
Dr. Volker Weinberg | LRZ

MODULE SIX:
LOOP OPTIMIZATIONS

LOOP OPTIMIZATIONS

 Majority of program runtime is spent in loops

 Every loop can execute in a very different way

 Using OpenACC loop optimization, we can speed-up our most time-consuming
portions of code

SAMPLE LOOP CODE

 Our code is a 3-Dimensional Matrix
Multiplication code

 The code allows for many different
levels and types of parallelism, and
works well with all of our loop clauses

Matrix multiplication

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

SAMPLE LOOP CODE

 Our code is a 3-Dimensional Matrix
Multiplication code

 The code allows for many different
levels and types of parallelism, and
works well with all of our loop clauses

Matrix multiplication

do k = 1, size
do j = 1, size

do i = 1, size
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

PARALLELIZING LOOPS

AUTO CLAUSE

 The auto clause tells the compiler to
decide whether or not the loop is
parallelizable

 The auto clause can be very useful
when you are unsure of whether or not
a loop is safe to parallelize

#pragma acc parallel loop auto
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

AUTO CLAUSE

 The auto clause tells the compiler to
decide whether or not the loop is
parallelizable

 The auto clause can be very useful
when you are unsure of whether or not
a loop is safe to parallelize

!$acc parallel loop auto
do k = 1, size
do j = 1, size
do i = 1, size

c(i,j) = c(i,j) + a(i,k)*b(k,j)
end do

end do
end do

AUTO CLAUSE

 When using the kernels directive, the
auto clause is implied

 This means that you do not need to
include the auto clause when using the
kernels directive

 However, the auto clause can be very
useful when using the parallel directive

#pragma acc kernels loop auto
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

INDEPENDENT CLAUSE

 The independent clause asserts to the
compiler that the loop is parallelizable

 This will overwrite any decision that the
compiler makes about the loop

 Adding the independent clause could
force the compiler to parallelize a non-
parallel loop

 Allows the programmer to force
parallelism when using the kernels
directive

#pragma acc kernels loop independent
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

INDEPENDENT CLAUSE

 When using the parallel directive, the
independent clause is implied

 With the parallel directive, the
programmer is determining which loops
are parallelizable and thus the
independent clause is not needed

#pragma acc parallel loop independent
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

LOOP CORRECTNESS

SEQ CLAUSE
 The seq clause (short for sequential)

will tell the compiler to run the loop
sequentially

 In the sample code, the compiler will
parallelize the outer loops across the
parallel threads, but each thread will
run the inner-most loop sequentially

 The compiler may automatically apply
the seq clause to loops that have too
many dimensions

#pragma acc parallel loop
for(i = 0; i < size; i++)
#pragma acc loop
for(j = 0; j < size; j++)
#pragma acc loop seq
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

SEQ CLAUSE
 The seq clause (short for sequential)

will tell the compiler to run the loop
sequentially

 In the sample code, the compiler will
parallelize the outer loops across the
parallel threads, but each thread will
run the inner-most loop sequentially

 The compiler may automatically apply
the seq clause to loops that have too
many dimensions

!$acc parallel loop
do k = 1, size
!$acc loop
do j = 1, size

!$acc loop seq
do i = 1, size
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

PRIVATE AND FIRSTPRIVATE CLAUSES

 The private clause allows the
programmer to define a list of variables
as “thread-private”.

 Each thread will be given a private
copy of every variable in the comma-
separated list

 firstprivate is like private except that
the private values are initialized to the
same value used on the host. private
variables are uninitialized.

double tmp[3];

#pragma acc kernels loop private(tmp[0:3])
for(i = 0; i < size; i++)
{
tmp[0] = <value>;
tmp[1] = <value>;
tmp[2] = <value>;

}

// note that the host value of “tmp”
// remains unchanged.

PRIVATE AND FIRSTPRIVATE CLAUSES

 Variables in private or
firstprivate clause are
private to the loop level
on which the clause
appears.

 Private variables on an
outer loop are shared
within inner loops.

double tmp[3];

#pragma acc kernels loop private(tmp[0:3])
for(i = 0; i < size; i++) {
// the tmp array is private to each iteration
// of the outer loop
tmp[0] = <value>;
tmp[1] = <value>;
tmp[2] = <value>;
#pragma acc loop
for (j = 0; j < size2; j++) {

// but tmp is shared amongst the threads
// in the inner loop
array[i][j] = tmp[0]+tmp[1]+tmp[2];

}
}

PRIVATE AND FIRSTPRIVATE CLAUSES

 The private clause allows the
programmer to define a list of variables
as “thread-private”.

 Each thread will be given a private
copy of every variable in the comma-
separated list

 firstprivate is like private except that
the private values are initialized to the
same value used on the host. private
variables are uninitialized.

real :: tmp(3)

!$acc kernels loop private(tmp(0:3))
do i = 1, size

tmp(0) = <value>
tmp(1) = <value>
tmp(2) = <value>

end do
!$acc end kernels

! note that the host value of “tmp”
! remains unchanged.

PRIVATE AND FIRSTPRIVATE CLAUSES

 Variables in private or
firstprivate clause are
private to the loop level
on which the clause
appears.

 Private variables on an
outer loop are shared
within inner loops.

real :: tmp(3)

!$acc kernels loop private(tmp(0:3))
do i = 1, size
! the tmp array is private to each iteration
! of the outer loop
tmp(0) = <value>
tmp(1) = <value>
tmp(2) = <value>
!$acc loop
do j = 1, size2

! but tmp is shared amongst the threads
! in the inner loop
array(i,j) = tmp(0)+tmp(1)+tmp(2)

end do
end do
!$acc end kernels

LOOP OPTIMIZATIONS

COLLAPSE CLAUSE

 collapse(N)

 Combine the next N tightly nested loops

 Can turn a multidimensional loop nest
into a single-dimension loop

 This can be extremely useful for
increasing memory locality, as well as
creating larger loops to expose more
parallelism

#pragma acc parallel loop collapse(2)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma acc loop reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

COLLAPSE CLAUSE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

collapse(2)

#pragma acc parallel loop collapse(2)
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

TILE CLAUSE

 tile (x , y , z, ...)

 Breaks multidimensional loops into
“tiles” or “blocks”

 Can increase data locality in some
codes

 Will be able to execute multiple “tiles”
simultaneously

#pragma acc kernels loop tile(32, 32)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

TILE CLAUSE

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

#pragma acc kernels loop tile(2,2)
for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

tile (2 , 2)

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

GANG WORKER VECTOR

GANG WORKER VECTOR

 Gang / Worker / Vector defines the
various levels of parallelism we can
achieve with OpenACC

 This parallelism is most useful when
parallelizing multi-dimensional loop
nests

 OpenACC allows us to define a generic
Gang / Worker / Vector model that will
be applicable to a variety of hardware,
but we fill focus a little bit on a GPU
specific implementation

Workers

Gang

Vector

Gang

GANG WORKER VECTOR
 When paralleling our loops, the highest

level of parallelism is gang level
parallelism

 When encountering either the kernels or
parallel directive, multiple gangs will be
generated, and loop iterations will be
spread across the gangs

 These gangs are completely
independent of each other, and there is
no way to for the programmer to know
exactly how many gangs are running at
a given time

 In many architecures, the gangs have
completely separate (or private) memory

Gang

GANG WORKER VECTOR
 In our code example, we see that we are

applying the gang clause to an outer-
loop

 This means that the outer-loop iterations
will be split across some number of
gangs

 These gangs will then execute in parallel
with each other

 Whenever a parallel compute region is
encountered, some number of gangs will
be created

 The programmer is able to specify
exactly how many gangs to create

#pragma acc parallel loop gang
for(i = 0; i < N; i++)
for(j = 0; j < M; j++)
< loop code >

GANG WORKER VECTOR
 A vector is the lowest level of

parallelism

 Every gang will have at least 1 vector

 A vector has the ability to run a single
instruction on multiple data elements

 Many different architectures can
implement vectors in different ways,
however, OpenACC allows for us to
define them in a general, non-hardware-
specific way

Vector

GANG WORKER VECTOR

 In our code example, the inner-loop
iterations will be evenly divided across a
vector

 This means that those loop iterations will
be executing in parallel with one-another

 Any loop that is inside of our vector loop
cannot be parallelized further

Vector

#pragma acc parallel loop gang
for(i = 0; i < N; i++)
#pragma acc loop vector
for(j = 0; j < M; j++)
< loop code >

3 Workers

GANG WORKER VECTOR

 The worker clause is a way for the
programmer to have multiple vectors
within a gang

 The primary use of the worker clause is
to split up one large vector into multiple
smaller vectors

 This can be useful when our inner
parallel loops are very small, and will not
benefit from having a large vector

3 Workers

GANG WORKER VECTOR

 In our sample code, we apply both gang
and worker level parallelism to our outer-
loop

 The main difference this creates for our
code is that we can now have smaller
vectors running the inner loop

 This will most likely improve
performance if the inner loop is relatively
small

#pragma acc parallel loop gang worker
for(i = 0; i < N; i++)
#pragma acc loop vector
for(j = 0; j < M; j++)
< loop code >

PARALLEL DIRECTIVE SYNTAX

#pragma acc parallel num_gangs(2) \
num_workers(2) vector_length(32)

{
#pragma acc loop gang worker
for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

}

 When using the parallel directive, you may
define the number of gangs/workers/vectors
with num_gangs(N), num_workers(M),
vector_length(Q)

 Then, you may define where they belong in
the loops using gang, worker, vector

PARALLEL DIRECTIVE SYNTAX

#pragma acc parallel loop num_gangs(2) num_workers(2) \
vector_length(32) gang worker

for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

 You may also apply gang/worker/vector
when using the parallel loop construct

KERNELS DIRECTIVE SYNTAX

#pragma acc kernels loop gang(2) worker(2)
for(int x = 0; x < 4; x++){
#pragma acc loop vector(32)
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

 When using the kernels directive, the
process is somewhat simplified

 You may define the location and
number by using gang(N),
worker(M), vector(Q)

 You may also define gang, worker,
and vector using the same method
as with the parallel directive

 If you do not specify a number, the
compiler will decide one

KERNELS DIRECTIVE SYNTAX
#pragma acc kernels
{
#pragma acc loop gang(2) worker(2)
for(int x = 0; x < 4; x++){
#pragma acc loop vector(32)
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

#pragma acc loop gang(4) worker(4)
for(int x = 0; x < 16; x++){
#pragma acc loop vector(16)
for(int y = 0; y < 16; y++){
array2[x][y]++;

}
}

}

 When using the kernels directive, the
process is somewhat simplified

 You may define the location and
number by using gang(N),
worker(M), vector(Q)

 You may also define gang, worker,
and vector using the same method
as with the parallel directive

 If you do not specify a number, the
compiler will decide one

 Each loop nest can have different
values for gang, worker, and vector

WARPS
 So far we have been using a very small number of gangs/worker/vectors, simply

because they’re easier to understand

 When actually programming, the number of gangs/worker/vectors will be much larger

 When specifically programming for an NVIDIA GPU, you will always want your
vectors large enough to fully utilize warps

 A warp, simply put, is an optimized group of 32 threads

 To utilize warps in OpenACC, always make sure that your vector length is a multiple
of 32

CUDA PROGRAMMING MODEL REVIEW

 A grid is composed of blocks which are completely
independent

 A block is composed of threads which can
communicate within their own block

 32 threads form a warp

 Instructions are issued per warp

 If an operand is not ready the warp will stall

 Context switch between warps when stalled

GANG WORKER VECTOR

 Gang is a general term that can mean a few different things. In short, it depends on
your architecture.

 On a multicore CPU, generally gang=thread.
 On a GPU, generally gang=thread block.

 The way I like to think of it is that gang represents my outer-most level of parallelism
for any architecture I am running on.

LOOP OPTIMIZATION RULES OF THUMB

 It is rarely a good idea to set the number of gangs in your code, let the compiler
decide.

 Most of the time you can effectively tune a loop nest by adjusting only the vector
length.

 It is rare to use a worker loop. When the vector length is very short, a worker loop
can increase the parallelism in your gang.

 When possible, the vector loop should step through your arrays

 Use the device_type clause to ensure that tuning for one architecture doesn’t
negatively affect other architectures.

MODULE REVIEW

KEY CONCEPTS
In this module we discussed…

 The loop directive enables the programmer to give more information to
the compiler about specific loops

 This information may be used for correctness or to improve
performance.

 The device_type clause allows the programmer to optimize for one
device type without hurting others.

LAB ASSIGNMENT
In this module’s lab you will…

 Update the code from the previous module in attempt to improve the
performance

 Use PGProf to analyze the performance difference when changing
your loops

 Experiment with the device_type clause to ensure GPU optimizations
don’t slow down the multicore speed-up, or vice versa

	Module six:�Loop optimizations
	Loop optimizations
	Sample Loop code
	Sample Loop code
	Parallelizing loops
	Auto clause
	Auto clause
	Auto clause
	Independent clause
	Independent clause
	Loop correctness
	seq clause
	seq clause
	Private and FirstPrivate clauses
	private and firstprivate clauses
	Private and FirstPrivate clauses
	private and firstprivate clauses
	Loop optimizations
	collapse clause
	collapse clause
	tile clause
	Tile clause
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Parallel directive syntax
	Parallel directive syntax
	Kernels directive syntax
	Kernels directive syntax
	warps
	CUDA Programming Model Review
	Gang Worker vector
	Loop Optimization Rules of Thumb
	Module Review
	KEY concepts
	Lab Assignment

