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GPU-accelerated vs. CPU-only Applications




DATA

HiENNE .

In CPU-only applications data is
allocated on CPU

initialize()
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...and all work is performed on CPU

DATA
N e s ) Yy Ay O oy O

initialize() performWork ()
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...and all work is performed on CPU

DATA
o000 80 B 0 B 0 0O 0 0 o0oooooao
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In accelerated applications data is
allocated with
cudaMallocManaged ()

DAT A -
NO0000000
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... where it can be accessed and
worked on by the CPU

DAT A -
NO0000000

initialize()

LEARNING
IN



... and automatically migrated to the
DD GPU where parallel work can be done

DAT A - - - o e m e e e e
HiENNE .

performWork ()

initialize()
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Work on the GPU is asynchronous,
DD and CPU can work at the same time

DAT A - - - o e m e e e e
HiENNE .

performWork ()
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DATA

HiENNE .

to complete, with

CPU code can sync with the
asynchronous GPU work, waiting for it

cudaDeviceSynchronize ()

performWork ()
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... data accesses by the CPU will
D D automatically be migrated

DAT A - - o m e e
NN N EE O00O00000OO

performWork ()

verifyWork ()

9ZIuoJyouAs

DEEP
LEARNING
IN



CUDA Kernel Execution




performWork ()
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GPU

GPUs do work in parallel

performWork<<<2, 4>>>()
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GPU work is done in a thread

performWork<<<2, 4>>>()
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Many threads run in parallel

performWork<<<2, 4>>>()

B IIII IIII
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A collection of threads is a block

performWork<<<2, 4>>>()
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GPU

There are many blocks

performWork<<<2, 4>>>()
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A collection of blocks is a grid

performWork<<<2, 4>>>()
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GPU functions are called kernels

<<<2, 4>>>()

B II II
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Kernels are launched with an
execution configuration

performWork ()
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The execution configuration defines
the number of blocks in the grid

performWork<<<2, 4>>>()
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... as well as the number of threads in
each block

performWork<<<2, 4>>>()
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Every block in the grid contains the
same number of threads

performWork<<<2, 4>>>()
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CUDA-Provided Thread Hierarchy Variables




Inside kernels definitions, CUDA-
provided variables describe its
executing thread, block, and grid

performWork<<<2, 4>>>()
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gridDim. x is the number of blocks in
the grid, in this case 2

performWork<<<2, 4>>>()
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blockIdx.x is the index of the

current block within the grid, in this
case 0

performWork<<<2, 4>>>()
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blockIdx.x is the index of the

current block within the grid, in this
case 1

performWork<<<2, 4>>>()

B IIII IIII
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Inside a kernel blockDim. x describes

the number of threads in a block. In
this case 4

performWork<<<2, 4>>>()

h IIII IIII
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All blocks in a grid contain the same
number of threads

performWork<<<2, 4>>>()

B IIII IIII
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GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 0

performWork<<<2, 4>>>()
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GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 1

performWork<<<2, 4>>>()
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GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 2

performWork<<<2, 4>>>()
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GPU

Inside a kernel threadlIdx.x
describes the index of the thread within

a block. In this case 3

performWork<<<2, 4>>>()
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GPU

Inside a kernel threadIdx.x

a block. In this case 0

describes the index of the thread within

performWork<<<2, 4>>>()
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GPU

Inside a kernel threadIdx.x

a block. In this case 1

describes the index of the thread within

performWork<<<2, 4>>>()

NVIDIA

DEEP
LEARNING
INSTITUTE



GPU

Inside a kernel threadIdx.x

a block. In this case 2

describes the index of the thread within

performWork<<<2, 4>>>()
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GPU

Inside a kernel threadIdx.x

a block. In this case 3

describes the index of the thread within

performWork<<<2, 4>>>()
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Coordinating Parallel Threads




L0

L0
N

DATA

performWork ()
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Assume data is in a O indexed vector

GPU

DATA

performWork<<<2, 4>>>()
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0 4 Assume data is in a O indexed vector

GPU 1 5
DATA
2 6
3 7

performWork<<<2, 4>>>()

- IIII IIII




0 4 Somehow, each thread must be
} mapped to work on an element in the

vector
GPU 1 5
DATA
. 2 6
L3 7

GPU
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0 4 Recall that each thread has access to

the size of its block via blockDim. x
DATA ik
2 6
3 7

performWork<<<2, 4>>>()
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0 4 ...and the index of its block within the
grid via blockIdx.x

GPU 1 5
DATA
2 6
3 7

performWork<<<2, 4>>>()

GPU
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0 4 ...and its own index within its block via

threadIdx.x
GPU 1 5
DATA
2 6
3 7

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 Using these variables, the formula
threadIdx.x + blockIdx.x *
blockDim. x will map each thread to
GPU 1 5 one element in the vector

DATA

performWork<<<2, 4>>>()

0] 1

GPU
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JRERPAR boadiex-x |+ blockiax.x |« | blockbin.x
0) 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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2 6 0

IE ot in s~
0o 0o 4
GPU 1 5
BATA

perfgrmWork<<<2, 4>>>()

0]

GPU

1
1
— —

——
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NERPAR boadiax-x |+ blockiax.x |« | blockbim.x
1 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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0 4 e e blockIdx.x H
1 0 4

GPU 1 5

DATA
2 6 1
3 7

performwgrk<<<2, 4>>>()

0]

GPU

1
1
— —

——
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NERPAR boadiax-x |+ blockiax.x |« | blockbim.x
2 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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IR ¢hreadlax.x |+ blockldx.x | «|blockbim.x |
2 0 4
GPU 1 5
DATA
. 2 6 2
3 7

performWork<<<k2, 4>>>()

0 1

GPU
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NERPAR boadiax-x |+ blockiax.x |« | blockbim.x
3 0 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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VSRR chzeadidz.x || blookiax.x |« blocknim.x |
3 0 4

GPU 1 5
DATA

2 6 3

L3 7

0
GPU OF 182083 ofN1B203
4 /
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(NERAR ch-eodidx-x |+| blockidx.x |« | blockbin.x
0o 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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o 4 [Eorri|H|CeTn|HEET G|
0 1 4

GPU 1 5
DATA

2 6 4

3 7

0
GPU ON18283 oF18203
4 /
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(NERVAR chreodidx-x |+| blockidx.x |« | blockDin.x
1 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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VIR threadlax.x |+ blockldx.x | «|blockbim.x |
1 1 4
GPU 1 5 1
DATA
2 6 5
3 7

performWork<<<2, 4>>>()

0 1

GPU




(NERVAR chreodidx-x |+| blockidx.x |« | blockDin.x
2 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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0 4 |Eees ofbledatofHeanle |
2 1 4
GPU 1 5
DATA dataIndex
2 6
3 7

performwWork<<<2, 4>>>()

0]

GPU
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JURAR chreadiéx.x |+ blockidx.x |« [blockDin.x
3 1 4
GPU 1 5
DATA
2 6 ?
3 7

performWork<<<2, 4>>>()

0 1

GPU
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0 4 e e blockIdx.x H
3 1 4

GPU 1 5
DATA
2 6 7

3 7\

performwWork<<<2, 4>>>()

0]

GPU
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Grid Size Work Amount Mismatch




0 4 In previous scenarios, the number of
f threads in the grid matched the
number of elements exactly

GPU 1 5
DATA
. 2 6
L3 7
0
GPU B BN WA K o120 3
/ /
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GPU

DATA

What if there are more threads than
work to be done?

GPU

performWork<<<2,

0]

4>>> ()

1

NVIDIA
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Attempting to access non-existent
elements can result in a runtime error

GPU 1

DATA

X X X |

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 Code must check that the dataIndex
calculated by threadidx.x +
blockIdx.x * blockDim.x is less
GPU 1 X than N, the number of data elements.

DATA

performWork<<<2, 4>>>()

GPU
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04 T D
0o 1 4
GPU 1
DATA I A
4 5 2

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 e e blockIdx.x H
0 1 4

GPU 1

BATA N

2 true

GPU of1M203 of1§203
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0 4 sk || ioorvie <
1 1 4
GPU 1
DATA caroder [t L] e on
5 5 ?

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 e e blockIdx.x H
1 1 4

GPU 1

BATA N

2 false

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 sk || ioorvie <
2 1 4
GPU 1
DATA caroaer [t L] e on
6 5 ?

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 e e blockIdx.x H
2 1 4

GPU 1

BATA N

2 false

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 sk || ioorvie <
2 1 4
GPU 1
DATA caroaer [t L] e on
6 5 ?

performWork<<<2, 4>>>()

0] 1

GPU
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0 4 e e blockIdx.x H
2 1 4

GPU 1

BATA N

2 false

performWork<<<2, 4>>>()

0] 1

GPU
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Grid-Stride Loops




(0] 4 8 12 16 20 24 28 Often there are more data
elements than there are
threads in the grid
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 |14 18 | 22 | 26 | 30
3 7 11 |15 | 19 | 23 | 27 | 31
performWork<<<2, 4>>>()
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0 . 4 8 12 16 20 24 28 In such scenarios threads
cannot work on only one
element
GPU 1 5 Kk 13 || 17 || 21 25 || 29
DATA AN \\\
1 14 1 22 2 30
2 H 6 \\0 §§ 8 6
ANA
3 11 19 | | 23 27 || 31
%\ \\
™\ ~\
GPU OF18203 oN1f2
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0 4 ...... ... or else work is left
undone
s  HHEEEE
DATA
2« [HHEEES
-  HEEEEE

performWork<<<2, 4>>>()

- |HH Iii




One way to address this

0 4 8 12 | 16 | 20 | 24 | 28
programmatically is with a
grid-stride loop
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 |14 18 | 22 | 26 | 30
3 7 11 |15 | 19 | 23 | 27 | 31
performWork<<<2, 4>>>()

< DEEP
N=d LEARNING
NVIDIA.  INSTITUTE



0. 4 8 12 16 20 24 28 In a grid-stride loop, the
thread’s first element is
calculated as usual, with
GPU 1 5 9 13 || 17 21 25 | | 29 threadIdx.x +
DATA blockIdx.x *
blockDim.x
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
perifformWork<<<2, 4>>>()
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GPU

DATA

The thread then strides
forward by the number of
threads in the grid
(blockDim.x *

gridDim.x), in this case
8

GPU

perflormWork<<<2, 4>>>()
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(0] 4 8 12 4 16 20 24 28 It continues in this way until
/ its data index is greater than
/ the number of data
GPU 1 5 9 3 17 21 25 | | 29 elements
DATA y
2 6 1?/ 14 || 18 | 22 26 || 30
//
3 7 )11 15 19 | 23 27 || 31
/
/
perfofrmWork<<<2, 4>>>()
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(0] 4 8 12 16 20 24 28 It continues in this way until
/4 its data index is greater than
// the number of data
GPU 1 5 9 13 | 17 /21 | 25 || 29 elements
DATA /!
/
/
2 6 10 14// 18 | 22 26 || 30
/
//
3 7 1y 15 || 19 | 23 || 27 || 31
/

performiWork<<<2, 4>>>()

- IHH Iii
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With all threads working in

o 4 8 12 | 16 | 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()
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0. 4 8 12 16 20 24 28 With all threads working in
this way, all elements are
covered
GPU 1 5 Kk 13 || 17 || 21 25 || 29
DATA \\\\\
14 22
2 .| 6 \\10 \ 18 26 | 30
AR Y
3 11 19 || 23 27 || 31
%\ \\
N\ ~~\
GPU of18203 oN1f§2
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With all threads working in

0o 4 8 12 | 16 | 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 || 17 || 21 | 25 | 29
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()
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With all threads working in

0] 4 .8 |12, 16 | 20 | 24 | 28 |
\ this way, all elements are
/ covered

GPU 1 5/‘} 9 13 Qu 21 | 25 | 29
DATA /

2 ¢ 10 14 Hks 22 26 30

f A
/ |
3 /7 l 11/4 15 9\ | 23 | 27 | 31
| \ B

GPU 152 3 oOR1lp2



With all threads working in

0o 4 8 12 | 16 || 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 |17 21 | 25 29
2 6 10 | 14 18 || 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()
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0 8 12 4 16 | . 20 24 28 With all threads working in
/ f this way, all elements are
- covered
GPU 1 9 3 4 17 21? 25 || 29
DATA /
2 1?/ }4 4 18 | 22 1 26 | 30
/ / //
3 / 1y }/{ 19 2 27 | 31
/ /
GPU 203 oR1p2
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With all threads working in

0o 4 8 12 | 16 | 20 24 || 28
this way, all elements are
covered
GPU 1 5 9 13 |17 21 | 25 29
2 6 10 || 14 18 @ 22 26 || 30
3 7 11 15 | 19 | 23 27 31
performWork<<<2, 4>>>()
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0 4 8 12 16 20 |, 24 28 With all threads working in
/ this way, all elements are
// covered
GPU 1 5 9 13 17 /21 2 29
DATA A4
// //
2 6 10 | 14 18 22 26 . 30
AN AL,
/ / / /
4 / L/
3 17 11/1’19/2,27/.31
y A4 yd A [

GPU oN18283 off18283



With all threads working in

0 4 8 12 | 16 20 24 | 28
this way, all elements are
covered
GPU 1 5 9 13 |17 21 | 25 @ 29
2 6 10 14 | 18 @ 22 26 30
3 7 11 15 || 19 23 27 31
performWork<<<2, 4>>>()
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CUDA runs as many blocks
in parallel at once as the
GPU hardware supports, for
massive parallelization
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Glossary
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Glossary

cudaMallocManaged () : CUDA function to allocate memory accessible by both the CPU and GPUs. Memory
allocated this way is called unified memory and is automatically migrated between the CPU and GPUs as needed.
cudaDeviceSynchronize () : CUDA function that will cause the CPU to wait until the GPU is finished working.
Kernel: A CUDA function executed on a GPU.

Thread: The unit of execution for CUDA kernels.

Block: A collection of threads.

Grid: A collection of blocks.

Execution context: Special arguments given to CUDA kernels when launched using the <<<..>>> syntax. It defines
the number of blocks in the grid, as well as the number of threads in each block.

gridpim.x: CUDA variable available inside executing kernel that gives the number of blocks in the grid
blockDim.x: CUDA variable available inside executing kernel that gives the number of threads in the thread’s
block

blockIdx.x: CUDA variable available inside executing kernel that gives the index the thread’s block within the
grid

threadIdx.x: CUDA variable available inside executing kernel that gives the index the thread within the block
threadIdx.x + blockIdx.x * blockDim.x: Common CUDA technique to map a thread to a data element
Grid-stride loop: A technique for assigning a thread more than one data element to work on when there are more
elements than the number of threads in the grid. The stride is calculated by gridDim.x * blockDim.x, which is
the number of threads in the grid.
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