


2

Fundamentals of Accelerated 
Computing with CUDA C/C++
Dr. Momme Allalen LRZ | 28.11.2022



Overview

• The workshop is co-organized by LRZ, NHR@FAU and NVIDIA Deep Learning 
Institute (DLI).

• NVIDIA Deep Learning Institute (DLI) offers hands-on training for developers, data 
scientists, and researchers looking to solve challenging problems with deep 
learning.

• The lectures are interleaved with many hands-on sessions using Jupyter
Notebooks. The exercises will be done on a fully configured GPU-accelerated 
workstation in the cloud.

3Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



4Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Fundamentals of Accelerated Computing 
with CUDA C/C++

• You learn the basics of CUDA C/C++ by: 

• Accelerating CPU-only applications to run their latent parallelism on GPUs.
• Utilizing essential CUDA memory management techniques to optimize accelerated 

applications
• Exposing accelerated application potential for concurrency and exploiting it with 

CUDA streams
• Leveraging command line and visual profiling to guide and check your work.

• Upon completion, you’ll be able to accelerate and optimize existing C/C++ CPU-only 
applications using the most essential CUDA tools and techniques. You’ll understand 
an iterative style of CUDA development that will allow you to ship accelerated  
applications fast.

6Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Tentative Agenda

7

09:00-09:20  Introduction (Volker)
09:20-10:45  Accelerating Applications with CUDA C/C++ (Momme)

10:45-11:00  Coffee break
11:00-12:00  Part 1 continued (Momme)

12:00-13:00 Lunch break

13:00-14:15  Managing Accelerated Application Memory
with CUDA Unified Memory and nsys (Momme)

14:15-14:30  Coffee break
14:30-16:15  Asynchronous Streaming and Visual Profiling for

Accelerated Applications with CUDA C/C++ (Sebastian)

16:15-16:30  Q&A, Final Remarks
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Workshop Webpage 

8

• Lecture material will be made available under: 

• https: https://tinyurl.com/hdlw1w22

• Access CUDA C/C++ Code : 

• See the Chat Window

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

https://tinyurl.com/hdlw1w22


Training Setup

• To get started, follow these steps:
• Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in with my 

NVIDIA Account" and then '"Create Account".

• If you use your own laptop, make sure that WebSockets works for you:
Test your Laptop at http://websocketstest.com
• Under ENVIRONMENT, confirm that '"WebSockets" is checked yes.
• Under WEBSOCKETS (PORT 80]. confirm that "Data Receive", "Send", and "Echo Test" are 

checked yes.
• lf there are issues with WebSockets, try updating your browser.

We recommend Chrome, Firefox, or Safari for an optimal performance.

• Visit http://courses.nvidia.com/dli-event and enter the event code provided by the instructor.
• You're ready to get started. 

9Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

http://courses.nvidia.com/join
http://websocketstest.com/
http://courses.nvidia.com/dli-event


And now …. 

10

Enjoy the course ! 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Why do we need to program for GPU? 

11

Moore’s law is dead ! 

The long-held notion that the
processing power of computers 
increases exponentially every 
couple of years has hit its limit….

The free lunch is over..

Future is parallel ! 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Why do we need to program for GPU? 

12

• Typical example Intel chip: Core i7 Gen 
Kaby Lake processors
• 4*CPU cores
• With hyperthreading
• Each with 8-wide AVX instructions
• GPU with 1280 processing elements

• Programming on chip:
- Serial C/C++ .. Code only takes advantage of a very
small amount of the available resources of the chip.  
- Using vectorisation allows you to fully utilise the
resources of a single hyper-thread

- Using multi-threading allows you to fully utilise all CPU 
cores

GPU need to be used ? 
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Why do we need to program for GPU? 

13

• Using heterogeneous programming allows you to
dispatch and fully utilise the entire chip

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



Why do we need to program for GPU? 

14

GPU programming:
-Limited only to a specific domain 
-Separate source solutions 
-Verbose low Levels APIs 

• oneAPI & DPC++
• CUDA C/C++
• HIP
• SYCL 
• OpenCL 
• Kokkos 
• HPX …

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



15

Why do we need GPUs on HPC?

• Increase in 
parallelism

• Today almost a similar
amount of efforts on 
using CPUs vs GPUs 
by real applications

• GPUs well-suited to
deep learning.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



16

Why do we need “GPU accelerators”
on HPC?

GPU-accelerated
systems

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

www.top500.org

http://www.top500.org/


17

NVIDIA GPUs
Systems 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

www.top500.org

Why do we need “GPU accelerators”
on HPC?

http://www.top500.org/


GPU vs CPU Architecture  

18Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



GPU vs CPU Architecture  

19Deep Learning and GPU Programming Workshop | 15 – 18 June 2020



GPU vs CPU Architecture  

20Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



21

• Hopper GPU (H100) with over 80 Billion Transistors on an 814 mm2

• 89 GB memory 
• First support PCIe gen5 and utilize the HBM3 enabling 3TB/s
• 30 Tflops of peak FP64, 60Tflops with FP64 tensor-core or 32 FP performance 
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



22

What and Why CUDA C/C++ ?

CUDA = ”Compute Unified Device Architecture”
* Introduced and released in 2006 for the GeForce 8800 *

• GPU = massively data parallel - co-processor

C/C++ plus a few simple extensions
- Compute oriented drivers, language, and tools

Documentations: 
CUDA_C_Programming_Guide.pdf
CUDA_C_Getting_Started.pdf
CUDA_C_Toolkit_Release.pdf

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



23

CUDA Programming Model 

• A kernel is executed as a grid of thread 
blocks

• All threads share data memory space
• A thread block is a batch of threads that 

can cooperate with each other by:
• Synchronizing their execution 
• Efficiently sharing data through a low 

latency shared memory 
• Tow threads from two different blocks 

cannot cooperate
• Sequential code launches

asynchronously GPU kernels

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



24

CUDA C/C++ 

Host: The CPU and ist memory
(host memory)

Terminology:

Device

Device: The GPU and ist 
memory (device memory)

Host

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



25

CUDA Devices and Threads
Execution Model 

GPU: Massive Parallel RegionDevice

Host

Host

CPU: Serial/&Multicore Region

CPU: Serial/&Multicore Region

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



CUDA C/C++

26Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



27

NVCC Compiler 

• NVIDIA provides a CUDA-C compiler

à nvcc

• NVCC splits your code in 2: Host code and
Device code. 

• Device code sent to NVIDIA device compiler.  

• nvcc is capable of linking together
both host and device code into a 

single executable. 

• Convention: C++ source files
containing CUDA syntax are

typically given the extension .cu.

• For „.cpp“ extension use:
nvcc –x cu –arch=sm_70 –o exe code.cpp

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



29

Lab1: Accelerating Applications with CUDA C/C++
Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.lrz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation. 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



30

Lab1: Accelerating Applications with
CUDA C/C++

Prerequisites

You should already be able to:

• Declare variables, write loops, and use
if / else statements in C.

• Define and invoke functions in C.

• Allocate arrays in C.

• No previous CUDA knowledge is
required.

Objectives

By the time you complete this lab, you will be able to:

• Write, compile, and run C/C++ programs that both call
CPU functions and launch GPU kernels.

• Control parallel threadhierarchy using execution
configuration.

• Refactor serial loops to execute their iterations
in parallel on a GPU.

• Allocate and free memory available to both
CPUs and GPUs.

• Handle errors generated by CUDA code.
• Accelerate CPU-only applications.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



31

nvc; nvc++ Compiler

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



32

nvfortran, nvcc Compiler

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



33

Lab2: Managing Accelerated Application Memory
with CUDA Unified Memory and nvprof

Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.lrz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation. 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



34

Lab2: Managing Accelerated Application
Memory with CUDA Unified Memory and nsys

Prerequisites

You should already be able to:

• Write, compile, and run C/C++
programs that both call CPU functions and

launch GPU kernels.

• Control parallel thread hierarchy using
execution configuration.

• Refactor serial loops to execute their
iterations in parallel on a GPU.

• Allocate and free Unified Memory.

Objectives

By the time you complete this lab, you will be able to:
• Use the Nsight Systems command line tool (nsys) to

profile accelerated application performance.
• Laverage and understanding of Streaming 

Multiprocessors to optimize execution configurations.
• Understand the behavior of Unified Memory with

regard to page faulting and data migrations.
• Use asynchronous memory prefetching to reduce

page faults and data migrations for increased
performance.

• Employ an iterative development cycle to rapidly
accelerate and deploy applications.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



35

nvvc:  NVIDIA visual profiler 
nvprof:  tool to understand and optimize the performance of your CUDA, 
OpenACC or OpenMP applications, 
Application level opportunities 

Overall application performance
Overlap CPU and GPU work, identify the bottlenecks (CPU or GPU) 

Overall GPU utilization and efficiency 
Overlap compute and memory copies 
Utilize compute and copy engines effectively.

Kernel level opportunities 
Use memory bandwidth efficiently 
Use compute resources efficiently 
Hide instruction and memory latency 

There are more features, example for Dependency Analysis
Command: nvprof --dependency-analysis --cpu-thread-tracing on ./ executable_cuda

Nsight Systems
Nsight Compute

CUDA® PROFILING TOOLS

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



36

Standalone Performance Tools:

Ns- Systems  - System-wide application algorithm tuning  

Ns- Compute  - Debug/&Profile specific CUDA kernels

Ns- Graphics  - Analyze/&Optimize specific graphics workloads

Nsight
Systems

NSIGHT PRODUCT FAMILY

Nsight
Graphics 

Nsight
Compute

IDE Plugins 
Nsight Eclipse Edition/Visual Studio – editor, debugger, some perf analysis

nvprof command replaced with nsys –profile=true 

https://developer.nvidia.com/nsight-systems
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

https://developer.nvidia.com/nsight-systems


37

System-wide application algorithm tuning
Multi-process tree support 

Locate optimization opportunities 
Visualize millions of events on a very fast GUI timeline
Or gaps of unused CPU and GPU time 

Balance your workload across multiple CPUs and GPUs
CPU algorithms, utilization, and thread state 
GPU streams, kernels, memory transfers, etc

Multi-platform: Linux & Windows, x86-64, Te g r a, Power, MacOSX(host only)

GPUs: Volta, Turing

NSIGHT SYSTEMS

Docs/product: https://developer.nvidia.com/nsight-systems
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

https://developer.nvidia.com/nsight-systems


38

CUDA Kernel profiler 

Targeted metric sections for various performance aspects (Debug/&Profile)

Very high freq GPU perf counter, customizable data collection and
presentation  (tables, charts ..,)

Python-based rules for guided analysis (or postprocessing)

GPUs: Volta, Turing,  Amper…

NSIGHT COMPUTE

Docs/product: https://developer.nvidia.com/nsight-systems
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

https://developer.nvidia.com/nsight-systems


39Deep Learning and GPU Programming Workshop | 15 – 18 June 2020

Docs/product: https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-systems


40

NVIDIA Tools Extension API 
Library (NVTX)

Docs/product: https://developer.nvidia.com/nsight-systems
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

https://developer.nvidia.com/nsight-systems


41

Lab3: Asynchronous Streaming, and Visual Profiling
with CUDA C/C++
Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.lrz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation. 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



49

Lab2: Managing Accelerated Application
Memory with CUDA Unified Memory and nvprof

Prerequisites

To get the most out of this lab you should already be
able to:
• Write, compile, and run C/C++ programs that both call

CPU functions and launch GPU kernels.
• Control parallel thread hierarchy using execution

configuration.
• Refactor serial loops to execute their iterations in parallel 

on a GPU.
• Allocate and free CUDA Unified Memory.
• Understand the behavior of Unified Memory with
regard to page faulting and data migrations.
• Use asynchronous memory prefetching to reduce
page faults and data migrations.

Objectives

By the time you complete this lab you will be
able to:

• Use the Nsight Systems to visually profile
the timeline of GPU-accelerated CUDA 

applications.
• Use Nsight Systems to identify, and exploit, 

optimization opportunities in GPU-
accelerated CUDA applications.

• Utilize CUDA streams for concurrent kernel
execution in accelerated applications.

• (Optional Advanced Content) Use manual
memory allocation, including allocating

pinned memory, in order to asynchronously
transfer data in concurrent CUDA streams.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



50

Multiple Streams

Overlap copy 
with kernel 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



51

Multiple Streams
for (int i=0; i<FULL_SIZE; i+= N*2) { 
// copy the locked memory to the device, async
cudaMemcpyAsync(dev_a0, host_a+i, N * sizeof(int),cudaMemcpyHostToDevice, stream0);
cudaMemcpyAsync(dev_b0, host_b+i, N * sizeof(int),cudaMemcpyHostToDevice, stream0);

kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 ); 

// copy the data from device to locked memory
cudaMemcpyAsync(host_c+i, dev_c0, N * sizeof(int),cudaMemcpyDeviceToHost, stream0);
// copy the locked memory to the device, async
cudaMemcpyAsync(dev_a1,host_a+i+N, N * sizeof(int),cudaMemcpyHostToDevice, stream1); 
cudaMemcpyAsync(dev_b1,host_b+i+N, N * sizeof(int),cudaMemcpyHostToDevice, stream1);

kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 ); 

// copy the data from device to locked memory
cudaMemcpyAsync(host_c+i+N,dev_c1, N * sizeof(int),cudaMemcpyDeviceToHost, stream1);
} 

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de



52

THANK YOU

Instructor: Dr. Momme Allalen
www.nvidia.com/dli

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de


