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MODULE SIX:
LOOP OPTIMIZATIONS



LOOP OPTIMIZATIONS

 Majority of program runtime is spent in loops

 Every loop can execute in a very different way

 Using OpenACC loop optimization, we can speed-up our most time-consuming 
portions of code



SAMPLE LOOP CODE

 Our code is a 3-Dimensional Matrix 
Multiplication code

 The code allows for many different 
levels and types of parallelism, and 
works well with all of our loop clauses

Matrix multiplication

for( i = 0; i < size; i++ )
for( j = 0; j < size; j++ )
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



SAMPLE LOOP CODE

 Our code is a 3-Dimensional Matrix 
Multiplication code

 The code allows for many different 
levels and types of parallelism, and 
works well with all of our loop clauses

Matrix multiplication

do k = 1, size
do j = 1, size

do i = 1, size
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do



PARALLELIZING LOOPS



AUTO CLAUSE

 The auto clause tells the compiler to 
decide whether or not the loop is 
parallelizable

 The auto clause can be very useful 
when you are unsure of whether or not 
a loop is safe to parallelize

#pragma acc parallel loop auto
for( i = 0; i < size; i++ )
for( j = 0; j < size; j++ )
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



AUTO CLAUSE

 The auto clause tells the compiler to 
decide whether or not the loop is 
parallelizable

 The auto clause can be very useful 
when you are unsure of whether or not 
a loop is safe to parallelize

!$acc parallel loop auto
do k = 1, size
do j = 1, size
do i = 1, size

c(i,j) = c(i,j) + a(i,k)*b(k,j)
end do

end do
end do



AUTO CLAUSE

 When using the kernels directive, the 
auto clause is implied

 This means that you do not need to 
include the auto clause when using the 
kernels directive

 However, the auto clause can be very 
useful when using the parallel directive

#pragma acc kernels loop auto
for( i = 0; i < size; i++ )
for( j = 0; j < size; j++ )
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



INDEPENDENT CLAUSE

 The independent clause asserts to the 
compiler that the loop is parallelizable

 This will overwrite any decision that the 
compiler makes about the loop

 Adding the independent clause could 
force the compiler to parallelize a non-
parallel loop

 Allows the programmer to force 
parallelism when using the kernels 
directive

#pragma acc kernels loop independent
for( i = 0; i < size; i++ ) 
for( j = 0; j < size; j++ ) 
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



INDEPENDENT CLAUSE

 When using the parallel directive, the 
independent clause is implied

 With the parallel directive, the 
programmer is determining which loops 
are parallelizable and thus the 
independent clause is not needed

#pragma acc parallel loop independent
for( i = 0; i < size; i++ ) 
for( j = 0; j < size; j++ ) 
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



LOOP CORRECTNESS



SEQ CLAUSE
 The seq clause (short for sequential) 

will tell the compiler to run the loop 
sequentially

 In the sample code, the compiler will 
parallelize the outer loops across the 
parallel threads, but each thread will 
run the inner-most loop sequentially

 The compiler may automatically apply 
the seq clause to loops that have too 
many dimensions

#pragma acc parallel loop
for( i = 0; i < size; i++ )
#pragma acc loop
for( j = 0; j < size; j++ )
#pragma acc loop seq
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



SEQ CLAUSE
 The seq clause (short for sequential) 

will tell the compiler to run the loop 
sequentially

 In the sample code, the compiler will 
parallelize the outer loops across the 
parallel threads, but each thread will 
run the inner-most loop sequentially

 The compiler may automatically apply 
the seq clause to loops that have too 
many dimensions

!$acc parallel loop
do k = 1, size
!$acc loop
do j = 1, size

!$acc loop seq
do i = 1, size
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do



PRIVATE AND FIRSTPRIVATE CLAUSES

 The private clause allows the 
programmer to define a list of variables 
as “thread-private”.  

 Each thread will be given a private 
copy of every variable in the comma-
separated list

 firstprivate is like private except that 
the private values are initialized to the 
same value used on the host.  private
variables are uninitialized.

double tmp[3];

#pragma acc kernels loop private(tmp[0:3])
for( i = 0; i < size; i++ ) 
{
tmp[0] = <value>;
tmp[1] = <value>;
tmp[2] = <value>;

}

// note that the host value of “tmp”
// remains unchanged.



PRIVATE AND FIRSTPRIVATE CLAUSES

 Variables in private or 
firstprivate clause are 
private to the loop level 
on which the clause 
appears.

 Private variables on an 
outer loop are shared 
within inner loops.

double tmp[3];

#pragma acc kernels loop private(tmp[0:3])
for( i = 0; i < size; i++ ) {
// the tmp array is private to each iteration
// of the outer loop
tmp[0] = <value>;  
tmp[1] = <value>;
tmp[2] = <value>;
#pragma acc loop 
for ( j = 0; j < size2; j++) {

// but tmp is shared amongst the threads 
// in the inner loop
array[i][j] = tmp[0]+tmp[1]+tmp[2];

}
}



PRIVATE AND FIRSTPRIVATE CLAUSES

 The private clause allows the 
programmer to define a list of variables 
as “thread-private”.  

 Each thread will be given a private 
copy of every variable in the comma-
separated list

 firstprivate is like private except that 
the private values are initialized to the 
same value used on the host.  private
variables are uninitialized.

real :: tmp(3)

!$acc kernels loop private(tmp(0:3))
do i = 1, size

tmp(0) = <value>
tmp(1) = <value>
tmp(2) = <value>

end do
!$acc end kernels

! note that the host value of “tmp”
! remains unchanged.



PRIVATE AND FIRSTPRIVATE CLAUSES

 Variables in private or 
firstprivate clause are 
private to the loop level 
on which the clause 
appears.

 Private variables on an 
outer loop are shared 
within inner loops.

real :: tmp(3)

!$acc kernels loop private(tmp(0:3))
do i = 1, size
! the tmp array is private to each iteration
! of the outer loop
tmp(0) = <value>
tmp(1) = <value>
tmp(2) = <value>
!$acc loop 
do j = 1, size2

! but tmp is shared amongst the threads 
! in the inner loop
array(i,j) = tmp(0)+tmp(1)+tmp(2)

end do
end do
!$acc end kernels



LOOP OPTIMIZATIONS



COLLAPSE CLAUSE

 collapse( N )

 Combine the next N tightly nested loops

 Can turn a multidimensional loop nest 
into a single-dimension loop

 This can be extremely useful for 
increasing memory locality, as well as 
creating larger loops to expose more 
parallelism

#pragma acc parallel loop collapse(2)
for( i = 0; i < size; i++ ) 
for( j = 0; j < size; j++ )
double tmp = 0.0f;
#pragma acc loop reduction(+:tmp)
for( k = 0; k < size; k++ )
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;



for( i = 0; i < 4; i++ ) 
for( j = 0; j < 4; j++ )
array[i][j] = 0.0f;

COLLAPSE CLAUSE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

collapse( 2 )

#pragma acc parallel loop collapse(2)
for( i = 0; i < 4; i++ ) 
for( j = 0; j < 4; j++ )
array[i][j] = 0.0f;



TILE CLAUSE

 tile ( x , y , z, ...)

 Breaks multidimensional loops into 
“tiles” or “blocks”

 Can increase data locality in some 
codes

 Will be able to execute multiple “tiles” 
simultaneously

#pragma acc kernels loop tile(32, 32)
for( i = 0; i < size; i++ ) 
for( j = 0; j < size; j++ ) 
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



TILE CLAUSE

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

#pragma acc kernels loop tile(2,2)
for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

tile ( 2 , 2 )

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)



GANG WORKER VECTOR



GANG WORKER VECTOR

 Gang / Worker / Vector defines the 
various levels of parallelism we can 
achieve with OpenACC

 This parallelism is most useful when 
parallelizing multi-dimensional loop 
nests

 OpenACC allows us to define a generic 
Gang / Worker / Vector model that will 
be applicable to a variety of hardware, 
but we fill focus a little bit on a GPU 
specific implementation

Workers

Gang

Vector



Gang

GANG WORKER VECTOR
 When paralleling our loops, the highest 

level of parallelism is gang level 
parallelism

 When encountering either the kernels or 
parallel directive, multiple gangs will be 
generated, and loop iterations will be 
spread across the gangs

 These gangs are completely 
independent of each other, and there is 
no way to for the programmer to know 
exactly how many gangs are running at 
a given time

 In many architecures, the gangs have 
completely separate (or private) memory



Gang

GANG WORKER VECTOR
 In our code example, we see that we are 

applying the gang clause to an outer-
loop

 This means that the outer-loop iterations 
will be split across some number of 
gangs

 These gangs will then execute in parallel 
with each other

 Whenever a parallel compute region is 
encountered, some number of gangs will 
be created

 The programmer is able to specify 
exactly how many gangs to create

#pragma acc parallel loop gang
for( i = 0; i < N; i++ ) 
for( j = 0; j < M; j++ ) 
< loop code >



GANG WORKER VECTOR
 A vector is the lowest level of 

parallelism

 Every gang will have at least 1 vector

 A vector has the ability to run a single 
instruction on multiple data elements

 Many different architectures can 
implement vectors in different ways, 
however, OpenACC allows for us to 
define them in a general, non-hardware-
specific way

Vector



GANG WORKER VECTOR

 In our code example, the inner-loop 
iterations will be evenly divided across a 
vector

 This means that those loop iterations will 
be executing in parallel with one-another

 Any loop that is inside of our vector loop 
cannot be parallelized further

Vector

#pragma acc parallel loop gang
for( i = 0; i < N; i++ ) 
#pragma acc loop vector
for( j = 0; j < M; j++ ) 
< loop code >



3 Workers

GANG WORKER VECTOR

 The worker clause is a way for the 
programmer to have multiple vectors
within a gang

 The primary use of the worker clause is 
to split up one large vector into multiple 
smaller vectors

 This can be useful when our inner 
parallel loops are very small, and will not 
benefit from having a large vector



3 Workers

GANG WORKER VECTOR

 In our sample code, we apply both gang 
and worker level parallelism to our outer-
loop

 The main difference this creates for our 
code is that we can now have smaller 
vectors running the inner loop

 This will most likely improve 
performance if the inner loop is relatively 
small

#pragma acc parallel loop gang worker
for( i = 0; i < N; i++ ) 
#pragma acc loop vector
for( j = 0; j < M; j++ ) 
< loop code >



PARALLEL DIRECTIVE SYNTAX

#pragma acc parallel num_gangs(2) \
num_workers(2) vector_length(32)

{
#pragma acc loop gang worker
for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

}

 When using the parallel directive, you may 
define the number of gangs/workers/vectors 
with num_gangs(N), num_workers(M), 
vector_length(Q)

 Then, you may define where they belong in 
the loops using gang, worker, vector



PARALLEL DIRECTIVE SYNTAX

#pragma acc parallel loop num_gangs(2) num_workers(2) \
vector_length(32) gang worker

for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

 You may also apply gang/worker/vector 
when using the parallel loop construct



KERNELS DIRECTIVE SYNTAX

#pragma acc kernels loop gang(2) worker(2)
for(int x = 0; x < 4; x++){
#pragma acc loop vector(32)
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

 When using the kernels directive, the 
process is somewhat simplified

 You may define the location and 
number by using gang(N),
worker(M), vector(Q)

 You may also define gang, worker, 
and vector using the same method 
as with the parallel directive

 If you do not specify a number, the 
compiler will decide one



KERNELS DIRECTIVE SYNTAX
#pragma acc kernels
{
#pragma acc loop gang(2) worker(2)
for(int x = 0; x < 4; x++){
#pragma acc loop vector(32)
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

#pragma acc loop gang(4) worker(4)
for(int x = 0; x < 16; x++){
#pragma acc loop vector(16)
for(int y = 0; y < 16; y++){
array2[x][y]++;

}
}

}

 When using the kernels directive, the 
process is somewhat simplified

 You may define the location and 
number by using gang(N),
worker(M), vector(Q)

 You may also define gang, worker, 
and vector using the same method 
as with the parallel directive

 If you do not specify a number, the 
compiler will decide one

 Each loop nest can have different 
values for gang, worker, and vector



WARPS
 So far we have been using a very small number of gangs/worker/vectors, simply 

because they’re easier to understand

 When actually programming, the number of gangs/worker/vectors will be much larger

 When specifically programming for an NVIDIA GPU, you will always want your 
vectors large enough to fully utilize warps

 A warp, simply put, is an optimized group of 32 threads

 To utilize warps in OpenACC, always make sure that your vector length is a multiple 
of 32



CUDA PROGRAMMING MODEL REVIEW

 A grid is composed of blocks which are completely 
independent

 A block is composed of threads which can 
communicate within their own block

 32 threads form a warp

 Instructions are issued per warp

 If an operand is not ready the warp will stall

 Context switch between warps when stalled



GANG WORKER VECTOR

 Gang is a general term that can mean a few different things. In short, it depends on 
your architecture. 

 On a multicore CPU, generally gang=thread. 
 On a GPU, generally gang=thread block. 

 The way I like to think of it is that gang represents my outer-most level of parallelism 
for any architecture I am running on. 



LOOP OPTIMIZATION RULES OF THUMB

 It is rarely a good idea to set the number of gangs in your code, let the compiler 
decide.

 Most of the time you can effectively tune a loop nest by adjusting only the vector 
length.

 It is rare to use a worker loop. When the vector length is very short, a worker loop 
can increase the parallelism in your gang. 

 When possible, the vector loop should step through your arrays 

 Use the device_type clause to ensure that tuning for one architecture doesn’t 
negatively affect other architectures.



MODULE REVIEW



KEY CONCEPTS
In this module we discussed…

 The loop directive enables the programmer to give more information to 
the compiler about specific loops

 This information may be used for correctness or to improve 
performance.

 The device_type clause allows the programmer to optimize for one 
device type without hurting others.



LAB ASSIGNMENT
In this module’s lab you will…

 Update the code from the previous module in attempt to improve the 
performance

 Use PGProf to analyze the performance difference when changing 
your loops

 Experiment with the device_type clause to ensure GPU optimizations 
don’t slow down the multicore speed-up, or vice versa
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