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WHAT CAN WE DO TO IMPROVE THE
OPTIMIZATION PROCESS?

Manipulate the learning rate?
Add noise to the gradient?
Manipulate the batch size?

Change the learning algorithm?
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WHAT CAN WE DO ABOUT IT?

“Theory suggests that when multiplying the batch size by k, one
should multiply the learning rate by /(k) to keep the variance in the

gradient expectation constant. 2 N ?
cov (Aw, Aw) %% (% Z gngl) — 1] XV M

n=1

Theory aside, for the batch sizes considered in this note, the heuristic
that | found to work the best was to multiply the learning rate by k
when multiplying the batch size by k. | can’t explain this discrepancy
between theory and practice.”

In practice linear scaling is still frequently used.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. >


https://arxiv.org/abs/1404.5997

WHAT CAN WE DO ABOUT IT?

A lot of networks will diverge early in the learning process

Warmup strategies address this challenge

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase of the learning
rate, allowing healthy convergence at the start of training.
In practice, with a large minibatch of size kn, we start from
a learning rate of 77 and increment it by a constant amount at
each iteration such that it reaches 1) = kn after 5 epochs (re-
sults are robust to the exact duration of warmup). After the
warmup, we go back to the original learning rate schedule.

Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, Large > R
Minibatch SGD: Training ImageNet in 1 Hour.


https://arxiv.org/abs/1706.02677

WHAT CAN WE DO ABOUT IT?

Batch normalization improves the learning TP ,

process by minimizing drift in the T

distribution of inputs to a layer 08|l [ ymeen] N
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It allows higher learning rates and reduces (a) (b) Without BN (c) With BN

the need to use dropout
Figure 1: (a) The test accuracy of the MNIST network

The idea is to normalize the inputs to all trained with and without Batch Normalization, vs. the
layers in every batch (this is more number of training steps. Baich Normalization helps the

sophisticated than simpl normalizing the network train faster and achieve higher accuracy. (b,
P Pty c) The evolution of input distributions to a typical sig-

input dataset) . . .
P moid, over the course of training, shown as {15, 50, 85 }th
percentiles. Batch Normalization makes the distribution
more stable and reduces the internal covariate shift.

loffe and Szegedy (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.
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https://arxiv.org/abs/1502.03167

WHAT CAN WE DO ABOUT IT?

The original batch normalization paper suggests using the statistics for the entire
batch, but what should that mean when we have multiple GPUs?

We can introduce additional noise by calculating smaller batch statistics (“ghost
batches”).

Batch normalization is thus carried out in isolation on a per-GPU basis.

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch
training of neural networks.
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https://arxiv.org/abs/1705.08741

WHAT CAN WE DO ABOUT IT?

Keeps the covariance constant with changing batch size (as o2 o« M)
Does not change the mean

Furthermore, we can match both the first and second order statistics by adding multiplicative noise to
the gradient estimate as follows:
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where z,, ~ N (1, 02) are independent random Gaussian variables for which ¢ oc M. This can
be verified by using similar calculation as in appendix section A. This method keeps the covariance
constant when we change the batch size, yet does not change the mean steps E [Aw].

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch > R
training of neural networks.


https://arxiv.org/abs/1705.08741

WHAT CAN WE DO ABOUT IT?

Longer training with larger learning rate
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(b) Validation error - zoomed

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch
training of neural networks. arXiv:1705.08741
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https://arxiv.org/abs/1705.08741

WHAT CAN WE DO ABOUT IT?

Increasing the batch size, instead of learning rate decay
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Smith, S. L., Kindermans, P. J., & Le, Q. V. (2017). Don't Decay the Learning Rate, Increase the Batch Size. arXiv:1711.00489 N



https://arxiv.org/abs/1711.00489

WHAT CAN WE DO ABOUT IT?

LARS: Layer-wise Adaptive Rate Scaling

AlexNet-BN with LARS, Layer 1: Convolutional, Weight
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(a) Local LR, convl-weights

AlexNet-BN with LARS, Layer 5: Convolutional, Weight
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(d) Local LR, conv5-bias

Figure 2: LARS: local LR for different layers and batch sizes
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You, Y., Gitman, |., & Ginsburg, B. Large batch training of convolutional networks. arXiv:1708.03888
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https://arxiv.org/abs/1708.03888

WHAT CAN WE DO ABOUT IT?

Control magnitude of the layer k update through local learning rate 4,:
Awi(t+1) = A * G, (w(t))
where:
G, (w(t)): stochastic gradient of L with respect to wy,

A local learning rate for layer k, defined as

o wk®ll2
A =My, 0 fg o,
where
n is trust coefficient (how much we trust stochastic gradient)

y is global learning rate policy (steps, exponential decay, ...)
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You, Y., Gitman, I., & Ginsburg, B. Large batch training of convolutional networks.


https://arxiv.org/abs/1708.03888

WHAT CAN WE DO ABOUT IT?

: Layer-wise learning rates with clipping; SGD with momentum is base optimizer

: Layer-wise learning rates; as base optimizer

More successful than LARC at language models like BERT

: Moving averages calculated on a per-layer basis

Also useful in several different domains
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https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py
https://arxiv.org/abs/1904.00962
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1905.11286
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