DEEP
@z LEARNING
NVIDIA. INSTITUTE

Accelerating
Applications with
CUDA C/C++

GPU-accelerated vs. CPU-only Applications

CUDA Kernel Execution

TOPICS

Parallel Memory Access

Appendix: Glossary

GPU-accelerated vs. CPU-only Applications

DATA

HiENNE .

In CPU-only applications data is
allocated on CPU

initialize()

LEARNING
IN

...and all work is performed on CPU

DATA
N e s) Yy Ay O oy O

initialize() performWork ()

LEARNING
IIIII

...and all work is performed on CPU

DATA
o000 80 B 0 B 0 0O 0 0 o0oooooao

LEARNING
TTTTTTTTT

In accelerated applications data is
allocated with
cudaMallocManaged ()

DAT A -
NO0000000

LEARNING
IN

... where it can be accessed and
worked on by the CPU

DAT A -
NO0000000

initialize()

LEARNING
IN

... and automatically migrated to the
DD GPU where parallel work can be done

DAT A - - - o e m e e e e
HiENNE .

performWork ()

initialize()

DEEP
LEARNING
NVIDIA INSTITUTE

Work on the GPU is asynchronous,
DD and CPU can work at the same time

DAT A - - - o e m e e e e
HiENNE .

performWork ()

DEEP
LEARNING
NVIDIA INSTITUTE

DATA

HiENNE .

to complete, with

CPU code can sync with the
asynchronous GPU work, waiting for it

cudaDeviceSynchronize ()

performWork ()

9ZIuoJyouAs

DEEP
LEARNING

NVIDIA INSTITUTE

... data accesses by the CPU will
D D automatically be migrated

DAT A - - o m e e
NN N EE O00O00000OO

performWork ()

verifyWork ()

9ZIuoJyouAs

DEEP
LEARNING
IN

CUDA Kernel Execution

performWork ()

DEEP
LEARNING
NVIDIA INSTITUTE

GPU

GPUs do work in parallel

performWork<<<2, 4>>>()

DEEP
<A DERRuing
nVIDIA INSTITUTE

GPU work is done in a thread

performWork<<<2, 4>>>()

B IIII IIII

> DEEP
<A DERRuing
nVIDIA INSTITUTE

Many threads run in parallel

performWork<<<2, 4>>>()

B IIII IIII

= DEEP
Qg LEARNING
NVIDIA. INSTITUTE

A collection of threads is a block

performWork<<<2, 4>>>()

- IIII IIII

- DEEP
<A DERRuing
nVIDIA INSTITUTE

GPU

There are many blocks

performWork<<<2, 4>>>()

5 DEEP
<A DERRuing
nVIDIA INSTITUTE

A collection of blocks is a grid

performWork<<<2, 4>>>()

- IIII IIII

S DEEP
<:a LEARNING
NVIDIA. INSTITUTE

GPU functions are called kernels

<<<2, 4>>>()

B II II

DEEP
<A DERRuing
nVIDIA INSTITUTE

Kernels are launched with an
execution configuration

performWork ()

B IIII IIII

DEEP
<A DERRuing
nVIDIA INSTITUTE

The execution configuration defines
the number of blocks in the grid

performWork<<<2, 4>>>()

- IIII IIII

- DEEP
<A DERRuing
nVIDIA INSTITUTE

... as well as the number of threads in
each block

performWork<<<2, 4>>>()

B IIII IIII

5 DEEP
<A DERRuing
nVIDIA INSTITUTE

Every block in the grid contains the
same number of threads

performWork<<<2, 4>>>()

- IIII IIII

5 DEEP
<A DERRuing
nVIDIA INSTITUTE

CUDA-Provided Thread Hierarchy Variables

Inside kernels definitions, CUDA-
provided variables describe its
executing thread, block, and grid

performWork<<<2, 4>>>()

- IIII IIII

DEEP
N LEARNING
NVIDIA. INSTITUTE

gridDim. x is the number of blocks in
the grid, in this case 2

performWork<<<2, 4>>>()

- IIII IIII

- DEEP
<A DERRuing
nVIDIA INSTITUTE

blockIdx.x is the index of the

current block within the grid, in this
case 0

performWork<<<2, 4>>>()

B IIII IIII

NVIDIA. INSTITUTE

blockIdx.x is the index of the

current block within the grid, in this
case 1

performWork<<<2, 4>>>()

B IIII IIII

NVIDIA. INSTITUTE

Inside a kernel blockDim. x describes

the number of threads in a block. In
this case 4

performWork<<<2, 4>>>()

h IIII IIII

3 DEEP
<A DERRuing
nVIDIA INSTITUTE

All blocks in a grid contain the same
number of threads

performWork<<<2, 4>>>()

B IIII IIII

DEEP
<A DERRuing
nVIDIA INSTITUTE

GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 0

performWork<<<2, 4>>>()

DEEP
N LEARNING
NVIDIA. INSTITUTE

GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 1

performWork<<<2, 4>>>()

DEEP
N LEARNING
NVIDIA. INSTITUTE

GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 2

performWork<<<2, 4>>>()

DEEP
N LEARNING
NVIDIA. INSTITUTE

GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 3

performWork<<<2, 4>>>()

DEEP
N LEARNING
NVIDIA. INSTITUTE

GPU

Inside a kernel threadIdx.x

a block. In this case 0

describes the index of the thread within

performWork<<<2, 4>>>()

NVIDIA

DEEP
LEARNING
INSTITUTE

GPU

Inside a kernel threadIdx.x

a block. In this case 1

describes the index of the thread within

performWork<<<2, 4>>>()

NVIDIA

DEEP
LEARNING
INSTITUTE

GPU

Inside a kernel threadIdx.x

a block. In this case 2

describes the index of the thread within

performWork<<<2, 4>>>()

NVIDIA

DEEP
LEARNING
INSTITUTE

GPU

Inside a kernel threadIdx.x

a block. In this case 3

describes the index of the thread within

performWork<<<2, 4>>>()

NVIDIA

DEEP
LEARNING
INSTITUTE

Coordinating Parallel Threads

L0

L0
N

DATA

performWork ()

LEARNING
TTTTTTTTT

Assume data is in a O indexed vector

GPU

DATA

performWork<<<2, 4>>>()

- IIII IIII

0 4 Assume data is in a O indexed vector

GPU 1 5
DATA
2 6
3 7

performWork<<<2, 4>>>()

- IIII IIII

0 4 Somehow, each thread must be
} mapped to work on an element in the

vector
GPU 1 5
DATA
. 2 6
L3 7

GPU

NVIDIA. INSTITUTE

0 4 Recall that each thread has access to

the size of its block via blockDim. x
DATA ik
2 6
3 7

performWork<<<2, 4>>>()

- IIII IIII

NVIDIA. INSTITUTE

0 4 ...and the index of its block within the
grid via blockIdx.x

GPU 1 5
DATA
2 6
3 7

performWork<<<2, 4>>>()

GPU

DEEP
N LEARNING
NVIDIA. INSTITUTE

0 4 ...and its own index within its block via

threadIdx.x
GPU 1 5
DATA
2 6
3 7

performWork<<<2, 4>>>()

0] 1

GPU

DEEP
N LEARNING
NVIDIA. INSTITUTE

0 4 Using these variables, the formula
threadIdx.x + blockIdx.x *
blockDim. x will map each thread to
GPU 1 5 one element in the vector

DATA

performWork<<<2, 4>>>()

0] 1

GPU

DEEP
N LEARNING
NVIDIA. INSTITUTE

JRERPAR boadiex-x |+ blockiax.x |« | blockbin.x
0) 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

% DEEP
< LEARNING
nviDIA INSTITUTE

2 6 0

IE ot in s~
0o 0o 4
GPU 1 5
BATA

perfgrmWork<<<2, 4>>>()

0]

GPU

1
1
— —

——

S DEEP
<:a LEARNING
NVIDIA. INSTITUTE

NERPAR boadiax-x |+ blockiax.x |« | blockbim.x
1 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

0 4 e e blockIdx.x H
1 0 4

GPU 1 5

DATA
2 6 1
3 7

performwgrk<<<2, 4>>>()

0]

GPU

1
1
— —

——

S DEEP
<:a LEARNING
NVIDIA. INSTITUTE

NERPAR boadiax-x |+ blockiax.x |« | blockbim.x
2 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

IR ¢hreadlax.x |+ blockldx.x | «|blockbim.x |
2 0 4
GPU 1 5
DATA
. 2 6 2
3 7

performWork<<<k2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

NERPAR boadiax-x |+ blockiax.x |« | blockbim.x
3 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

VSRR chzeadidz.x || blookiax.x |« blocknim.x |
3 0 4

GPU 1 5
DATA

2 6 3

L3 7

0
GPU OF 182083 ofN1B203
4 /

IIIIIIIIIIIIIII

(NERAR ch-eodidx-x |+| blockidx.x |« | blockbin.x
0o 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

o 4 [Eorri|H|CeTn|HEET G|
0 1 4

GPU 1 5
DATA

2 6 4

3 7

0
GPU ON18283 oF18203
4 /

IIIIIIIIIIIIIII

(NERVAR chreodidx-x |+| blockidx.x |« | blockDin.x
1 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

VIR threadlax.x |+ blockldx.x | «|blockbim.x |
1 1 4
GPU 1 5 1
DATA
2 6 5
3 7

performWork<<<2, 4>>>()

0 1

GPU

(NERVAR chreodidx-x |+| blockidx.x |« | blockDin.x
2 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

D DEEP
<:a LEARNING
NVIDIA. INSTITUTE

0 4 |Eees ofbledatofHeanle |
2 1 4
GPU 1 5
DATA dataIndex
2 6
3 7

performwWork<<<2, 4>>>()

0]

GPU

S DEEP
<A DERRuing
nVIDIA INSTITUTE

JURAR chreadiéx.x |+ blockidx.x |« [blockDin.x
3 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU

S DEEP
<A DERRuing
nVIDIA INSTITUTE

0 4 e e blockIdx.x H
3 1 4

GPU 1 5
DATA
2 6 7

3 7\

performwWork<<<2, 4>>>()

0]

GPU

5 DEEP
<A DERRuing
nVIDIA INSTITUTE

Grid Size Work Amount Mismatch

0 4 In previous scenarios, the number of
f threads in the grid matched the
number of elements exactly

GPU 1 5
DATA
. 2 6
L3 7
0
GPU B BN WA K o120 3
/ /

NVIDIA. INSTITUTE

GPU

DATA

What if there are more threads than
work to be done?

GPU

performWork<<<2,

0]

4>>> ()

1

NVIDIA

DEEP
LEARNING
INSTITUTE

Attempting to access non-existent
elements can result in a runtime error

GPU 1

DATA

X X X |

performWork<<<2, 4>>>()

0] 1

GPU

5 DEEP
<A DERRuing
nVIDIA INSTITUTE

0 4 Code must check that the dataIndex
calculated by threadidx.x +
blockIdx.x * blockDim.x is less
GPU 1 X than N, the number of data elements.

DATA

performWork<<<2, 4>>>()

GPU

NVIDIA. INSTITUTE

04 T D
0o 1 4
GPU 1
DATA I A
4 5 2

performWork<<<2, 4>>>()

0] 1

GPU

» DEEP
< LEARNING
NVIDIA INSTITUTE

0 4 e e blockIdx.x H
0 1 4

GPU 1

BATA N

2 true

GPU of1M203 of1§203

IIIIIIIIIIIIIII

0 4 sk || ioorvie <
1 1 4
GPU 1
DATA caroder [t L] e on
5 5 ?

performWork<<<2, 4>>>()

0] 1

GPU

» DEEP
< LEARNING
NVIDIA INSTITUTE

0 4 e e blockIdx.x H
1 1 4

GPU 1

BATA N

2 false

performWork<<<2, 4>>>()

0] 1

GPU

» DEEP
< LEARNING
NVIDIA INSTITUTE

0 4 sk || ioorvie <
2 1 4
GPU 1
DATA caroaer [t L] e on
6 5 ?

performWork<<<2, 4>>>()

0] 1

GPU

» DEEP
< LEARNING
NVIDIA INSTITUTE

0 4 e e blockIdx.x H
2 1 4

GPU 1

BATA N

2 false

performWork<<<2, 4>>>()

0] 1

GPU

S DEEP
<:a LEARNING
NVIDIA. INSTITUTE

0 4 sk || ioorvie <
2 1 4
GPU 1
DATA caroaer [t L] e on
6 5 ?

performWork<<<2, 4>>>()

0] 1

GPU

» DEEP
< LEARNING
NVIDIA INSTITUTE

0 4 e e blockIdx.x H
2 1 4

GPU 1

BATA N

2 false

performWork<<<2, 4>>>()

0] 1

GPU

S DEEP
<:a LEARNING
NVIDIA. INSTITUTE

Grid-Stride Loops

(0] 4 8 12 16 20 24 28 Often there are more data
elements than there are
threads in the grid
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 |14 18 | 22 | 26 | 30
3 7 11 |15 | 19 | 23 | 27 | 31
performWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

0 . 4 8 12 16 20 24 28 In such scenarios threads
cannot work on only one
element
GPU 1 5 Kk 13 || 17 || 21 25 || 29
DATA AN \\\
1 14 1 22 2 30
2 H 6 \\0 §§ 8 6
ANA
3 11 19 | | 23 27 || 31
%\ \\
™\ ~\
GPU OF18203 oN1f2

NVIDIA. INSTITUTE

0 4 or else work is left
undone
s HHEEEE
DATA
2« [HHEEES
- HEEEEE

performWork<<<2, 4>>>()

- |HH Iii

One way to address this

0 4 8 12 | 16 | 20 | 24 | 28
programmatically is with a
grid-stride loop
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 |14 18 | 22 | 26 | 30
3 7 11 |15 | 19 | 23 | 27 | 31
performWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

0. 4 8 12 16 20 24 28 In a grid-stride loop, the
thread’s first element is
calculated as usual, with
GPU 1 5 9 13 || 17 21 25 | | 29 threadIdx.x +
DATA blockIdx.x *
blockDim.x
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
perifformWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

GPU

DATA

The thread then strides
forward by the number of
threads in the grid
(blockDim.x *

gridDim.x), in this case
8

GPU

perflormWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

(0] 4 8 12 4 16 20 24 28 It continues in this way until
/ its data index is greater than
/ the number of data
GPU 1 5 9 3 17 21 25 | | 29 elements
DATA y
2 6 1?/ 14 || 18 | 22 26 || 30
//
3 7)11 15 19 | 23 27 || 31
/
/
perfofrmWork<<<2, 4>>>()

g e
2 LEARNING
nVIDIA. INSTITUTE

(0] 4 8 12 16 20 24 28 It continues in this way until
/4 its data index is greater than
// the number of data
GPU 1 5 9 13 | 17 /21 | 25 || 29 elements
DATA /!
/
/
2 6 10 14// 18 | 22 26 || 30
/
//
3 7 1y 15 || 19 | 23 || 27 || 31
/

performiWork<<<2, 4>>>()

- IHH Iii

g e
2 LEARNING
nVIDIA. INSTITUTE

With all threads working in

o 4 8 12 | 16 | 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

0. 4 8 12 16 20 24 28 With all threads working in
this way, all elements are
covered
GPU 1 5 Kk 13 || 17 || 21 25 || 29
DATA \\\\\
14 22
2 .| 6 \\10 \ 18 26 | 30
AR Y
3 11 19 || 23 27 || 31
%\ \\
N\ ~~\
GPU of18203 oN1f§2

NVIDIA. INSTITUTE

With all threads working in

0o 4 8 12 | 16 | 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

With all threads working in

0] 4 .8 |12, 16 | 20 | 24 | 28 |
\ this way, all elements are
/ covered

GPU 1 5/‘} 9 13 Qu 21 | 25 | 29
DATA /

2 ¢ 10 14 Hks 22 26 30

f A
/ |
3 /7 l 11/4 15 9\ | 23 | 27 | 31
| \ B

GPU 152 3 oOR1lp2

With all threads working in

0o 4 8 12 | 16 || 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 |17 21 | 25 29
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA. INSTITUTE

0 8 12 4 16 | . 20 24 28 With all threads working in
/ f this way, all elements are
- covered
GPU 1 9 3 4 17 21? 25 || 29
DATA /
2 1?/ }4 4 18 | 22 1 26 | 30
/ / //
3 / 1y }/{ 19 2 27 | 31
/ /
GPU 203 oR1p2

IIIIIIIIIIIIIII

With all threads working in

0o 4 8 12 | 16 | 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 |17 21 | 25 29
2 6 10 || 14 18 @ 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()

DEEP
) LEARNING
NVIDIA. INSTITUTE

0 4 8 12 16 20 |, 24 28 With all threads working in
/ this way, all elements are
// covered
GPU 1 5 9 13 17 /21 2 29
DATA A4
// //
2 6 10 | 14 18 22 26 . 30
AN AL,
/ / / /
4 / L/
3 17 11/1’19/2,27/.31
y A4 yd A [

GPU oN18283 off18283

With all threads working in

0 4 8 12 | 16 20 24 | 28
this way, all elements are
covered
GPU 1 5 9 13 |17 21 | 25 @ 29
2 6 10 14 | 18 @ 22 26 30
3 7 11 15 || 19 23 27 31
performWork<<<2, 4>>>()

DEEP
) LEARNING
NVIDIA. INSTITUTE

RN O A
RN O A
RN O A
N

CUDA runs as many blocks
in parallel at once as the
GPU hardware supports, for
massive parallelization

L]
L]
L]
HEnn

DEEP
NNNNNNNN
TTTTTTTTT

N
N
RO
N O

L0

LIEILT

LIL

LB
LI

NN

O | I

LI

N O
U0

| I

N

LIEL

LI EE
| LILIEIE]

LU

O

L]
L]
W/

L0

DEEP
NNNNNNNN
TTTTTTTTT

N
N
N
N 0

[LLLJOLETR CERTAEECTR EEnryEnee epnrpErperenEnr rn

DEEP
S e

NVIDIA. INSTITUTE

00
00
00
i

LOEEE]
OEEE]
LOEEE]
HEEE

OO0 OEm

|
|
B

I [
I [
I [
a0

0\ | I T

|

EREnEn
REEEEE

DEEP
NNNNNNNN
TTTTTTTTT

N o
N o
N o
N e v

[LLLJOLETR CERTAEECTR EEnryEnee epnrpErperenEnr rn

DEEP
S e

NVIDIA. INSTITUTE

N o o
N o o
N o o
e o

[LLLJOLETR CERTAEECTR EEnryEnee epnrpErperenEnr rn

DEEP
S e

NVIDIA. INSTITUTE

Glossary

LA e okl WL R S

- i « —“' - !it = e I - "3
P R & ""**l" s .

B e s SR

Glossary

cudaMallocManaged () : CUDA function to allocate memory accessible by both the CPU and GPUs. Memory
allocated this way is called unified memory and is automatically migrated between the CPU and GPUs as needed.
cudaDeviceSynchronize () : CUDA function that will cause the CPU to wait until the GPU is finished working.
Kernel: A CUDA function executed on a GPU.

Thread: The unit of execution for CUDA kernels.

Block: A collection of threads.

Grid: A collection of blocks.

Execution context: Special arguments given to CUDA kernels when launched using the <<<..>>> syntax. It defines
the number of blocks in the grid, as well as the number of threads in each block.

gridpim.x: CUDA variable available inside executing kernel that gives the number of blocks in the grid
blockDim.x: CUDA variable available inside executing kernel that gives the number of threads in the thread’s
block

blockIdx.x: CUDA variable available inside executing kernel that gives the index the thread’s block within the
grid

threadIdx.x: CUDA variable available inside executing kernel that gives the index the thread within the block
threadIdx.x + blockIdx.x * blockDim.x: Common CUDA technique to map a thread to a data element
Grid-stride loop: A technique for assigning a thread more than one data element to work on when there are more
elements than the number of threads in the grid. The stride is calculated by gridDim.x * blockDim.x, which is
the number of threads in the grid.

DEEP
LEARNING
NVIDIA INSTITUTE

DEEP
@z LEARNING
NVIDIA. INSTITUTE

www.nvidia.com/dli

