Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

@ DEEP
NHRC JFAU S e

2

DEER
LEARNING
I'\VIDIA INSTITUTE

Fundamentals of Accelérated
Computing with CUDA C/C++

Dr. Momme Allalen LRZ | 28.11.2022

Overview SN | DEEP
NHR(JFAU 2, (e

NVIDIA.

The workshop is co-organized by LRZ, NHR@FAU and NVIDIA Deep Learning
Institute (DLI).

NVIDIA Deep Learning Institute (DLI) offers hands-on training for developers, data
scientists, and researchers looking to solve challenging problems with deep

learning.

The lectures are interleaved with many hands-on sessions using Jupyter
Notebooks. The exercises will be done on a fully configured GPU-accelerated
workstation in the cloud.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

DEEP

<
NHR(JTFAU & tesonc

DEEP LEARNING INSTITUTE

DLI Mission: Help the world to solve the most challenging
problems using Al and deep learning

We help developers, data scientists and engineers to get
started in architecting, optimizing, and deploying neural
networks to solve real-world problems in diverse
industries such as autonomous vehicles, healthcare,
robotics, media & entertainment and game development.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Fundamentals of Accelerated Computing &Y | oeep
with CUDA C/C++ NHR @ FAU = Learning

NVIDIA. INSTITUTE
* You learn the basics of by:

 Accelerating CPU-only applications to run their latent parallelism on GPUs.

« Utilizing essential management techniques to optimize accelerated
applications

« Exposing accelerated application potential for concurrency and exploiting it with

« Leveraging command line and visual profiling to guide and check your work.

« Upon completion, you'll be able to accelerate and optimize existing C/C++ CPU-only
applications using the most essential and techniques. You'll understand
an iterative style of CUDA development that will allow you to ship accelerated
applications fast.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Tentative Agenda

DEEP

NHR@FAU > T

NVIDIA. INSTITUTE

09:00-09:20 Introduction (Volker)
09:20-10:45 Accelerating Applications with (Momme)

10:45-11:00 Coffee break
11:00-12:00 Part 1 continued (Momme)

12:00-13:00 Lunch break

13:00-14:15 Managing Accelerated Application Memory
with Unified Memory and (Momme)

14:15-14:30 Coffee break
14:30-16:15 Asynchronous Streaming and Visual Profiling for
Accelerated Applications with (Sebastian)

16:15-16:30 Q&A, Final Remarks

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Workshop Webpage NHR @ FAU < R

NVIDIA. INSTITUTE

 Lecture material will be made available under:

https: https://tinyurl.com/hdiw1w22

e Access CUDA C/C++ Code :

« See the Chat Window

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

https://tinyurl.com/hdlw1w22

Training Setup NHR @ FAU < R

NVIDIA. INSTITUTE

To get started, follow these steps:

Create an NVIDIA Developer account at htip://courses.nvidia.com/join Select "Log in with my
NVIDIA Account" and then "Create Account".

If you use your own laptop, make sure that WebSockets works for you:
Test your Laptop at hiip://websocketistest.com

* Under ENVIRONMENT, confirm that "WebSockets" is checked yes.

* Under WEBSOCKETS (PORT 80]. confirm that "Data Receive", "Send", and "Echo Test" are
checked yes.

« If there are issues with WebSockets, try updating your browser.
We recommend Chrome, Firefox, or Safari for an optimal performance.

Visit hitp://courses.nvidia.com/dli-event and enter the event code provided by the instructor.
You're ready to get started.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

http://courses.nvidia.com/join
http://websocketstest.com/
http://courses.nvidia.com/dli-event

DEEP

NVIDIA. INSTITUTE m

NHR FAU S CEAraiNG

And now

Enjoy the course !

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 10

Why do we need to program for GPU? NHR@ FAU ...

GPU-Computing perf
Moore’s law is dead ! 1.5X per year

The long-held notion that the
processing power of computers
increases exponentially every
couple of years has hit its limit....

The free lunch is over..

Future is parallel ! 199 2000 2010

40 Years of Microprocessor Trend Data

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@lrz.de

DEEP
LEARNING
INSTITUTE

DEEP

Why do we need to program for GPU? NHR_JFAU &2, e

=+
L}

» Typical example Intel chip: Core i7 Gen = = Er——————

1/O Control :}

Kaby Lake processors e o ey tas O] 4
* 4*CPU cores CUETHE l,!ﬁiil..lﬂ;ll:;;::::Illlllll-lll-lﬂﬂl —
* With hyperthreading -, » s

« Each with 8-wide AVX instructions [
« GPU with 1280 processing elements :

N ooepau) /) pue Aiowdpy

* Programming on chip:
- Serial C/C++ .. Code only takes advantage g#a very

resources of a single hyper-thread

- Using multi-threading allows you to fully utilise all CPU

cores
GPU need to be used ?

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

'
lv' = o2 AL
#r <

Y|
. ae fou &

Graphics Core +

LS N : inisl x ey
o .;"‘:,A.’ e TTTIT N ” JRONE ok sk
TR IR LT T L0 | DL Caipier 25 ittty

Why do we need to program for GPU? NHR[_JFAU &3 teaene

!y
.
......

1/0 Control p oA
Bl e o < LR
NARN AR HI’lI i1 :::::::::lllmlm-lll!lll![ll
u, T -
?!!
 Using heterogeneous programming allows you tg | 2

dispatch and fully utilise the entire chip

Pe) paseys

i 2depau) /) pue Kiowayy

i
" 1
i
: - o
e
3
!lll‘lﬂ lh‘lll “

B4 inns

X oL N_’_"" u.‘.;" -1':-71 p—

Al
13-

i
nt
n
"y
"y

T e i 4 B &
SN, R RIS S0
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de S———— e

Why do we need to program for GPU? NHR O > R

GPU programming:
-Limited only to a specific domain
-Separate source solutions
-Verbose low Levels APls

oneAPIl & DPC++

HIP
SYCL
OpenCL
Kokkos
« HPX ...

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@Irz.de 14

O DEEP
U @2 LEARNING
NVIDIA. INSTITUTE

Why do we need GPUs on HPC? NHR(JF

* | ncrease In Machine Computational Computational Life Sciences Structural Weather & Geoscience, Numerical Electronic
. Learning & Physics & Fluid & Mechanics Climate Seismology & Analytics Design
pa ra I |e I ISMm Deep Learning Chemistry Dynamics Bioinformatics Imaging Automation

T

\
« Today almost a similar }&m
amount of efforts on ' §
using CPUs vs GPUs 600+ Apps
by real applications

Linoar Algebra Parallel Algorithms Signal Processing Deop Learning Machine Learning Visualization

_ CUDA-X HPC & Al
» GPUs well-suited to A0+ GO Accelesation | hearfes

deep learning. CUDA

Desktop Development Data Center Supercomputers GPU-Accelerated Cloud

NVIDIA Software uses CUDA

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 15

Why do we need "GPU accelerators”

on HPC?

GPU-accelerated
systems =

The List.

www.top500.0rqg

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Rank

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C
2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100
Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9Y 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE
DOE/SC/LBNL/NERSC

United States

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
2.2GHz, TH Express-2, Matrix-2000, NUDT

National Super Computer Center in Guangzhou

China

Cores

8,730,112

7,630,848

2,220,288

1,463,616

2,414,592

1,572,480

10,649,600

761,856

555,520

4,981,760

Rmax
(PFlop/s)

1,102.00

442.01

309.10

174.70

148.60

94.64

93.01

70.87

63.46

61.44

Rpeak
(PFlop/s)

1,685.65

537.21

428.70

255.75

200.79

125.71

125.44

93.75

3822

100.68

Power
(kW)

21,100

29,899

6,016

5,610

10,096

7,438

15,371

2,589

2,646

18,482

http://www.top500.org/

Why do we need "GPU accelerators”
on HPC?

NVIDIA GPUs

O—

Systems

Qe

The List.

www.top500.0rqg

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Rank

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C
2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100
Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9Y 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE
DOE/SC/LBNL/NERSC

United States

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
2.2GHz, TH Express-2, Matrix-2000, NUDT

National Super Computer Center in Guangzhou

China

Cores

8,730,112

7,630,848

2,220,288

1,463,616

2,414,592

1,572,480

10,649,600

761,856

555,520

4,981,760

Rmax
(PFlop/s)

1,102.00

442.01

309.10

174.70

148.60

94.64

93.01

70.87

63.46

61.44

Rpeak
(PFlop/s)

1,685.65

537.21

428.70

255.75

200.79

125.71

125.44

93.75

3822

100.68

Power
(kW)

21,100

29,899

6,016

5,610

10,096

7,438

15,371

2,589

2,646

18,482

http://www.top500.org/

GPU vs CPU Architecture

* Small number of large cores
* More control structures and
less processing units
*Optimised for latency which Cache
requires quite a lot of power

DRAM

CPU

GPU

FAU @Z EIIEE/EENING

NVIDIA. INSTITUTE

* Large number of small cores
* Less control structured and
more processing units

*Less flexible program model
*There’re more restrictions but
Requires a lot less power

General purpose architecture

Massively data parallel

*GPU devotes more transistors data processing rather than data caching and flow
control. Same problem executed on many data elements in parallel.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

18

PCI Express 3.0 Host Interface

Memory Controller
J9jjonu0) Aiowap

Memory Controller
J9jjo3u0) Aiowapy

”
S 5
£ 2
S <
(&) ()
2 s
g s
= 2

Memory Controller
Jajjonuo) Aiowap

4 4 " G
NVLink NVLink NVLink NVLink NVLink NVLink

PCI Express 4.0 Host Interface

GigaThread Engine with MIG Control

Memory Controller
sonuo) Aoway

Memory Controller
Rjjonuo) Loway

Memory Controller
1onuo) Loway

= 3
= ~<
o (o)
> g
g g
13 -]
} E
- 2

Memory Controller
iajjonuo) Kowapy

Memory Controller
wponuod Lowayy

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

| l . AN Y ==y = (= py--cosssaasan - By SEVEENIENINEE D]
L PR | g B = G i L
o | - : : 1SR) ING
- —f——— - ——
SE B ‘ (1A UTE
< I] I EEEE |
= bl e b o e
%:n-.-w A n)= "
1 { 3 t e | ey) [F IR B =
2 N W o
x ERIES =ard b= o
| £] ot t =
=110 " 8 | rul | e ¢ :
g S E 5 EIEERER :
] | e 1 1]
{ |
} 1 53

« Hopper GPU (H100) with over 80 Billion Transistors on an 814 mm?

« 89 GB memory

« First support PCle gen5 and utilize the HBM3 enabling 3TB/s

« 30 Tflops of peak FP64, 60Tflops with FP64 tensor-core or 32 FP performance

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

21

What and Why CUDA C/C++ 2 NHR{CJFAU & (e Irz

CUDA = "Compute Unified Device Architecture”
* Introduced and released in 2006 for the GeForce 8800 *
« GPU = massively data parallel - co-processor

C/C++ plus a few simple extensions
- Compute oriented drivers, language, and tools

Documentations:

CUDA _C _Programming_Guide.pdf
CUDA _C _Getting_Started.pdf
CUDA C Toolkit Release.pdf

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@Irz.de 22

DEEP

CUDA Programming Model NHRC JFAU & i M

» Akernel is executed as a grid of thread e i
blocks o L
» All threads share data memory space erond W oot | Hreprdl| [
« Athread block is a batch of threads that . '._
can cooperate with each other by: oy @y ey
* Synchronizing their execution n
 Efficiently sharing data through a low N G"f»z
latency shared memory “ il |
 Tow threads from two different blocks 2| L
cannot cooperate Beck @, 3).

« Sequential code launches
asynchronously GPU kernels

.
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de ¢ ! 23

DEEP

CUDA C/C++ NHRC JFAU 2, (e 190

Terminology:.
Host: The CPU and ist memory Device: The GPU and ist
(host memory) memory (device memory)

Device
Host

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@Irz.de 24

CUDA Devices and Threads & o
Execution Model NHR|_JFAU /5, ‘e M

Host ‘ CPU: Serial/&Multicore Region
Device %‘%“‘%‘%‘%” GPU: Massive Parallel Region
Host ‘ CPU: Serial/&Multicore Region

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 25

DEEP
«2 LEARNING

NVIDIA. INSTITUTE M

The CPU allocates memory on the GPU
The CPU copies data from CPU to GPU
The CPU launches kernels on the GPU
The CPU copies data to CPU from GPU

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 26

NVCC Compiler

DEEP

<X -
NHR(JFAU S o ||

NVIDIA.

* NVIDIA provides a CUDA-C compiler

- Nnvce

* NVCC splits your code in 2: Host code and
Device code.

« Device code sent to NVIDIA device compiler.

* nvcc is capable of linking together
both host and device code into a
single executable.

« Convention: C++ source files
containing CUDA syntax are
typically given the extension .cu.

* For ,.cpp” extension use:
nvcec —x cu —arch=sm_70 —o exe code.cpp

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

27

Lab1: Accelerating Applications with CUDA C/C++

Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.Irz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Accelerating Applications with NHR @ FAU < DhRune

NVIDIA. INSTITUTE

CUDA C/C++

Prerequisites Objectives
You should already be able to: By the time you complete this lab, you will be able to:
» Declare variables, write loops, and use » Write, compile, and run C/C++ programs that both call
if / else statements in C. CPU functions and launch GPU kernels.
« Control parallel threadhierarchy using execution
» Define and invoke functions in C. configuration.
» Refactor serial loops to execute their iterations
* Allocate arrays in C. in parallel on a GPU.
» Allocate and free memory available to both
* No previous CUDA knowledge is CPUs and GPUs.
required. « Handle errors generated by CUDA code.

» Accelerate CPU-only applications.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

30

DEEP

nvc; nvc++ Compiler <X
¢; nvc++ Compile NHR(JFAU 2, (s

nvc :is a C11 compiler for NVIDIA GPUs and AMD, Intel,
OpenPOWER, and Arm CPUs. It invokes the C compiler,
assembler, and linker for the target processors with options derived
from its command line arguments. nvc supports ISO C11, supports
GPU programming with OpenACC, and supports multicore CPU
programming with OpenACC and OpenMP.

nvc++ :is a C++17 compiler for NVIDIA GPUs and AMD, Intel,
OpenPOWER, and Arm CPUs. It invokes the C++ compiler, assembler,
and linker for the target processors with options derived from its command
line arguments. nvc++ supports ISO C++17, supports GPU and multicore
CPU programming with C++17 parallel algorithms, OpenACC, and

OpenMP.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

31

NVIDIA. INSTITUTE

nvfortran, nvcc Compiler NHR@FAU A | PR nG

nvfortran : is a Fortran compiler for NVIDIA GPUs and AMD, Intel,

OpenPOWER, and Arm CPUs. It invokes the Fortran compiler, assembler,

and linker for the target processors with options derived from its command line
arguments. nvfortran supports ISO Fortran 2003 and many features of ISO Fortran
2008, supports GPU programming with CUDA Fortran, and GPU and multicore
CPU programming with ISO Fortran parallel language features,

OpenACC, and OpenMP.

nvcce : is the CUDA C and CUDA C++ compiler driver for NVIDIA GPUs:
nvcc accepts a range of conventional compiler options, such as for defining
macros and include/library paths, and for steering the compilation process. nvcc

produces optimized code for NVIDIA GPUs and drives a supported host compiler
for AMD, Intel, OpenPOWER, and Arm CPUs.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 32

Lab2: Managing Accelerated Application Memory
with CUDA Unified Memory and nvprof

Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.Irz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

Managing Accelerated Application NHR FAU < e
Memory with CUDA Unified Memory and nsys NVIDIA. INSTITUTE

Prerequisites Objectives
You should already be able to: By the time you complete this lab, you will be able to:
» Use the Nsight Systems command line tool (nsys) to
» Write, compile, and run C/C++ profile accelerated application performance.
programs that both call CPU functions and « Laverage and understanding of Streaming
launch GPU kernels. Multiprocessors to optimize execution configurations.
» Understand the behavior of Unified Memory with
» Control parallel thread hierarchy using regard to page faulting and data migrations.
execution configuration. Use asynchronous memory prefetching to reduce
page faults and data migrations for increased
» Refactor serial loops to execute their performance.
iterations in parallel on a GPU. « Employ an iterative development cycle to rapidly

accelerate and deploy applications.
» Allocate and free Unified Memory.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

34

CUDA® PROFILING TOOLS

DEEP

<D
NHR(JFAU (2, (i

nvvc: N DIA visual profiler

NVIDIA.

nvprof: toONp understand and optimize the performance of ygdr CUDA,

OpenACC or OpenMP applications,
Application level oppQrtunities
Overall application p&formance

Overlap CPU and“§PU work, identify € bottlenecks (CPU or GPU)

Overall GPU utilization and eficiency
Overlap compute and memgQry g0pies
Utilize compute and copy epgmmes effectively.

Kernel level opportunities
Use memory bang#lidth efficiently
Use compute g€sources efficiently
Hide instry€tion and memory latency

There are mefe features, example for Dependency Analysis

Commapd: nvprof --dependency-analysis --cpu-thread-tracing on .

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

mmmm) Nsight Systems

Nsight Compute

&xecutable cuda

35

NSIGHT PRODUCT FAMILY DEEP
NHR@ FAU S EaRNinG

NVIDIA. INSTITUTE
Standalone Performance Tools:

Ns- Systems - System-wide application algorithm tuning

Nsight
Ns- Compute - Debug/&Profile specific CUDA kernels Systems
Ns- Graphics - Analyze/&Optimize specific graphics workloads/ \
Nsight Nsight

_ Compute Graphics
IDE Plugins

Nsight Eclipse Edition/Visual Studio — editor, debugger, some perf analysis

nvprof command replaced with nsys —profile=true

https://developer.nvidia.com/nsight-systems
Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 36

https://developer.nvidia.com/nsight-systems

NSIGHT SYSTEMS NHRC JFAU & e
System-wide application algorithm tuning
Multi-process tree support
Locate optimization opportunities

Visualize millions of events on a very fast GUI timeline
Or gaps of unused CPU and GPU time

Balance your workload across multiple CPUs and GPUs
CPU algorithms, utilization, and thread state
GPU streams, kernels, memory transfers, etc

Multi-platform: Linux & Windows, x86-64, Te g r a, Power, MacOSX(host only)
GPUs: Volta, Turing

Docs/product: https://developer.nvidia.com/nsight-systems

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 37

https://developer.nvidia.com/nsight-systems

NSIGHT COMPUTE NHRC JFAU & e

NVIDIA. INSTITUTE

Targeted metric sections for various performance aspects (Debug/&Profile)

Very high freq GPU perf counter, customizable data collection and
presentation (tables, charts ..,)

Python-based rules for guided analysis (or postprocessing)

GPUs: Volta, Turing, Amper...

Docs/product: https://developer.nvidia.com/nsight-systems

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 38

https://developer.nvidia.com/nsight-systems

EWOA"-”!M.IC
[Yow s
Suect e for roling. .. DHECTOR. T

et 201 DGrmim ot D vao DN st RedetsC wi b badiraom abes L] waoe D001 TE_sumiete Retet 50w e hadbaces o spvme aar s aten [Yaw D6EI T2 arvben St s ds e b 0

"L S SRS 2 L L ' o s ; g =
e _ | N Thread/core LXEITEIEERT TSI =7 B a i =y

_, migration LV (AR, L A
Processes et -

mlu-l'uu:u “I.N‘l isti@ . ¥
and :

threads

ISty .llllnl.‘-.ll llll“ T TR l.lltnll @ .‘l ol -

CUDA and
OpenGL AP frace [

T 4|uu-u auu.unl MmO, Wi O IEENMI (48 | . SENGIE)
.

ul R l‘li!'! 'lu'»liu.u.,"n.."u. — :
cuDNN and "'“'"‘ L & & i L MBI NBEIL. B L080.40M- W8 1008 § @ .1 . N0 @

- cuBLAS trace

o CUDA (Tevle P3O0 SXM2- 3568 ——— s ana- N O S — W T — o 42| L L o D P -
 Swaarn 118 BOA A AR AR ERAR AR AR AAR SR AR KK AAA AR GAL S AL 0 R S S A R B A R SR AL MR A RN RS SR R e —— =
e
v Leveh 8:8

bl 0 seuien 910 1200 100 el g _etenen an

BEBUMI IR N ANNUNNODI NN BN A NN DOmS NN NN NN loahe I N NN B, W
1 1 | 1 @ c ac
el g8 seudon b8 100 A e rtenern

ey i . > Kernel and memory A LR R LR o 11 81 118

transfer activities [EEE BRI : |

et engee .
e it e St T b hed

~ Sheem 1

‘" -n “ . - - aa A WA= A omma
¥ Kower .08 |, £] — = e st Jie Bl o bae b Lo BBoo . Bda wid. s 00.... . 8.0, 0B, 01l@R
AtFas shammatimat o ge ! santoun b il] R R IR B S . wd o e .. ' . 01.0108.
Atbeos art ; i . ..} | bt ' I 1 I .. .80 811 8 ¢
~ CUDA {Tevis P30 SIMZ. WG —— - e N s—— -
Soaam 7 SR A A SREE VAL & AR SRALAAAAGEAARAGA AAA SAAMATA IR S A R R R R R e R R S K R LR S S R S R e S A —
Sroem 20 - - L RA . A W m s
CUDA (Tesie P00 MY Gl I s s WAL MmN A S N AN T O R e DAL s O e o . AR MO G- Bt e B
CUDA (Tes P00 DM WOR: A— . - - . . - . s
CUDA (Tevie P00 SO WG s ¥ E naientad ¥ SR, SR A, B\ . W:ma——nﬂq—-‘-—n v -
CUDA (Tevte P00 SIMG. MGR: . I . —gn e, S . . S G0 D, . S——— . (0 AN B [P - - ~a
CUDA (Teste P00 LIMG. 1900 s m e T B o~ e m - _

https://developer.nvidia.com/nsight-systems

DEEP

NVIDIA Tools Extension API SA | EER m
Library (NVTX) NHR FAU NVIDIA. INSTITUTE

void Wait(int waitMilliseconds)

{
nvtixNameOsThread(“MAIN”);
nvtxRangePush(__ FUNCTION_);
nvixMark(>"Waiting..."); n rofile -t nvtx --stats=tr
Sleep(waitMilliseconds); SYSHRIOIIC SRS TR e
nvtxRangePop();

}

int main(void)

{

nvtixNameOsThread("MAIN");
nvixRangePush(__FUNCTION_);
Wait(); https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html

nvixRangePop(); IS

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 40

https://developer.nvidia.com/nsight-systems

Lab3: Asynchronous Streaming, and Visual Profiling
with CUDA C/C++

Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.Irz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

DEEP

Lab2: Managing Accelerated Application NHR@FAU A kg
Memory with CUDA Unified Memory and nvprof |

Prerequisites Objectives

To get the most out of this lab you should already be

able to:

» Write, compile, and run C/C++ programs that both call
CPU functions and launch GPU kernels.

» Control parallel thread hierarchy using execution

By the time you complete this lab you will be
able to:

configuration. Use Nsight Systems to identify, and exploit,
» Refactor serial loops to execute their iterations in parallel optimization opportunities in GPU-
on a GPU. accelerated CUDA applications.

» Allocate and free CUDA Unified Memory.

* Understand the behavior of Unified Memory with
regard to page faulting and data migrations.

« Use asynchronous memory prefetching to reduce
page faults and data migrations.

« Use the Nsight Systems to visually profile
the timeline of GPU-accelerated CUDA
applications.

Utilize CUDA streams for concurrent kernel
execution in accelerated applications.
(Optional Advanced Content) Use manual
memory allocation, including allocating
pinned memory, in order to asynchronously
transfer data in concurrent CUDA streams.

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

49

Multiple Streams NHR TEAU = DErune

NVIDIA. INSTITUTE m

Stream 0 Stream 1
memcpy A to GPU
memcpy B to GPU
O.V erlap copy kernel memcpy A to GPU
with kernel
memcpy B to GPU
f:f memcpy C from GPU kernel
2 memcpy C from GPU
memcpy A to GPU
memcpy B to GPU
kernel memcpy A to GPU
memcpy B to GPU
memcpy C from GPU kernel

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

memcpy C from GPU

50

m _—0 DEEP
Multiple Streams NHRJFAU 2, e (1)

for (int i=0; i<FULL SIZE; i+= N*2) ({

cudaMemcpyAsync (dev_a0, host a+i, N * sizeof(int) , cudaMemcpyHostToDevice, stream0);
cudaMemcpyAsync (dev_b0, host b+i, N * sizeof(int) , cudaMemcpyHostToDevice, stream0);

kernel<<<N/256,256,0,stream0>>> (dev_al, dev b0, dev c0)

cudaMemcpyAsync (host_c+i, dev_c0O, N * sizeof(int) , cudaMemcpyDeviceToHost, stream0);
// copy the locked memory to the device, async

cudaMemcpyAsync (dev_al, host a+i+N, N * sizeof(int) , cudaMemcpyHostToDevice, streaml);

cudaMemcpyAsync (dev_bl,host b+i+N, N * sizeof(int) , cudaMemcpyHostToDevice, streaml);

kernel<<<N/256,256,0,streaml>>>(dev_al, dev bl, dev cl);

cudaMemcpyAsync (host _c+i+N,dev_cl, N * sizeof(int) , cudaMemcpyDeviceToHost, streaml);

}

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de 51

THANK YOU

Instructor: Dr. Momme Allalen
www.nvidia.com/dIi

Fundamentals of Accelerated Computing with CUDA C/C++| LRZ | 28.11.2022; Allalen@]rz.de

