PRACE

Georg Hager, Thomas Zeiser,

Gerhard Wellein, Markus Wittmann
(RRZE)

hpc@rrze.fau.de

A. Skjellum, P. Bangalore, S. Herbert,

R. Rabenseifner

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO

oSS SIS S S EE S S S S S
MISSISSIPP]I STATE UNIVERSITY

& PERFORMANCE
x COMPUTING LAB

M5F ENGINEERING RESEARCH CENTER

.......

“ MPI derived data types
= MPI/O
“ File open and closing
* Views
* Reading and writing
“ Examples & Use Cases

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

Repetition:
Derived Data Types in MPI

Derived Datatypes in MPI: _
Why Do We Need Them? [T ==
.)

MPI Bcast (&cfg, sizeof (cfg),

Root reads configuration and
broadcasts it to all others

// root: read configuration from

// file into struct config

MPI Bcast(&cfg.nx, 1, MPI_INT, .);
MPI Bcast(&cfg.ny, 1, MPI_INT, .);
MPI Bcast(&cfg.du, 1, MPI DOUBLE,..);
MPI Bcast(&cfg.it, 1, MPI_INT, .);

MPI BYTE, ..)
IS not a solution. Its not portable as
no data conversion can take place

MPI Bcast(
|:> &cfg, 1, <type cfg>,..);

Send column of matrix (noncontiguous in C):
= Send each element alone?
= Manually copy elements out into a contiguous

buffer and send it?

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

m Derived Data Types in MPI:
Construction

“ Create in three steps

" Construct with

MPI Type¥*

= Commit new data type with

MPI Type commit (MPI Datatype * nt)

= After use, deallocate the data type with

MPI Type free(MPI Datatype * nt)

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

Create vector-like data type

MPI Type vector (count, int , int ,
MPI Datatype oldtype,
MPI Datatype * newtype)

count 2

MPI Datatype nt;
MPI Type vector (
oldtype MPI INT 2, 3, 5,

MPI INT, é&nt);

coqpt

MPI Type commit (&nt) ;
// use nt..

\ J size :=6*size(oldtype) MPI_Type_f£free (&nt);
extent := 8*extent(oldtype)

‘ Y / Caution: Concatenating such types in a SEN
operation can lead to unexpected results!

See Sec. 3.12.3 and 3.12.5 of the MPI 1.1 Standard for details.

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 6

count argument to send and others must be handled with care:

MPI_ Send(buf, 2, nt,...) with nt (newtype from prev. slide)

missing
gap!

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 7

Derived Data Types in MPI:
m Example for MPI_TYPE VECTOR _

“ Create datatype describing one column of a matrix
® assuming row-major layout like in C

smatrix[1] double matrix[30]

MPI Datatype nt;

// count = nrows, blocklength = 1,

// stride = ncols

MPI Type vector(nrows, 1, ncols,
MPI_DOUBLE, &nt);

MPI Type commit (&nt) ;

Nrows
A

// send column
MPI Send(&matrix[1l], 1, nt, .);

|

ncols MPI Type free (&nt);

(c) 2010-2018 RRZE, LRZ Parallel I/O with MPI IO 8

Create sub array data type

MPI Type create subarray(int dims,

int [], int [, int ar starts[],

int order, MPI Datatype oldtype, MPI Datatype * newtype)

dims: dimension of the array
ar _sizes: array with sizes of array (dims entries)
ar subsizes: array with sizes of subarray (dims entries)
ar starts: start indices of the subarray inside array (dims
entries), start at O (also in Fortran)
order
row-major: MPI ORDER C

column-major: MPI ORDER FORTRAN
oldtype: datatype the array consist of
newtype: datatype describing a subarray

(c) 2010-2018 RRZE, LRZ Parallel I/0 with MPI 10 10

Derived Data Types in MPI:
MPI_Type create subarray _

assuming row-major layout

dims 2 B
ar sizes {ncols, nrows}

ar subsizes {1, nrows} % _
ar starts {1, 0} E
order MPI ORDER C

oldtype MPI_DOUBLE |

MPI Type create subarray(dims, ar sizes, ar subsizes,
ar starts, order, oldtype, &nt)

MPI Type commit (&nt) ;
// use nt..
MPI Type free(&nt);

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10 11

Derived Data Types in MPI: —
[TE=
MPI_Type create subarray -

dims 1

ar sizes {5}

ar subsizes {3}

ar starts {0}

order MPI ORDER C
oldtype MPI INT

MPI Type create subarray(dims, ar sizes, ar subsizes, ar starts,
order, oldtype, é&nt)

// commit type..

MPI Send(buf, 4, nt, .)

nt

4 x nt

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10 12

Derived Data Types in MPI:
MPI_TYPE CREATE_STRUCT _

“ Most general type constructor count = 2

= Describe blocks with arbitrary data type15: ;
and arbitrary displacements ypes[0]

types(1] [N

MPI Type create struct(count,
int block lengths[],
MPI Aint displs][],
MPI Datatype types[],
MPI Datatype * newtype)

block lengths[0]=1 block lengths[1]=3
A A
(vV —~

The contents of displs are either \
displs|[1]

the displacements in bytes of the
block bases or MPI| addresses displs[0]

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI 10 13

What about displacements in Fortran?

MPI GET ADDRESS (location, , lerror)
<type> location
INTEGER (KIND=MPI ADDRESS KIND)

Example:

double precision a(100)

integer al, a2, disp

call MPI GET ADDRESS(a(l), al, ierror)
call MPI GET ADDRESS (a(50), a2, ierror)
disp=a2-al

Result would usually be disp = 392 (49 x 8)
When using absolute addresses, set buffer address = MPI_BOTTOM

(c) 2010-2018 RRZE, LRZ Parallel I/0 with MPI 10 14

Derived data types provide a flexible tool to communicate
complex data structures in an MPI environment

Most important calls:
MPI Type vector (second simplest)
MPI Type create subarray
MPI Type create struct (most advanced)
MPI Type commit/MPI Type free
MPI_GET ADDRESS

Other useful features:
MPI Type contiguous, MPI Type indexed,
MPI Type get extent, MPI Type size

Matching rule: send and receive match if specified basic
datatypes match one by one, regardless of displacements

Correct displacements at receiver side are automatically
matched to the corresponding data items

(c) 2010-2018 RRZE, LRZ Parallel I/0 with MPI 10 16

MPI Input/Output

Many parallel applications need ...

Coordinated parallel access to a file by a group of processes

Simultaneous access

All processes read/write many non-contiguous pieces of the file

l.e. the data may be distributed amongst the processes according to a
partitioning scheme

process O process 1

file, logical view \

L]
|

process 2 process 3 process 4

_vd

(c) 2010-2018 RRZE, LRZ

-
!

P b
@ @ @ @ @ file, physical view

Parallel I/0O with MPI 10

18

Many parallel applications need ...
all processes may read the same data

Efficient collective I/O based on
fast physical I/0 by several processors, e.g. striped
distributing (small) pieces by fast message passing

process O process 1 process 2 process 3 process 4

file, logical view\ \ I / /

NN
@ @ Ej Ej Ej file, physical view

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 19

Provides a high-level interface to support
data file partitioning among processes
transfer global data between memory and files (“collective” 1/0)
asynchronous transfers
strided access

MPI derived data types are used to specify common data access
patterns for maximum flexibility and expressiveness

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 20

MPI file contains elements of a single MPI data type (etype)

The file is partitioned among processes using an access
template (filetype)

All file accesses transfer to/from a contiguous or
non-contiguous user buffer (MPI data type)

Several different ways of reading/writing data:
non-blocking / blocking
collective / individual
individual / shared file pointers, explicit offsets
Automatic data conversion in heterogeneous systems

File interoperability with external representation

[[2=

Open & Closing Files

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

22

int MPI File open (
MPI Comm comm, const char *filename, int amode,
MPI Info info, MPI File *fh)

Collective call by all processes which are part of comm
filename can be different, but must point to the same file
amode describes access mode (see next slide)

info Object, can be MPI_INFO NULL (See later)

fh represents the file handle, associated to it is also comm and the
view (see later)

Process local file /0 is possible by specifying MPI_coMM SELF as
comm

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 23

access mode description

MPI_MODE RDONLY read only

MPI_MODE_RDWR read and write = one of these flags is required
MPI_MODE WRONLY write only

MPI_MODE CREATE create if it does not exist

MPI_MODE EXCL error if file exists

MPI MODE DELETE ON CLOSE file is deleted when closed

MPI MODE UNIQUE OPEN file is not concurrently opened by anybody else

only sequential access will occur (MPI_File read/write_shared

MPI MODE SEQUENTIAL)
- - Is allowed)

MPI_MODE APPEND all file pointers are located at the end of the file

Flags can be or’ed together: MPI_MODE WRONLY |
MPI_MODE_APPEND

Use or function in Fortran

All processes in MPI_COMM_WORLD open file collectively
MPI _File fh;

MPI File open(MPI COMM WORLD, filename,
MPI MODE WRONLY | MPI MODE CREATE,
MPI INFO NULL, &fh);

Also possible to open file with only one process

if (rank == 0) {
MPI File fh;

MPI File open(MPI COMM SELF, filename,

MPI_MODE WRONLY | MPI MODE CREATE,
MPI_INFO NULL, &fh);

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 25

int MPI File close(MPI File *fh)

Collective call by all processes which are part of comm, the file was
opened with

File state is synchronized, i.e. all data is transferred to disk storage
File handle fh IS set to MPI_FILE NULL

File is deleted If MPI_MODE DELETE ON CLOSE was part of access
mode

All outstanding nonblocking requests & split collectives must have
been completed

MPI File fh;

MPI File open(MPI_COMM WORLD, .., &fh);

MPI File close(&fh);

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 26

(c) 2010-2018 RRZE, LRZ

Info Objects

Parallel I1/O with MPI 1O

27

Opaque object, storing key/value pairs
Often used to provide system-specific information
via info argument in function calls
for MPI 1O, process management, memory allocation, ...
Keys
All keys might be ignored
MPI defines a set of reserved keys
Implementations may provide additional keys
Keys/values are strings and converted to other types as required

Use MPI_INFO NULL if you do not want to provide additional information

MPI_Info info;

= Generate new, empty info object:
int MPI Info create (MPI_Info *info)

= Add entry to existing info object:
int MPI Info set(MPI Info info,

const char *key, const char *value)

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 28

Delete entry from info object
int MPI Info delete(MPI Info info, const char *key)

Retrieve value associated with key
int MPI Info get(MPI Info info, const char *key,
int valuelen, char *value, int *flagqg)

flag = true: avalue is associated with the key and returned in value
flag = false: no value associated with the key, value is unchanged

valuelen: size of the buffer value points to,
if associated value is larger, data is truncated

Free info object
int MPI Info free(MPI Info *info)

Length restriction:
keys: MPI_MAX INFO KEY
values: MPI_MAX INFO VAL

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 29

Info Objects for MPI 1/O
M Striping _

Striping:
* relevant only when file is created, i.e. InMPI_File open
“ must be the same for all processes
* is only a hint

Keys for info object

striping factor int number of I/O devises the file should be striped across

striping unit int number of consecutive bytes stored on one I/O device
before the next is used

striping unit

/0 devices striping factor

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10 30

M Info Objects for MPI 1/O
Collective Buffering |

“ Each process might access I/O devices
* Can generate high load
“ Collective buffering to mitigate this problem

[T TT T T TTTI[TTT
[] process \\\ //

node / \

(c) 2010-2018 RRZE, LRZ Parallel 1/0O with MPI IO

31

Collective buffering

Optimization for collective accesses
Access performed on behalf of all processes by some target nodes
Keyl/value pairs must be the same on all processes

Keys for info object

collective buffering
cb block_size

cb buffer size

cb nodes

process
node
target node

bool

int

int

int

true if application might benefit from collective buffering, false if not
target nodes access data in chunks of this size

buffer size on target node, that can be used for collective buffering,
typically a multiple of the block size

number of target nodes that should be used

m Info Object Example

Example: create MPI info object for MPI_File_open
MPI Info info;

MPI Info create(&info);

// Hint: stripe over 10 I/O devices

MPI Info set(info, "striping factor", "10");

// Hint: enable collective buffering

MPI Info set(info, "collective buffering", "true");
// Hint: use 4 target nodes for buffering

MPI Info set(info, "cb nodes", "4");

MPI File open(comm, filename, amode, info, &fh);

MPI_Infq_free(&info);

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

33

Pre-allocating space for a file (may be expensive)
int MPI File preallocate (MPI File fh, MPI Offset size)

Resizing a file (may speed up first writing on a file)
int MPI File set size(MPI File fh, MPI Offset size)

Querying file size
int MPI File get size(MPI File fh, MPI Offset *size)

Querying file access mode
int MPI File get amode (MPI File fh, int *amode)

File info object
int MPI_File set info(MPI_File fh, MPI Info info)
int MPI File get info(MPI File fh, MPI Info *info used)

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 36

Views

(c) 2010-2018 RRZE, LRZ Parallel 1/0O with MPI IO 37

etype filetype
_'_I
holes
file 3
\) |) \) |)
] ! \ —J
displacement visible and accessible data example from MPI 3.1

standard document

Visible and accessible data from a file

Each process has its own view

View is described via (displacement , etype, filetype)
Pattern of filetype IS repeated beginning at displacement
Views can be changed, but this is a collective operation
Default view: linear byte stream (0, MPI_BYTE , MPI_BYTE)

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 38

After file open each file has the default view

Default view: linear byte stream
displacement = 0
etype = MPI BYTE
filetype = MPI_BYTE

MPI_BYTE matches with any datatype

etype = filetype = MPI BYTE

file |0|1]2|3|4|5|6|7|8|9|10{11

process 0

views of process 1

VWi WY UWY WA

process 2

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO

MPI I/O: Definitions

etype elementary datatype

filetype process 0
filetype process 1
filetype process 2

tiling a file with filetypes:

file lo[1]2]8]4[s]6]7] =

\)
!

displacement

view of process 0
view Of process 1
view Of process 2

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

displacement in bytes

example from MPI 3.1
standard document

40

file

displacement

etype

filetype

view

offset

(c) 2010-2018 RRZE, LRZ

ordered collection of data items

position from the beginning of the file
marks the start of the view
unit: byte

elementary data type
unit of data access and positioning
type displacements must be:
* nonnegative, monot. nondecreasing, and nonabsolut
same for all processes

single or multiple etypes
size of holes must be multiples of etype extent
repeated pattern after displacement
type displacements must be:

" nonnegative, monot. nondecreasing, nonabsolut,
can be different for all processes

accessible data of a file by a process
defined by displacement, etype, filetype

position in file relative to current view
type MPI_oOffset in C, INTEGER (KIND=MPI_OFFSET KIND) in Fortran
uint: etype

Parallel /0O with MPI 1O 41

int MPI File set view(MPI File fh, MPI Offset disp,
MPI Datatype etype, MPI Datatype filetype,
const char *datarep, MPI Info info)

Changes the process’s view of the data
Collective operation

Local and shared file pointers are reset to zero
etype and filetype must be committed types

datarep IS a string specifying the format data is written to a file:
native, internal, external32, Or user-defined

Same etype extent and same datarep On all processes
disp: MPI_Offset in C, INTEGER (KIND=MPI_ OFFSET KIND) in Fortran

int MPI File get view(MPI File fh, MPI Offset *disp,
MPI Datatype *etype, MPI Datatype *filetype,
char *datarep)

Returns process’s view of the data

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 42

M MPI I/O: Data Representations [T ==

» data stored in file identical to memory

= on homogeneous systems no loss in precision or 1/O performance due to type
native conversions

= on heterogeneous systems loss of interoperability
no guarantee that MPI files accessible from C/Fortran

data stored in implementation specific format

can be used with homogeneous or heterogeneous environments
implementation will perform type conversions if necessary

no guarantee that MPI files accessible from C/Fortran

follows standardized representation (big endian IEEE)

all input/output operations are converted from/to external32

files can be exported/imported between different MPI environments

due to type conversions from (to) native to (from) external32 data precision and
I/O performance may be lost

internal may be implemented as equal to external32

= can be read/written also by non-MPI programs

internal

external32

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10 43

Basic example: File view for one process
View contains holes with respect to original file

etype = MPI INT

filetype: two MPI INTSs followed by a gap
. , of four MPI_INTs

holes

file

\ A A)
| | 1

displacement: filetype filetype
5 X MPI_INT

© R. Thakur

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 44

MPI Offset disp;

MPI Datatype etype, filetype;
int sizes[] = {61}

int sub sizes[] = { 2 };

int start idxs[] = { 0 };

MPI Type create subarray(1, sizes, sub sizes, start idxs,

filetype

subarray

2 int holes

MPI_ORDER C, MPI_INT, &filetype);

MPI Type commit(filetype);

disp =5 * 4; ! 4 = size of MPI INT in bytes
etype = MPI INT;

MPI File open(MPI_COMM WORLD, "/pfs/datafile",
MPI_MODE CREATE | MPI_MODE_RDWR,
MPI_INFO NULL, &fh);

MPI File set view(fh, disp, etype, filetype, "native", MPI_INFO NULL) ;

MPI File write(fh, buf, 1000, MPI_INT, MPI_STATUS IGNORE) ;

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO

based on
© R. Thakur

45

(c) 2010-2018 RRZE, LRZ

Reading and Writing

Parallel I/0O with MPI 10

a7

Direction: Read / Write

Positioning (realized via routine names)
explicit offset (_AT)
iIndividual file pointer (no positional qualifier)
shared file pointer (SHARED Or ORDERED)

(different names used depending on whether
non-collective or collective)

Coordination
non-collective
collective (_ALL)
Synchronism
blocking
non-blocking (_1..) and split collective (_BEGIN, END)
Atomicity, (realized with a separate APl: MPI_File set atomicity)
atomic
non-atomic

MPI I/O: All Data Access Routines
™ MPT File ... ==

Positioning Synchronization Non-collective Collective
blocki Reat at Read at all
ocking Write at Write at all
- : Iread at Iread at all
Explicit offsets non-blocking e ot Trite b ol

Read at all (begin|end)

split collective Write at all (begin|end)

blocking Read Read all
Write Write all
Individual file non-hlocking Iread Iread all
pointers Iwrite Iwrite all
split collective Read all (begin|end)
Write all (begin|end)
blocking Read shared Read ordered
Write shared Write ordered

Iread shared
Iwrite shared
split collective Read ordered (begin|end)
Write ordered (begin]|end)

Shared file pointers non-blocking

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10 49

int MPI File read at(MPI File fh, MPI Offset ,
void *buf, int count, MPI Datatype datatype,
MPI Status *)

Read data starting at
Read count elements of datatype

Starting offset * units of etype from begin of view
(displacement)

Sequence of basic datatypes of datatype (= signature of
datatype) must match contiguous copies of the etype of the

current view

EOF can be detected by noting that the amount of dataread is less
than count
i.e. EOF is no error

use MPI Get count (& , datatype, &recv_count)
Explicit offset routines do not alter file pointer

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 50

Irz MPI 1/0: Individual File Pointer rr==|

* Each process maintains its own individual file pointer

1: read 1: read
O:|lread O:Jread

file
& & &g & & &
O i o o = i

= Explicit offsets do not affect file pointers
O: read 0:read 0: read_at

file
& & &
o o

(c) 2010-2018 RRZE, LRZ Parallel 1/0O with MPI IO 51

int MPI File read(MPI File fh,

void *buf, int count, MPI Datatype datatype,
MPI Status *status)

Arguments have same meaning as for MPI_File reat at

offset IS individual file pointer of calling process

Individual file pointer is automatically incremented by
fp = fp + count * elements(datatype)/elements (etype)

l.e. it points to the next etype after the last one that will be
accessed (formulais not valid if EOF is reached)

Behaves nearly like standard serial file I/0

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 52

Set offset of individual file pointer fp:
int MPI File seek (MPI File fh,
MPI Offset offset, int whence)

MPI_ SEEK SET set fp to offset
MPI_ SEEK CUR set fp to fp + offset
MPI_ SEEK END set fp to EOF + offset

Get offset of individual file pointer:
int MPI File get position(MPI File fh, MPI Offset *offset)

Get absolute byte position from offset for current view
int MPI File get byte offset(MPI File fh,
MPI Offset offset, MPI Offset *disp)

Retrieve offset and convert it into byte displacement, e.g. for
usage in new view

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 53

int MPI File read shared(MPI File fh,
void *buf, int count, MPI Datatype datatype,
MPI Status *status)

One shared file pointer per MPI_File open

All processes must have the same view

Individual file pointers are not affected

Ordering during serialization is not deterministic

Use ordered (collective call) if determinism is required
Use *shared routines to get/set file pointer

1: read 1: read

o »
» >

file of1 2[3]a /5|6 7|8 of1o]u]3

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 54

Examples & Use Cases

(c) 2010-2018 RRZE, LRZ Parallel /0 with MPI 10

55

Task
read a global matrix from a file
store a subarray into a local array on each process
according to a given distribution scheme
2-dimensional distribution scheme: (BLOCK,BLOCK)
garray on the file 20x30:
Contiguous indices is language dependent:
Fortran: (1,1), (2,1), (3,1), ..., (1,10), (2,10), (3,10), ..., (20,30)
in C/C++:[0][0], [O][1], [O][2], ... , [10][O], [10][1], [10][2], ..., [20][30]

larray =local array in each MPI process
= subarray of the global array

same ordering on file (garray) and in memory (larray)

MPI 1/O Example: _

Global Matrix, Subarray Il

“ Process topology: 2x3 -
= global array on the file: 20x30

= distributed on local arrays in each processor: 10x10

C (contiguous indices on the file and in memory) R

(0,0) -

Fortran

(19,29)

57

(c) 2010-2018 RRZE, LRZ Parallel 1/0O with MPI IO

// error handling omitted for brevity
// distribute garray[20,30] onto the processors [2,3]

double larray[10][10];
MPI Offset disp, offset, disp = 0, offset = 0;

ndims=2;

psizes[0]=2; period[0]=0; I aﬁizf

psizes[1l]=3; period[1l]=0; topology

MPI Cart create (MPI_COMM WORLD, ndims, psizes, period, 1, &comm);

MPI Comm rank (comm, &rank) ;

MPI Cart coords(comm, rank, ndims, coords);)

gsizes[0]=20; 1lsizes[0]=10; starts[0]=coords[0]*1lsizes[O0]; Create

gsizes[1]=30; 1lsizes[1]=10; starts[l]=coords[l]*1lsizes[1l]; - custom

MPI Type create subarray(ndims, gsizes, lsizes, starts, datatype

MPI_ORDER C, MPI_DOUBLE, &stype) ; _

MPI Type commit (&stype)

MPI_File open(comm, file name, MPI_MODE READ, MPI_INFO NULL, &fh); *Open file

MPI File set view(fh, disp, MPI DOUBLE, stype, “native”, MPI_ INFO NULL)\ *Create

MPI_File read at all(fh, offset, view
larray, lsizes[0]*1lsizes[1], MPI_DOUBLE, *read data

&status) ;

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 58

All MPI coordinates and indices start with O,
even in Fortran, i.e. with MPI_ORDER_FORTRAN

MPI indices (here starts) may differ (/) from Fortran indices

Block distribution on 2*3 processes:

rank =

coords = (O,
starts = (0,
garray (6{9,

= larray(0:9,

coords
starts =
garray (

larray (0.9,

rank = 3
coords = (1,
starts = 4£10,
garray (10:19,
= larray(0:9,

coords
starts
garray (10:19,
larray(0:9,

rank = 2

coords = (0, 2)
starts = 0/0 200\
garray (9, 20:29)
larray (0:9)
rank =5

coords = (1, 2)
starts = /(»10 , 20\
garray (10:19, 20:29)
larray(0:9, 0:9)

(c) 2010-2018 RRZE, LRZ

Parallel /0O with MPI 1O

Scenery A:

Solution 1;

Solution 2:

(c) 2010-2018 RRZE, LRZ

Each process has to read the whole file

MPI File read all blocking

collective with individual file pointers, with same view
(displacement+etype+filetype) On all processes

MPI File read all begin nonblocking
collective with individual file pointers, with same view
(displacement+etype+filetype) On all processes,

then computing some other initialization,

MP I_File_read_al 1_end .

Parallel /0O with MPI 1O 60

Scenery B:

Solution:

Scenery C:

Solution;

or.

(c) 2010-2018 RRZE, LRZ

The file contains a list of tasks,
each task requires different compute time

MPI File read shared

non-collective with a shared file pointer
(same view is necessary for shared file pointer)

The file contains a list of tasks,
each task requires the same compute time

MPI File read ordered

collective with a shared file pointer

(same view is necessary for shared file pointer)
MPI File read all

collective with individual file pointers,

different views: filetype With

MPI Type create subarray(.., &filetype)

Parallel /0O with MPI 1O 61

File handles have their own error handler

Default is MPI_ERRORS_RETURN, i.e. non-fatal
message passing: MPI_ERRORS ARE FATAL

Default is associated with MPI_FILE_NULL
message passing: with MPI_COMM WOLRD

Changing the default, e.qg., after MPI_Init
MPI_File set errhandler (MPI_FILE NULL, MPI_ERRORS ARE FATAL) ;
CALL MPI_FILE SET ERRHANDLER (MPI_FILE NULL, MPI_ERRORS ARE FATAL, ierr)

MPI is undefined after first erroneous MPI call,

but a high quality implementation will support I/O error handling
facilities

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 63

Rich functionality provided to support various data representation
and access

MPI /O routines provide flexibility as well as portability
Collective I/O routines can improve I/O performance
Full implementation of MPI I/O available on /in

Intel MPI

Open MPI

MVAPICH

Generally, use of MPI1 I/O is often limited to special file systems;
do not expect it to work on your average NFS-mounted $HOME

If it works at all data loss might occur!

(c) 2010-2018 RRZE, LRZ Parallel 1/0 with MPI IO 64

