
Dr. Volker Weinberg | LRZ

MODULE TWO:
PROFILING

MODULE OVERVIEW
Topics to be covered

 Compiling and profiling sequential code

 Explanation of multicore programming

 Compiling and profiling multicore code

COMPILING SEQUENTIAL CODE

NVIDIA’S HPC COMPILERS (AKA PGI)

 nvc - The command to compile C code (formerly known as ‘pgcc’)

 nvc++ - The command to compile C++ code (formerly known as ‘pgc++’)

 nvfortran - The command to compile Fortran code (formerly known As
pgfortran/pgf90/pgf95/pgf77)

 The -fast flag instructs the compiler to optimize the code to the best of its abilities

NVIDIA Compiler Names (PGI names still work)

$ nvc –fast main.c
$ nvc++ -fast main.cpp
$ nvfortran –fast main.F90

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90

NVIDIA’S HPC COMPILERS (AKA PGI)

 The Minfo flag will instruct the compiler to print feedback about the compiled code

 -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

 -Minfo=opt will give information about all code optimizations

 -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90

PROFILING SEQUENTIAL CODE

OPENACC DEVELOPMENT CYCLE
 Analyze your code to determine

most likely places needing
parallelization or optimization.

 Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

 Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Record the time it takes for your
sequential program to run.

PROFILING SEQUENTIAL CODE
Step 1: Run Your Code

Note the final results to verify
correctness later.

Always run a problem that is
representative of your real jobs.

$ pgcc –fast jacobi.c laplace2d.c
$./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 39.432648 s

Terminal Window

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your Code

This can include information such as:
 Total runtime
 Runtime of individual routines
 Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

PROFILING WITH NSIGHT SYSTEM
AND NVTX

Nsight Product Family

Nsight Systems -
Analyze application
algorithm system-wide

Nsight Compute -
Debug/optimize CUDA
kernel

Nsight Graphics -
Debug/optimize graphics
workloads

Workflow

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Processes
and

threads

CUDA and
OpenGL API trace

Multi-GPU

Kernel and memory
transfer activities

cuDNN and
cuBLAS trace

Thread/core
migration

Thread state

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING SEQUENTIAL CODE

NVIDIA Nsight Systems CLI provides

 Simple interface to collect data
 Can be copied to any system and analysed later
 Profiles both serial and parallel code
 For more info enter nsys --help on the terminal

To profile a serial application with NVIDIA Nsight Systems, we use NVIDIA Tools Extension
(NVTX) API functions in addition to collecting backtraces while sampling.

Using Command Line Interface (CLI)

PROFILING SEQUENTIAL CODE

What is it?
 A C-based Application Programming Interface (API) for annotating events
 Can be easily integrated to the application
 Can be used with NVIDIA Nsight Systems

Why?
 Allows manual instrumentation of the application
 Allows additional information for profiling (e.g: tracing of CPU events and time ranges)

How?
 Import the header only C library nvToolsExt.h
 Wrap the code region or a specific function with nvtxRangePush() and nvtxRangPop()

NVIDIA Tools Extension API (NVTX) library

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include "laplace2d.h"
#include <nvtx3/nvToolsExt.h>

int main(int argc, char** argv)
{

const int n = 4096;
const int m = 4096;
const int iter_max = 1000;

const double tol = 1.0e-6;
double error = 1.0;

double *restrict A = (double*)malloc(sizeof(double)*n*m);
double *restrict Anew = (double*)malloc(sizeof(double)*n*m);

nvtxRangePushA("init");
initialize(A, Anew, m, n);
nvtxRangePop();

printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);

double st = omp_get_wtime();
int iter = 0;

nvtxRangePushA("while");
while (error > tol && iter < iter_max)
{

nvtxRangePushA("calc");
error = calcNext(A, Anew, m, n);
nvtxRangePop();

nvtxRangePushA("swap");
swap(A, Anew, m, n);
nvtxRangePop();

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

iter++;
}
nvtxRangePop();

double runtime = omp_get_wtime() - st;

printf(" total: %f s\n", runtime);

deallocate(A, Anew);

return 0;
}

jacobi.c
(starting and ending of ranges are
highlighted with the same color)

Open laplace-seq.qdrep with
Nsight System GUI to view the

timeline

“calc” region (calcNext function) takes 26.6%
“swap” region (swap function) takes 23.4% of

total execution time

-t Selects the APIs to be traced (nvtx in this example)

--status if true, generates summary of statistics after the collection

-b Selects the backtrace method to use while sampling. The option dwarf
uses DWARF's CFI (Call Frame Information).

--force-overwrite if true, overwrites the existing results

-o sets the output (qdrep) filename

NVTX range
statistics

PROFILING SEQUENTIAL
CODE

Open the generated report files
(*.qdrep) from command line in the
Nsight Systems profiler.

File > Open

Using Nsight Systems

PROFILING SEQUENTIAL
CODE

Navigate through the “view selector”.

“Analysis summary” shows a summary of the profiling
session. To review the project configuration used to
generate this report, see next slide.

“Timeline View” contains the timeline at the top, and a
bottom pane that contains the events view and the
function table.

Read more: https://docs.nvidia.com/nsight-systems

Using Nsight Systems

https://docs.nvidia.com/nsight-systems

PROFILING SEQUENTIAL
CODE
Using Nsight Systems

Timeline view
(event view and function table on the bottom pane)

Analysis Summary

Timeline view
(charts and the hierarchy on the top pane)

PROFILING SEQUENTIAL
CODE
Using Nsight Systems

Enlarge view!

right click in
selected region
and Zoom into

selection!

PROFILING SEQUENTIAL
CODE
Using Nsight Systems

PROFILING SEQUENTIAL
CODE

From the Timeline view, right click on the “NVTX” from
the top pane and choose “Show in Events View”.

From the bottom pane, you can now see name of the
events captured with the duration.

Viewing captured NVTX events and time
ranges via Nsight Systems GUI

PLEASE START LAB NOW!

TRAINING SETUP

 To get started, follow these steps:

 Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in
with my NVIDIA Account" and then '"Create Account“

 Visit http://courses.nvidia.com/dli-event and enter the event code

HLRS_OPENACC_AMBASSADOR_JULY22

CSC_OPENACC_AMBASSADOR_MAY22

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

 To be able to visualise Nsight System profiler output during the course, please install
Nsight System latest version on your local system before the course. The software
can be downloaded from https://developer.nvidia.com/nsight-systems.

https://developer.nvidia.com/nsight-systems

PROFILING MULTICORE CODE

PROFILING MULTICORE CODE

 Multicore refers to using a CPU with multiple
computational cores as our parallel device

 These cores can run independently of each
other, but have shared access to memory

 Loop iterations can be spread across CPU
threads and can utilize SIMD/vector instructions
(SSE, AVX, etc.)

 Parallelizing on a multicore CPU is a good
starting place, since data management is
unnecessary

What is multicore?

CPU

PROFILING MULTICORE CODE

 OpenACC’s generic model involves a
combination of a host and a device

 Host generally means a CPU, and the device
is some parallel hardware

 When running with a multicore CPU as our
device, typically this means that our
host/device will be the same

 This also means that their memories will be
the same

Using a multicore CPU with OpenACC

Host
Device

Host
Memory Device

Memory

=

=

PROFILING MULTICORE CODE

 The ‘-ta’ flag will allow us to compile our code for a specific, target parallel hardware

 ‘ta’ stands for “Target Accelerator,” an accelerator being another way to refer to a
parallel hardware

 Our OpenACC code can be compiled for many different kinds of parallel hardware
without having to change the code

Compiling code for a specific parallel hardware

$ pgcc –fast –Minfo=accel –ta=multicore laplace2d.c
calcNext:

35, Generating Multicore code
36, #pragma acc loop gang

PROFILING MULTICORE CODE

 nsys profile -t nvtx --stats=true --force-overwrite true -o
laplace_parallel ./laplace_parallel

Compiling code for a specific parallel hardware

PROFILING OPENACC CODE

PARALLEL VS
SEQUENTIAL

Have a close look at the PGI compiler
feedback for both sequential and parallel
implementation of the application.

It provides information about how your program
was optimized or why a particular optimization
was not made.

Note: Adding –Minfo flag or -Minfo=accel
or -Minfo=all when compiling, will enable
compiler feedback messages, giving details
about the parallel code generated.

Compiler feedback

Sequential

Parallel
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#include <math.h>
#include <stdlib.h>

#define OFFSET(x, y, m) (((x)*(m)) + (y))

void initialize(double *restrict A, double *restrict Anew, int m, int n)
{

memset(A, 0, n * m * sizeof(double));
memset(Anew, 0, n * m * sizeof(double));

for(int i = 0; i < m; i++){
A[i] = 1.0;
Anew[i] = 1.0;

}
}

double calcNext(double *restrict A, double *restrict Anew, int m, int n)
{

double error = 0.0;
#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++)
{

#pragma acc loop
for(int i = 1; i < m-1; i++)
{

Anew[OFFSET(j, i, m)] = 0.25 * (A[OFFSET(j, i+1, m)] + A[OFFSET(j, i-1, m)]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)]);

error = max(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m)]));
}

}
return error;

}

void swap(double *restrict A, double *restrict Anew, int m, int n)
{

#pragma acc parallel loop
for(int j = 1; j < n-1; j++)
{

#pragma acc loop
for(int i = 1; i < m-1; i++)
{

A[OFFSET(j, i, m)] = Anew[OFFSET(j, i, m)];
}

}
}

void deallocate(double *restrict A, double *restrict Anew)
{

free(A);
free(Anew);

}

laplace2d.c
(Parallelised using OpenACC parallel

directives (pragmas highlighted)

Open laplace-par.qdrep
with Nsight System GUI to

view the timeline

“calc” region (calcNext function) takes 29.2%
“swap” region (swap function) takes 18.3% of

total execution time

NVTX range
statistics

CUDA API
statistics

CUDA Kernel
statistics

CUDA
Memory

Operation
statistics

PARALLEL VS
SEQUENTIAL SPEEDUP

Have a close look at the captured
NVTX events for both serial and
parallel implementations.

Time spent in “while” loop has
significantly decreased.

Achieved speedup: ~47

Viewing captured NVTX events

Parallel

Sequential

Parallel

Sequential

PROFILING PARALLEL
CODE

Contents of the tree-like hierarchy on
the left depend on the project settings
used to collect this report.

If a certain feature has not been
enabled, corresponding rows will not
be shown on the timeline.

In this example, we chose to trace
NVTX and OpenACC while sampling.

Note: Kernel launches are
represented by blue and memory
transfers are displayed in green.

Viewing timeline via Nsight Systems

LAB CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

LAPLACE HEAT TRANSFER
Introduction to lab code - technical

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew
The lab simulates a very basic

2-dimensional heat transfer problem.
We have two 2-dimensional arrays,

A and Anew.

The arrays represent a 2-
dimensional, metal plate. Each

element in the array is a double
value that represents temperature.

We will simulate the distribution of
heat until a minimum change value

is achieved, or until we exceed a
maximum number of iterations.

We will take the average of the
neighboring cells, and record it in

Anew.

LAPLACE HEAT TRANSFER
Introduction to lab code - technical

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.25 0.25

We initialize the top row to be a
temperature of 1.0

The calcNext function will iterate
through all of the inner elements of

array A, and update the
corresponding elements in Anew 0.0 0.0

0.0 0.0

The swap function will copy the
contents of Anew to A

0.25

1.0 1.0

LAPLACE HEAT TRANSFER
Introduction to lab code

1.0 1.0

0.0 0.25 0.25 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0

1.0 1.0 1.0 1.0

0.0 0.25 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew

0.0
The swap function will copy the

contents of Anew to A

KEY CONCEPTS
In this module we discussed…

 Compiling sequential and parallel code

 CPU profiling for sequential and parallel execution

 Specifics of our Laplace Heat Transfer lab code

LAB GOALS

 Build and run the example code using the NVIDIA’s HPC compiler

 Use Nsight Systems to understand where the program spends its time

In this lab you will do the following…

THANK YOU

	MODULE two:�profiling
	Module OVERVIEW
	Compiling sequential code
	NVIDIA’S HPC COMPILERS (aka PGI)
	NVIDIA’S HPC COMPILERS (aka PGI)
	Profiling sequential code
	Openacc development CYCLE
	Profiling sequential code
	Profiling sequential code
	Profiling with NSIGHT SYSTEM�and NVTX
	Nsight Product Family
	Foliennummer 16
	Profiling Sequential code
	Profiling Sequential code
	Foliennummer 19
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Foliennummer 26
	�Please start LAB now!
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	profiling OPENACC code
	Parallel vs sequential
	Foliennummer 65
	Parallel vs sequential Speedup
	Profiling Parallel code
	Lab code
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	KEY concepts
	Lab Goals
	THANK YOU�

