
1

Managing HPC Application Software with SPACK@LRZ

Leibniz-Rechenzentrum | 09.06.2021 | Gilbert Brietzke

Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

2Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Motivation: How to manage the dependency-hell?

• A high-level application may just be the „tip of an iceberg“
when considering a feature-rich configuration of the software
with all it‘s dependencies

• Example: OpenSource CFD-Package OpenFOAM

• Spack may install many different variants of the same
package:

• Built with different compilers
• Built with different MPI-implmentations
• Built with different build-options

argtable

eigen

snappy

libzmq

libsodium

icu4c

zlib

fixesproto

flex

libxrender

renderproto libx11

hwloc

libpciaccess

libxml2

cairo

freetype

glibfontconfig pixman

libxcb

libxext

py-pillow

libjpeg-turbo

python

py-mpi4py

intel-mpi

libpng llvm

binutils

ncurses

libedit

swig

ghostscript-fonts

lcms

libtiff

libmng

pango

gobject-introspection

libxft

harfbuzz

libffi

jsoncpp

libxtst

libxi

libice

kbproto

qt

sqlite

xcb-util-wm

openssl

xcb-util-keysymsdouble-conversion xcb-util-renderutil

mesa

xcb-util-image

gtkplus pcre2 libxkbcommon

expat

libbsd

ghostscript

texlive

openfoam

boost

metis kahip

scotch

cgal

paraview

fftw

adios2

vtk

py-six

tar

libiconv

numactl

xproto

libxau

readline

libfabric

gmp bzip2

xkbdatagdk-pixbuf

gettext

libuuid

zstd

dbus

perl

gdbm

meson

ninjapy-setuptools

imagemagick

ffmpeg

yasm alsa-lib

graphite2

netcdf-cxx

netcdf-c

metis-shared metis-static

zfp

xz

libxfixes

py-sip

util-macros

shared-mime-info

mpfr

intel-mkl

hdf5

py-numpy

py-matplotlib

libxt

pcre

py-pycparser

libszip

font-util

libepoxyinputprotorecordproto

xextproto

sz

at-spi2-atk

at-spi2-coreatk

glew

py-kiwisolver

c-blosc

lz4

py-cairocffi

py-cffi

libpthread-stubslibxdmcp

py-pyqt5 py-pyparsing

xcb-utilpy-cycler py-python-dateutil

libsm

e.g.: feature-rich OpenFOAM incl. vtk & paraview

140 dependencies

3Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack is a flexible package manager targeted at HPC-systems

• Spack available at github ‚ready to use‘
few prerequisits only:

• a basic python,
• make and a c/c++-compiler
• tar/gzip/bzip2/xz
• patch + git + curl
• pgp (for gnupg2 commands only)

In principle it may be as simple as:
git clone https://github.com/spack/spack.
. spack/share/spack/setup.env.sh
spack install <package-spec>

• Spack may install many different variants of the same
package:

• Built different package-versions
• Built with different compilers
• Built with different MPI-implementations
• Built with different build-options

• Installation locations are seperated via unique hashes

spack install <package-spec>
e.g.:
spack install hdf5
spack install hdf5%gcc@9.3.0+fortran+hl
spack install hdf5 ^openmpi

-> installations may peacefully coexist

NOTE: doing like this is fine but you are on
your own … needs some experience with
configuring and compiling software in many
circumstances
However - we do support spack in user-space
via a module called user_spack
(with pre-installed and -configured spack)

https://github.com/spack/spack

4Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack is one of the many package-managers

• Functional Cross-Platform Package Managers:
e.g Nix (NixOs), Gnu Guix (Gnu Guix Linux) … use hashes in install-dirs

• Build-from-source Package Managers
e.g. HomeBrew/LinuxBrew

• Package Managers for specific scripting languages
e.g. Pip (Python), NPM (Javascript)

• Easy Build:
installation framework for managing scientific software on HPC-systems: less flexible
for experimental build-combinations

• Conda:
popluar binary package managers for Python and R (but also for other rpm–like
packaging in user-space). Easy to use.
In general no architecture optimized binaries, not targeted at HPC

5Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Containers

• Containers provide a great way to reproduce and distribute an already-built software stack

• In cloud Machines this may be a good choice

• But: who builds the container for your project on a specific HPC-machine?
• What about MPI?
• What about well performing parallel-IO

• ! For sofisticated scientific projects on specific HPC-machines this often isn‘t a trivial task!

• `spack containerize` -command may help you with building containers using spack

• This short-talk is not on container. But just to mention:
We do support Containers at LRZ (at present mostly by Charliecloud-containers)

6Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

From manual single package installations to automated stack builds

In the past at LRZ …

• Software stack on LRZ HPC-systems used to be
provided via the module system in a non-
orchestrated way with hand-written TCL-files
to make installations available:
applications/libraries/tools /compilers

Limitations:
• Non-transparent or oblique conflicts

and/or dependencies of packages
• Non-transparent package-configs

and build-variants
• Builds often not reproducible

(documentation issue)

Since recently at LRZ …

• Spack compiled software provided for many open-source
packages

Advantages:
• Spack Builds are self-documenting:

-> Package-builds are typically reproducible

• Spack-compiler wrappers inject compiler-flags for the
target-architecture -> optimized software stack

• Installation of many package-variants do not disturb
each other -> many packages may peacefully coexist

• Installation (fetch/configure/build/install/module-
create) of the software is automized

7Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

1. We do privide compiled software with support via environment–modules (the classical way ~>300 modules)

2. NEW + Experimental (work in progress):
module load user_spack
We provide compiled software via spack-chaining

• For experienced users:
• may use spack via `module load user_spack` that

provides a preconfigured spack
• making use of already installed packages via spack

chaining of upstream-location (lrzs/sys/spack/x/y)

-> avoids recompiling low level packages in many situations
-> has working defaults configurated for some essential
dependencies (e.g. MPI)

• Simple Example 1 – install (missing) package libvdwxc:

8Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 2: create your own new package inside your
own repository.

e.g. libgeotiff
Recently moved to github, version that comes built-in-
spack is too old for your purpose

Add the missing stuff: here at least the
dependencies need to be specified

9Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 2: create your own new package inside your
own repository.

E.g. libgeotiff
Recently moved to github, version that comes built in
spack is too old for your purpose

Add the missing stuff: here at least the
dependencies need to be specified

10Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 2: create your own new package inside your
own repository.

E.g. libgeotiff
Recently moved to github, version that comes built in
spack is too old for your purpose

Depending on the complexity the package
Implementing package.py
• may be very easy
• may become more difficult
But in many cases it is doable

11Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack: a few words on dynamic linking

Priority-ordering of dynamic linking:
1. LD_PRELOAD
2. RPATH
3. LD_LIBRARY_PATH
4. RUNPATH

Spack uses RPATH as default:

• pathes where to find libraries are coded into
the executables & libraries

• executables and libraries are functional
without setting up einvironment:

• -> the binaries know where to look for
their dependency-libraries

installed libgeotiff as example here:

12Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack in user-space:
chaining existing installation into your own spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 3:

Install existing installation in a different variant:
here -- with debug-option: +debug

Spack-generated environment modules at LRZ
provide a variable <package>_SPEC that holds
location of the input/concretized spack-spec
dumped in a yaml-file: spec.yaml

One may use this to see details of the installation
behind the module: via the spack spec -command

13Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack in user-space:
chaining existing installation into your own spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 3 from previous slide continued

14Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack self documenting artifacts

• `archived-files`contains log of configure-phase (if avail)
• `repos` contains all procedures (package.py‘s) used for installation

(package + all deps)
• `spack-build-env.txt` -- dump of environment during installation
• `spack-build-out.txt` -- dump of output-stream from installation
• `spack-configure-args` -- dump of configure arguments
• `spec.yaml` -- dictionary with input and concretized spack-specs

`.spack` directory in all installation-paths:
-> usefull information from installation process is available

Lets inspect this for our own hdf5 installation :

15Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack commands (subset) that may be usefull for your work

query packages:
list list and search available packages
info get detailed information on a

particular package
find list and search installed packages

build packages:
install build and install packages
uninstall remove installed packages
dev-build developer build: build from code

in current working directory
spec show what would be installed,

given a spec

container:
containerize creates recipes to build images

for different container runtimes
environments:
env manage virtual environments

create packages:
create create a new package file
edit open package files in $EDITOR

system:
compilers list available compilers

user environment:
load add package to the user

environment
module manipulate module files
unload remove package from the user

environment
configuration:
config get and set configuration options
repo manage package source repositories

16Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Automated stack builds with Spack: Improving our documentation

Work in Progress:

• evaluating auto-generated
documentation for a basic or
an advanced view

Basic

… with basic info on what‘s
installed

• Package info
• installed versions
• url to homepage

17Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Automated stack builds with Spack: Improving Transparency

Work in Progress:

• evaluating auto-generated
documentation for a basic or
an advanced view

• Advanced:

… with details on installations:
• installed package
• dependencies
• package configuration
• reference to external

docs
• reference to source origin

18Managing HPC Application Software with SPACK@LRZ | 09.06.2021 | Gilbert Brietzke

Spack is open-source with many community contributions

• Spack has excellent documentation:
https://spack.readthedocs.io/en/v0.15.4/

• Spack community gives strong support via slack
https://slack.spack.io/

• Spack repository is hosted on github:
https://github.com/spack/spack

• Spack is under heavy development
• spack-developers
• application-developers
• domain-scientists
• HPC-support-staff
• hardware-vendors

• Consider yourself becoming part of the community:
• Contributing and benefitting from

• LRZ Documentation on spack in user-space (updates pending)
https://doku.lrz.de/display/PUBLIC/Building+software+in+user+space+with+spack

https://spack.readthedocs.io/en/v0.15.4/
https://slack.spack.io/
https://github.com/spack/spack
https://doku.lrz.de/display/PUBLIC/Building+software+in+user+space+with+spack

	Foliennummer 1
	Motivation: How to manage the dependency-hell?
	Spack is a flexible package manager targeted at HPC-systems
	Spack is one of the many package-managers
	Containers
	From manual single package installations to automated stack builds
	Spack in user-space: �chaining existing installations into your own Spack environment
	Spack in user-space: �chaining existing installations into your own Spack environment
	Spack in user-space: �chaining existing installations into your own Spack environment
	Spack in user-space: �chaining existing installations into your own Spack environment
	Spack: a few words on dynamic linking
	Spack in user-space: �chaining existing installation into your own spack environment
	Spack in user-space: �chaining existing installation into your own spack environment
	Spack self documenting artifacts
	Spack commands (subset) that may be usefull for your work
	Automated stack builds with Spack: Improving our documentation
	Automated stack builds with Spack: Improving Transparency
	Spack is open-source with many community contributions

