file (not shown)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 16 / 35

High-Level I/O Library HDF5 Summary

Handling subsets of datasets
Perform a selection on a dataspace

calls to select hyperslabs or element sets
call h5sselect_hyperslab_f(space_id, operator, start, count, &

hdferr [, stride, block])

arguments:
I operator: H5S SELECT SET F (set new selection) or

H5S SELECT OR F (add to existing selection)
I start: offset, count: number of blocks (integer(HSIZE T) arrays)
I stride, block: optional integer(HSIZE T) arrays

call h5sselect_elements_f(space_id, operator, rank, &
num_elements, coord, hdferr)

arguments:
I integer(HSIZE T) :: coord(rank, num elements) – coordinates of

selected elements
c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 17 / 35

High-Level I/O Library HDF5 Summary

Illustration

An 8 x 10 array dataset
I after a 3 x 4 subset has

been overwritten
Note that the absolute
index of arguments for
hyperslab creation is
zero-based:
start = (/ 1, 2 /)
count = (/ 3, 4 /)
stride = (/ 1, 1 /)

1 1 1 1 1 2 2 2 2 2
1 1 5 5 5 5 2 2 2 2
1 1 5 5 5 5 2 2 2 2
1 1 5 5 5 5 2 2 2 2
1 1 1 1 1 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 18 / 35

High-Level I/O Library HDF5 Summary

Parallel HDF5 Requirements
Parallel HDF5 should allow multiple processes to
perform I/O to an HDF5 file at the same time

I A single file image to all processes, rather than having one file per
process.

I Having one file per process can cause expensive post processing, and
the files are not usable by different processes.

A standard parallel I/O interface that must be
portable to different platforms.
Support Message Passing Interface (MPI)
programming
Parallel HDF5 files had to be compatible with serial
HDF5 files and sharable between different serial and
parallel platforms.

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 19 / 35

High-Level I/O Library HDF5 Summary

Parallel HDF5 implementation

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 20 / 35

High-Level I/O Library HDF5 Summary

Programming restrictions

PHDF5 opens a parallel file with an MPI
communicator
Returns a file ID
Future access to the file via the file ID
All processes must participate in collective PHDF5
APIs
Different files can be opened via different
communicators

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 21 / 35

High-Level I/O Library HDF5 Summary

Collective HDF5 calls

All HDF5 APIs that modify structural metadata are collective.
I File operations

H5Fcreate, H5Fopen, H5Fclose, etc

I Object creation
H5Dcreate, H5Dclose, etc

I Object structure modification (e.g., dataset extent modification)
H5Dset extent, etc

http://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html
Array data transfer can be collective or independent

I Dataset operations: H5Dwrite, H5Dread
Collectiveness is indicated by function parameters, not by function
names as in MPI

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 22 / 35

High-Level I/O Library HDF5 Summary

What does PHDF5 support ?
After a file is opened by all the processes of a communicator

I All parts of the file are accessible by all processes.
I All objects in the file are accessible by all processes.
I Multiple processes may write to the same data array (i.e. collective

I/O).
I Each process may write to individual data array (i.e. independent I/O).

API languages
I C and F90, 2003 language interfaces
I Most platforms with MPI-IO supported

Programming model: HDF5 uses access property list to control the
file access mechanism.
General model to access HDF5 file in parallel:

1 Set up MPI-IO file access property list
2 Open File
3 Access Data
4 Close File

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 23 / 35

High-Level I/O Library HDF5 Summary

Creating a File
The programming model for creating and accessing a file is as follows:

I Set up an access template object to control the file access mechanism.
I Open the file.
I Close the file.

MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;

/* Initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_size(comm, &mpi_size);
MPI_Comm_rank(comm, &mpi_rank);

/* Set up file access property list
with parallel I/O access */
plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(plist_id, comm, info);
/* Create a new file collectively.*/
file_id = H5Fcreate(H5FILE_NAME, &
H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);
/*Close property list and file
(not shown)*/

comm = MPI_COMM_WORLD
info = MPI_INFO_NULL

CALL MPI_INIT(mpierror)
CALL MPI_COMM_SIZE(comm, mpi_size, &

mpierror)
CALL MPI_COMM_RANK(comm, mpi_rank, &

mpierror)
! Initialize FORTRAN interface
CALL h5open_f(error)
! Setup file access property list
! with parallel I/O access.
CALL h5pcreate_f(H5P_FILE_ACCESS_F, &

plist_id, error)
CALL h5pset_fapl_mpio_f(plist_id, &

comm, info, error)
! Create the file collectively.
CALL h5fcreate_f(filename,H5F_ACC_TRUNC_F,&
file_id, error, access_prp = plist_id)
!Close property list and file (not shown)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 24 / 35

High-Level I/O Library HDF5 Summary

Creating a Dataset (1)

The programming model for accessing a dataset with Parallel HDF5 is:
Create or open a Parallel HDF5 file with a collective call to:

H5Dcreate (C) / h5dcreate_f (F90)
H5Dopen (C) / h5dopen_f (F90)

Obtain a copy of the file transfer property list and set it to use
collective or independent I/O. Do this by first passing a data transfer
property list class type to:

H5Pcreate (C) / h5pcreate_f (F90)

Then set the data transfer mode to either use independent I/O access
or to use collective I/O, with a call to:

H5Pset_dxpl_mpio (C) / h5pset_dxpl_mpio_f (F90)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 25 / 35

High-Level I/O Library HDF5 Summary

Creating a Dataset(2)
Access the dataset with the defined transfer property list.

I Each process may do an independent and arbitrary number of data I/O
access calls, using:

H5Dwrite (C) / h5dwrite_f (F90)
H5Dread (C) / h5dread_f (F90)

/* Create the dataset with default
properties and close filespace.*/
dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
/* Create property list for
collective dataset write. */

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id,
H5FD_MPIO_COLLECTIVE);

/* Write the dataset collectively.*/
status = H5Dwrite(dset_id,
H5T_NATIVE_INT,
memspace, filespace,plist_id, data);

! Create the dataset with default
! properties.
CALL h5dcreate_f(file_id, dsetname, &
H5T_NATIVE_INTEGER, filespace, &
dset_id, error)
! Create property list for collective
! dataset write
CALL h5pcreate_f(H5P_DATASET_XFER_F, &
plist_id, error)
CALL h5pset_dxpl_mpio_f(plist_id, &
H5FD_MPIO_COLLECTIVE_F, error)
! Write the dataset collectively.
CALL h5dwrite_f(dset_id, &
H5T_NATIVE_INTEGER, data, dimsfi, &
error, file_space_id = filespace, &
mem_space_id = memspace, &
xfer_prp = plist_id)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 26 / 35

High-Level I/O Library HDF5 Summary

Parallel HDF5 Example (1)

An 5 x 8 array dataset
dimsf = (/5,8/)

After each process will be write a
subset:
5 x (dimsf(2) / mpi_size)

Note that the absolute index of
arguments for hyperslab creation
is zero-based:

offset = (/ 0, mpi_rank * count(2) /)
count = (/ 5, dimsf(2)/ mpi_size /)
stride = (/ 1, 1 /)

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 27 / 35

High-Level I/O Library HDF5 Summary

Parallel HDF5 Example (2)
CALL h5pcreate_f(H5P_FILE_ACCESS_F, plist_id, error)
CALL h5pset_fapl_mpio_f(plist_id, comm, info, error)

CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, &
file_id, error, access_prp = plist_id)
CALL h5pclose_f(plist_id, error)

CALL h5screate_simple_f(rank, dimsf, filespace, error)

CALL h5dcreate_f(file_id, dsetname, &
H5T_NATIVE_INTEGER, filespace, dset_id, error)
CALL h5sclose_f(filespace, error)

count(1) = dimsf(1)
count(2) = dimsf(2)/mpi_size
offset(1) = 0
offset(2) = mpi_rank * count(2)
CALL h5screate_simple_f(rank, count, memspace, error)

CALL h5dget_space_f(dset_id, filespace, error)
CALL h5sselect_hyperslab_f(filespace, &
H5S_SELECT_SET_F,& offset, count, error)

Setup file access property list
with parallel I/O access

Create the file collectively

Create the data space for the
dataset

Create the dataset with de-
fault properties

Each process defines dataset in
memory and writes it to the
hyperslab in the file.

Select hyperslab in the file

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 28 / 35

High-Level I/O Library HDF5 Summary

Parallel HDF5 Example (3)
ALLOCATE (data(count(1),count(2)))
data = mpi_rank + 10

CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, &
error)
CALL h5pset_dxpl_mpio_f(plist_id, &
H5FD_MPIO_COLLECTIVE_F, error)

CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data,&
dimsfi, error, file_space_id = filespace, &
mem_space_id = memspace, xfer_prp = plist_id)

DEALLOCATE(data)

CALL h5sclose_f(filespace, error)
CALL h5sclose_f(memspace, error)

CALL h5dclose_f(dset_id, error)
CALL h5pclose_f(plist_id, error)

CALL h5fclose_f(file_id, error)

Initialize data buffer with triv-
ial data

Create property list for collec-
tive dataset write

Write the dataset collectively

Deallocate data buffer

Close dataspaces

Close the dataset and property
list

Close the file

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 29 / 35

Summary

High-Level I/O Library HDF5 Summary

Network Common Data Form

NetCDF is a set of software libraries and machine independent data
formats that support the creation, access, and sharing of array-oriented
scientific data.

First released in 1989.
NetCDF-4.0 (June, 2008) introduces many new features, while
maintaining full code and data compatibility.

Three conceptual components
data model
file format (self-describing → metadata)
API/libraries (implementations)

Original area of deployment: earth sciences.
Available from http://www.unidata.ucar.edu/software/netcdf/
Unidata → data services for earth system sciences

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 31 / 35

High-Level I/O Library HDF5 Summary

Parallel I/O with NetCDF (1)

Serial I/O Parallel I/O

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 32 / 35

High-Level I/O Library HDF5 Summary

Parallel I/O with NetCDF (2)
NetCDF support is based on MPI-IO+pnetcdf or MPI-IO+HDF5

I requires to be built into the libraries via a configuration option
I establishes dependency on MPI implementation
I PnetCDF library has a more elaborate interface

(http://cucis.ece.northwestern.edu/projects/PnetCDF/index.html)
Initialization:

I nf90 create() and nf90 open() have two additional optional arguments:
an MPI communicator comm, and an MPI Info object info (may be
MPI INFO NULL)

Switching between collective and independent access:
ierr = nf90_var_par_access(ncid, varid, access)

I access may be NF90 INDEPENDENT or NF90 COLLECTIVE
I applies for writes of that variable while the file is open
I default: independent access

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 33 / 35

High-Level I/O Library HDF5 Summary

NetCDF and HDF5 Data Models

The netCDF classic data model: simple and flat
I Dimensions
I Variables
I Attributes

The netCDF enhanced data model added
I More primitive types
I Multiple unlimited dimensions
I Hierarchical groups
I User-defined data types

The HDF5 data model has even more features
I Non-hierarchical groups
I User-defined primitive data types
I References (pointers to objects and data regions in a file)
I Attributes attached to user-defined types

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 34 / 35

High-Level I/O Library HDF5 Summary

Assessment

HDF5 has
I a more complex structure
I is therefore more powerful and flexible

than NetCDF
This also may have disadvantages: more complex and possibly
error-prone to program to (difficult call sequence)
Simplification: HDF5 “lite“ high level interface – H5LT makes usage
easier by providing a way to aggregate several API calls
Image processing: H5IM provides a standard storage scheme for data
which can be interpreted as images – e.g. 2-dimensional raster data
Note: from version 1.6 to 1.8, the API has undergone evolution.
HDF5-1.10 contains several important new features.

c© 2019 LRZ PRACE PATC - Advanced Topics in HPC March 19-20, 2019 35 / 35

	High-Level I/O Library
	HDF5
	Summary

