

MODULE OVERVIEW

Topics to be covered

= Compiling and profiling sequential code
= Explanation of multicore programming

= Compiling and profiling multicore code

OpenACC

COMPILING SEQUENTIAL CODE

OpenACC

NVIDIA'S HPC COMPILERS (AKA PGI)

NVIDIA Compiler Names (PGI names still work)

= nvc - The command to compile C code (formerly known as ‘pgcc’)
= nvc++ - The command to compile C++ code (formerly known as ‘pgc++’)

= nvfortran - The command to compile Fortran code (formerly known As
pgfortran/pgf90/pgf95/pgf77)

= The -fast flag instructs the compiler to optimize the code to the best of its abilities

$ nvc -fast main.c $ pgcc —-fast main.c
$ nvc++ -fast main.cpp $ pgc++ -fast main.cpp
$ nvfortran -fast main.F90 $ pgfortran -fast main.F90

OpenACC

NVIDIA'S HPC COMPILERS (AKA PGI)

-Minfo flag

= The Minfo flag will instruct the compiler to print feedback about the compiled code

= -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

= -Minfo=opt will give information about all code optimizations

= -Minfo=all will give all code feedback, whether positive or negative

$ pgcc -fast -Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran -fast -Minfo=all main.f90

OpenACC

PROFILING SEQUENTIAL CODE

OpenACC

OPENACC DEVELOPMENT CYCLE

[- Analyze your code to determine

most likely places needing

- - . . . An I
parallelization or optimization. ayze

= Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

= Optimize your code to improve
observed speed-up from
parallelization.

OpenACC

PROFILING SEQUENTIAL CODE

Step 1: Run Your Code Terminal Window

o $ pgcc -fast jacobi.c laplace2d.c
Record the time it takes for your $./a.out
sequential program to run. 0, 0.250000
100, 0.002397
200, 0.001204
Note the final results to verify Zgg’ 8 gggggg
, 0.
correctness later. 500, ©.000483
600, 0.000403
700, 0.000345
Always run a problem that is 800, 0.000302
representative of your real jobs. 900, 0.000269
total: 39.432648 s

OpenACGC

PROFILING SEQUENTIAL CODE

Step 2: Profile Your Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:

= Total runtime

= Runtime of individual routines
calcNext

= Hardware counters

21.49s

|dentify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC

PROFILING WITH NSIGHT SYSTEM
AND NVTX

OpenACC

Nsight Systems -

Analyze application
algorithm system-wide

Nsight Compute -
Debug/optimize CUDA
kernel

Nsight Graphics -

Debug/optimize graphics

workloads

clericn, Lives Brogramesis

Nsight Product Family

Workflow
Start here

l

Nsight Systems
Re-check Il perf:
Re-check overall perform? Comprehensive workload-level performance SISO N
Dive into top CUDA kernels by using Dive into graphics
metrics/counter collection frames

Nsight Compute Nsight Graphics

Detailed CUDA kernel performance Detailed frame/render performance

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

i ’% LA

Pojer1 2 | XA e DKL VE _gyrihabe Saataast s e habtracis. ot L] s IR0 TR e Dl M) ek - Sk i oy - S b e 06 et Rastistiln m-nace sy aras aoren (21
= Twwdne we
o — - &S = Wms = =i T
w] assapprane = (TP T P W W T] B _ml.: bE o 1 4 L Tt B L L oLl e
= e e 7 T E——TT T T

Thread/core
migration

Processes
and
threads

CUDA and
OpenGL API trace

CUDNN and s 8 o Uk m:m:::::: 3 BED.E0 - MO IBREI @ .a [EmE e
CuBLAS trace ' | '

BUD SLRIAR Ui @R !I iilt'!'[“ﬂ!;lhillﬂfijii !I.[J.II Jul.'l [Dl.-ﬂlli ll ‘iJ -! tEJ :ﬂ a'ﬂﬂ*i Eiﬂ. if l»lFl il ==!ﬁ [

Kernelandmemory ”““”m“”lllllnlllIIIIIlI R . v [
transfer activities LLEd LI B B A v I

L Wwtan P00 SXMAT-VREH)

L T T This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING SEQUENTIAL CODE

Using Command Line Interface (CLI)

NVIDIA Nsight Systems CLI provides

Simple interface to collect data

Can be copied to any system and analysed later
Profiles both serial and parallel code

For more info enter nsys --help on the terminal

To profile a serial application with NVIDIA Nsight Systems, we use NVIDIA Tools Extension
(NVTX) API functions in addition to collecting backtraces while sampling.

OpenACC

PROFILING SEQUENTIAL CODE

NVIDIA Tools Extension API (NVTX) library

What is it?

A C-based Application Programming Interface (API) for annotating events

Can be easily integrated to the application

Can be used with NVIDIA Nsight Systems
Why?

Allows manual instrumentation of the application

Allows additional information for profiling (e.g: tracing of CPU events and time ranges)
How?

Import the header only C library nvToolsExt.h
Wrap the code region or a specific function with nvtxRangePush() and nvtxRangPop()

OpenACC

#include <string.h> -t Selects the APIs to be traced (nvtx in this example)
#include <stdio.h>
#includ tdlib.h . . e .
#include <omp.h> --status if true, generates summary of statistics after the collection
#include "laplace2d.h" . . .
#include <nvtx3/nvToolsExt.h> -b Selects the backtrace method to use while sampling. The option dwarf
int main(int argc, char argy) uses DWARF's CFI (Call Frame Information).
{ . . .
const int n = 4096; --force-overwrite if true, overwrites the eXIstlng results
const int m = 4096;
t int it = 1000; -
const Ak frertmax -0 sets the output (qdrep) filename
const double tol = 1.0e-6;
double error = 1.0;
double *restrict A = (double*)malloc(sizeof(double)*n*m);
double *restrict Anew = (double*)malloc(sizeof(double)*n*m); j I j
/moduled /Engli /solutions/paralle
nvtxRangePushA("init");
initialize(A, Anew, m, n);
nvtxRangePop();
printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);
double st = omp_get_wtime();
int iter = 0;
nvtxRangePushA("while");
while (error > tol && iter < iter_max) .
{ = iate ", y {labs, 1 y .gdstrm” file to disk...
nvtxRangePushA("calc");
error = calcNext(A, Anew, m, n);
nvtxRangePop();
nvtxRangePushA("swap");
swap(A, Anew, m, n);
nvtxRangePop();
if(iter % 100 == @) printf("%5d, %@.6f\n", iter, error);
iter++; : g 9 : NVTX range
statistics
nvtxRangePop();
double runtime = omp_get_wtime() - st;
printf(" total: %f s\n", runtime); “ " . .
calc” region (calcNext function) takes 26.6%
deallocate(A, Anew); “swap” region (swap function) takes 23.4% of
return 8; total execution time
} .
Open laplace-seq.qdrep with
jacobi.c Nsight System GUI to view the
(starting and ending of ranges are timeline

highlighted with the same color)

OpenACC

PROFILING SEQUENTIAL
CODE

Using Nsight Systems

Open the generated report files
(*.qdrep) from command line in the
Nsight Systems profiler.

File > Open

OpenACC

PROFILING SEQUENTIAL
CODE

Using Nsight Systems

Navigate through the “view selector”. X WS gy

= Timeline View

Summary

| n Disgnostics Summary

] Symbal Resolution Logs

1l Files

“Analysis summary” shows a summary of the profiling e
session. To review the project configuration used to
generate this report, see next slide. « Thesads

“Timeline View” contains the timeline at the top, and a
bottom pane that contains the events view and the e (IR
function table.

Read more: https://docs.nvidia.com/nsight-systems

OpenACC

(=]
[H

https://docs.nvidia.com/nsight-systems

PROFILING SEQUENTIAL
CODE

Using Nsight Systems -

: o

Total ruarsber of thisads

1B

Profiling session duration: 00:55.623

tas

Fepert captiam dal 19 Warch 2100 8201 16 =
Rl e compie prre-dge 78

Frofiing wtop masan Stogped by user

Trportedian TG garkCadeEpenace rahing maneias o mosued ErglhyCaplace) gist

oot hest camputer om-dge-2l

gt prafie o mets etatinug -dorcs-eareits s

laplace] fapisca

prm-dgx-28 (0:1) " . .

Target Timeline view

gl s (charts and the hierarchy on the top pane)
tl‘u.lﬂ:::ﬂn .v::ll';lhmﬂlti‘u E5-2658 wi @ 2 J00H:

[—

Analysis Summary |

OpenACC

Timeline view
(event view and function table on the bottom pane)

PROFILING SEQUENTIAL
CODE

Using Nsight Systems

B HVIDLA Naight Systems 2021.2.1 - O *
Eile View Tools Help

Project Explorer 8| | project 1 0 [T

Enlarge view!

0 Project 1 =
0 Tkocliow - 0 7w § Lenos 10mesages
il 10 208 3y 4 50 G0y 2
P CPUH
= Threads I;:'I:I

= W |316] laplace -

PV

right click in
selected region
and Zoom into

selection!
OpenACC

PROFILING SEQUENTIAL
CODE

Using Nsight Systems

0 Timeline View - 0 =1 F % 1error, 10 messages
+300ms +350ms +400ms +450ms +500ms +550ms -

95 0 0ms

b CPU(8)

= Threads (3)

= + [316] laplace -

while [66,990 5]
wap [30,4...| calc [36,252 ms] | swap [30,3... | calc [36,083 ms]| swap [30,4... | calc [36,042 ms] | swap [30,4... | calc [36,002 ms] | swap [30,5... | calc [36,064 ms] | sw..

Profiler overhead

2 threads hidden...

Events View v

OpenACC

PROFILING SEQUENTIAL
CODE

Viewing captured NVTX events and time
ranges via Nsight Systems GUI

From the Timeline view, right click on the “NVTX” from
the top pane and choose “Show in Events View”.

From the bottom pane, you can now see name of the
events captured with the duration.

@ NVIDIA Nsight Systems 2022.2.1
Eile View Tools Help

Project Explarar O Project2 0
Project 2
o "l o Timeline View
0 laplace.qdrep

O laplace_parallelgdrep 18s 0 gl LEG0ms +680ms
0 laplace_gpu.gdrep

¥ CP
O rdf_multicore.gdrep Ceu @)
0 rdf gpu.gdrep = Threads (3)
O minicfd_profileqdrep
0 laplace.gdrep =¥ [113] laplace O
NWTX |]
Remowe Filter swap [18,701 .. | calc [40,366 ms)
filer o Undo Zoom (4) Backspace
Reset Zoom

SE Pin row Ctrl+P

UpenACG Events View

Project 2 0 laplace.qdrep O

0 Timeline View - 0 xZ1x ! % 1 emor, 10 messages

185 [pipi it 00 +680ms “/W0ms siclms =i4dms <f0lms <760ms <800ms <Gadms 4

» CPU(8)

* Threads (3)

= [113] laplace O

NVTX

I swap [19,723 ... calc [40,443 ms] swap [19,701 ..

—
calc [40,366 ms] | swap [19,767 ... | calc [40,423 ms] |5vflra
I

Profiler overhead
2 threads hidden... u'c‘

4 [3
Events View b
Mame b 4
~ Name Start Duration TID Category + | Description:
[]1 v [] while 0,193229s 62,797 s 113 while
e] calc 18,5981s 40,468 ms 113 Begins: 0,193229s
Ends: 62,9905s (+62,797 s)
[[] 3 [] swap 18,63865 19,723 ms 113 Thread: 113
[]] 2 [calc 18,6583s 40,443 ms 113
[[] 5 [] swap 18,6988s 19,701 ms 113
[s [] calc 18,7185s 40,366 ms 113
7 [] swap 18,75895 19,767 ms 113 -

PLEASE START LAB NOW!

OpenACC

TRAINING SETUP

= To get started, follow these steps:

= Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in
with my NVIDIA Account" and then "'Create Account®

= Visit http://courses.nvidia.com/dli-event and enter the event code

HLRS OPENACC_AMBASSADOR_JULY22

OpenACC

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

NVIDIA

Erstelle deinen Account

Email
volker.weinberg@irz.de

Anzeigename
WV Weinberg

Gebunsdatum

Kennwort bestatigen

¥ Angemaldet blaiben Mit Sicherheitsgerst anmelden @
7k
+ lch bin ein Mensch
hCaptcha
Indem ich fortfahre, stimme ich den NVIDIA-Konio-

MNuizungsbedingungen und Datenschuizerklamung

NVIDIA

Bestatigen Sie lhre E-Mail

Eine E-Mail wurde an volkerweinberg@irz.de gesendet. Klicken Sie
auf den Link in der E-Mail, um fortzufahren.

Abbrechen

TRAINING SETUP

< C (@& courses.nvidia.com/dli-event/ Ve o
P Apps % Linux Academy %] Linux Academy We... <3 DLl Event | Deep Le...
NVIDIA VOLKER Vv

DEEP LEARNING INSTITUTE ONLINE COURSES INSTRUCTOR-LED WORKSHOPS

DLI Event

Event Code

‘ CSC_OPENACC_AMBASS Enter your event code.

OpenACC

TRAINING SETUP

<ZINVIDIA.

VOLKER v

DEEP LE AR N I NG | N STITUTE ONLINE COURSES NSTRUCTOR-LED WORKSHOPS EDUCATOR PROGRAMS ENTERPRISE SOLUTIONS

Course Progress

Fundamentals of Accelerated Computing with OpenACC Search the course

Course Tools
Welcome to Fundamentals of Accelerated Computing with ~ * R Bookmarks
OpenACC. [E Updates
Head over to the "Course” tab to get started! Course Handouts
No Course Handouts

v Fundamentals of Accelerated Computing with OpenACC

(¢ Click here to get started (1 Question
Assessment

arch ‘ Start Course -

OpenACC

TRAINING SETUP

< NVIDIA.

DEEP LEARNING INSTITUTE ONLINECOURSES INSTRUCTOR-LED WORKSHOPS — EDUCATOR PROGRAMS

VOLKER v

ENTERPRISE SOLUTIONS

Course Progress

Course » Fundamentals of Accelerated Computing with... > Click here to get started > Fundamentals of Accelerated Computing with...

&

Next »

Fundamentals of Accelerated Computing with OpenACC
[l Bookmark this page

DEEP
@2 LEARNING
NVIDIA. INSTITUTE

To get started with this live GPU enabled interactive content please click the "Start" button on the top right of this block.

This will launch a pre-configured GPU workstation, it may take 5-10 minutes.

OpenACC

START

TRAINING SETUP

DEEP LEARNING INSTITUTE

Course Progress

Course > Fundamentals of Accelerated Computing with... > Click here to get started > Fundamentals of Accelerated Computing with...

& Next »

Fundamentals of Accelerated Computing with OpenACC
[d Bookmark this page

@2 DEEP o B 4

LEARNING This Lab -1:-2:-4/8:00:00
NVIDIA. INSTITUTE LAUNCH STOPTASK ASSESS TASK

Please wait 5 - 10 minutes while your interactive GPU enabled environment loads. When the "Launch" button appears, click itjl get started.

OpenACC

TRAINING SETUP

: File Edit View Run Kernel Tabs Settings Help

* C [®] START HERE.ipynb X

[
B + XD O » m C » Markdown v Python 3 (ipykernel) O &
Filter files by name Q
o i/
- N Welcome to the OpenACC labs

; .
assessmen Please select the appropriate lab below.

module2

module3 ‘ e Module 2 - Application Profiling with Nsight Systems Lab - This lab introduces
students to application profiling using the Nsight Systems profiler.

® Module 3 - OpenACC Directives Basics - This lab introduces OpenACC directives.

* Module 4 - GPU Programming with OpenACC - This lab introduces GPU

]

[]

]

M moduled
B modules
]

module6

e
1/ e Module 5 - Data Management with OpenACC - This lab introduces OpenACC data

management directives.
e Module 6 - OpenACC Loop Optimizations - This lab introduces students to loop

optimizations in OpenACC.
e Assessment - This lab asks students to demonstrate what they've learned by using

OpenACC to accelerate the Radial Distribution Function.

OpenACC

TRAINING SETUP

= To be able to visualise Nsight System profiler output during the course, please install
Nsight System latest version on your local system before the course. The software
can be downloaded from https://developer.nvidia.com/nsight-systems.

OpenACC

https://developer.nvidia.com/nsight-systems

PROFILING MULTICORE CODE

OpenACC

PROFILING MULTICORE CODE

What i1s multicore?

Multicore refers to using a CPU with multiple _ CPU
computational cores as our parallel device

These cores can run independently of each
other, but have shared access to memory

Loop iterations can be spread across CPU
threads and can utilize SIMD/vector instructions
(SSE, AVX, etc.)

Parallelizing on a multicore CPU is a good
starting place, since data managementis
unnecessary

OpenACC

PROFILING MULTICORE CODE

Using a multicore CPU with OpenACC

OpenACC'’s generic model involves a
combination of a host and a device

Host generally means a CPU, and the device
IS some parallel hardware

When running with a multicore CPU as our
device, typically this means that our
host/device will be the same

This also means that their memories will be :
the same Device

Memory

OpenACC

PROFILING MULTICORE CODE

Compiling code for a specific parallel hardware

= The ‘-ta’ flag will allow us to compile our code for a specific, target parallel hardware

= ‘ta’ stands for “Target Accelerator,” an accelerator being another way to refer to a
parallel hardware

= Our OpenACC code can be compiled for many different kinds of parallel hardware
without having to change the code

$ pgcc -fast -Minfo=accel -ta=multicore laplace2d.c
calcNext:

35,L§Enerating Multicore code

36, #pragma acc loop gang

OpenACC

PROFILING MULTICORE CODE

Compiling code for a specific parallel hardware

= nsys profile -t nvtx --stats=true --force-overwrite true -0
laplace parallel ./laplace parallel

NVTIX Push-Pop Range Statistics:

Time (%) Total Time (n=) Instances Lverage Minimum Maximum Range
44,4 24908340742 1 2490B34074z2.0 24908340742 2490B340742 while
2e6.4 13167317033 1000 13187317.0 DGEgdST 520440324 calc
22.4 11711313301 1000 11711313.3 EeB3117 62627309 swap

0.4 175394843 1 175394E43.0 175394843 175394843 init

Report file moved to "/home/openacc/labs/module2/English/C/laplace parallel.gdrep”
Report file moved to "/home/openacc/labs/module2/English/C/laplace parallel.sglite”

OpenACC

PROFILING OPENACC CODE

OpenACC

PARALLEL VS
SEQUENTIAL

Compiler feedback

Have a close look at the PGI compiler
feedback for both sequential and parallel
implementation of the application.

It provides information about how your program
was optimized or why a particular optimization
was not made.

Note: Adding -Minfo flag or -Minfo=accel
or -Minfo=all when compiling, will enable
compiler feedback messages, giving details
about the parallel code generated.

OpenACC

1 * sizeof (double));

simd code for the Toop

code for the Joop containing reductions

Parallel

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#include <math.h>
#include <stdlib.h>

#define OFFSET(x, y, m) (((x)*(m)) + (y))

void initialize(double *restrict A, double *restrict Anew, int m, int n)

{
memset(A, ©, n * m * sizeof(double));
memset(Anew, @, n * m * sizeof(double));

for(int i = 0; 1 < m; i++){
A[i] = 1.0;
Anew[i] = 1.0;

}

double calcNext(double *restrict A, double *restrict Anew, int m, int n)
{

double error = 0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++)

#pragma acc loop
for(int i = 1; i < m-1; i++)

Anew[OFFSET(j, i, m)] = ©.25 * (A[OFFSET(J, i+l, m)] + A[OFFSET(J, i-1, m)]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)]);
error = max(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m)]));
}
}
return error;

}

void swap(double *restrict A, double *restrict Anew, int m, int n)

#pragma acc parallel loop
for(int j = 1; j < n-1; j++)

{
#pragma acc loop
for(int i = 1; i < m-1; i++)
A[OFFSET(j, i, m)] = Anew[OFFSET(j, i, m)];
}
}
void deallocate(double *restrict A, double *restrict Anew)
free(A);
free(Anew);

on Statis

erat

laplace2d.c
(Parallelised using OpenACC parallel
directives (pragmas highlighted)

OpenACC

“calc” region (calcNext function) takes 29.2%
“swap” region (swap function) takes 18.3% of
total execution time

CUDA API
statistics

CUDA Kernel
statistics

NVTX range
statistics

CUDA
Memory
Operation
statistics

Open laplace-par.qdrep
with Nsight System GUI to
view the timeline

PARALLEL VS
SEQUENTIAL SPEEDUP

Viewing captured NVTX events

gank@prm-dg

Have a close look at the captured
NVTX events for both serial and
parallel implementations. Parallel

Time spent in “while” loop ha
significantly decreased.

Sequential

Achieved speedup: ~47

uration 1 ar
122271 ms 45547 0.84707s
11995 45547 09693595

Parallel

Sequential

OpenACC

PROFILING PARALLEL
CODE

Viewing timeline via Nsight Systems

Contents of the tree-like hierarchy on
the left depend on the project settings
used to collect this report.

If a certain feature has not been
enabled, corresponding rows will not i
be shown on the timeline. L s

In this example, we chose to trace
NVTX and OpenACC while sampling.

Note: Kernel launches are
represented by blue and memory
transfers are displayed in green.

OpenACGC

JEETIE 28 — Wi (1355

q

LAB CODE

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal
plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code - technical

The lab simulates a very basic
2-dimensional heat transfer problem.
We have two 2-dimensional arrays,
A and Anew.

The arrays represent a 2-
dimensional, metal plate. Each
element in the array is a double
value that represents temperature.

We will simulate the distribution of
heat until a minimum change value
Is achieved, or until we exceed a
maximum number of iterations.

OpenACC

A
0.0100]100]0.0
0.0]100]100]0.0
0.0100]100]0.0
0.0100]100]0.0

Anew
0.0]10.0]0.0]0.0
0.0]10.0]0.0]0.0
0.0]10.0]0.0]0.0
0.0]10.0]0.0]0.0

LAPLACE HEAT TRANSFER

Introduction to lab code - technical

We initialize the top row to be a

temperature of 1.0 A Anew

The calcNext function will iterate
through all of the inner elements of
array A, and update the
corresponding elements in Anew

0.0 0.0} 0.0} @O 0.0

0.0

We will take the average of the
neighboring cells, and record it in
Anew,

0.0

0.0

The swap function will copy the
contents of Anew to A

OpenACGC

LAPLACE HEAT TRANSFER

Introduction to lab code

The swap function will copy the
contents of Anew to A

OpenACC

1.0

1.0

1.0

1.0

0.0

0.25

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Anew

1.0

1.0

1.0

1.0

0.0

0.25

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

KEY CONCEPTS

In this module we discussed...

= Compiling sequential and parallel code
= CPU profiling for sequential and parallel execution

= Specifics of our Laplace Heat Transfer lab code

OpenACC

LAB GOALS

In this lab you will do the following...

= Build and run the example code using the NVIDIA’s HPC compiler

= Use Nsight Systems to understand where the program spends its time

OpenACC

	MODULE two:�profiling
	Module OVERVIEW
	Compiling sequential code
	NVIDIA’S HPC COMPILERS (aka PGI)
	NVIDIA’S HPC COMPILERS (aka PGI)
	Profiling sequential code
	Openacc development CYCLE
	Profiling sequential code
	Profiling sequential code
	Profiling with NSIGHT SYSTEM�and NVTX
	Nsight Product Family
	Foliennummer 16
	Profiling Sequential code
	Profiling Sequential code
	Foliennummer 19
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Profiling Sequential code
	Foliennummer 26
	�Please start LAB now!
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	profiling OPENACC code
	Parallel vs sequential
	Foliennummer 65
	Parallel vs sequential Speedup
	Profiling Parallel code
	Lab code
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	KEY concepts
	Lab Goals
	THANK YOU�

