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FUNDAMENTALS OF 
DEEP LEARNING

MATERIAL



THE GOALS OF THIS COURSE

• Get you up and on your feet quickly

• Build a foundation to tackle a deep learning project right away

• We won’t cover the whole field, but we’ll get a great head start

• Foundation from which to read articles, follow tutorials, take further 
classes



AGENDA

Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures



HAVE FUN!
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HISTORY OF AI
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BEGINNING OF ARTIFICIAL INTELLIGENCE

COMPUTERS ARE MADE IN 
PART TO COMPLETE HUMAN 

TASKS

EARLY ON, GENERALIZED 
INTELLIGENCE LOOKED 

POSSIBLE

TURNED OUT TO BE HARDER 
THAN EXPECTED
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EARLY NEURAL NETWORKS

Inspired by biology

Created in the 1950’s

Outclassed by Von 
Neumann Architecture



EXPERT SYSTEMS

Highly complex

Programmed by hundreds of engineers

Rigorous programming of many rules
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EXPERT SYSTEMS - LIMITATIONS

What are these three images?
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THE DEEP LEARNING 
REVOLUTION
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DATA

- Networks need a lot of 
information to learn from

- The digital era and the 
internet has supplied that 
data
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COMPUTING POWER
Need a way for our artificial “brain” to observe lots of data 

within a practical amount of time.
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THE IMPORTANCE OF THE GPU

A Neural NetworkA Rendered Image
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WHAT IS DEEP LEARNING? 
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A (brief) introduction to ML and DL

PD Dr. Juan J. Durillo
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Perceptron – Artificial Neuron

xn

x1

x3

x2

∑ finputs

w1

w2

w3

wn
sum activation function

Θ = 𝑤! , 𝑤"… ,𝑤#

Output

most popular activation functions

Single artificial neurons work well for linearly separable 
datasets (indeed output is the activation effect on a linear 
combination of the input)
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NEURAL NETWORK

x
1

x
2

Input Layer Intermediate Layer Output

𝑤!,!!

𝑤!,"!

𝑤!,%!

𝑤",!!

𝑤","!
𝑤",%!

𝑤!,!"

𝑤",!"

𝑤%,!"

Θ = 𝑤!,!! , 𝑤!,"! , 𝑤!,%! , 𝑤",!! , 𝑤","! , 𝑤",%! , 𝑤!,!" , 𝑤",!" , 𝑤",%"

• Works well even 
when the data is not 
linearly separable



(SUPERVISED) LEARNING

• Data domain Ζ: Χ×Υ

Χ à domain of the input data

Υ à set of labels (knowledge) 

• Data Distribution is a probability distribution over a data domain

• Training set z1, …, zn from Ζ assumed to be drawn from the Data Distribution D

• Validation set v1, …, vm from Ζ also assumed to be drawn from D

• A machine learning model is a function that given a set of parameters Θ and z from Ζ produces a prediction 

• The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we 
denote ℓ Θ; 𝑧

Χ: 32 x 32 
color images

truck, car, horse, bird, boat 

Υ : labels

Example (CIFAR10 dataset)



(SUPERVISED) LEARNING

• Given Θwe can define the expected loss as: 𝐿 Θ = 𝔼&~( ℓ Θ; 𝑧

• Given D, ℓ, and a model with parameter set Θ, we can define learning as:

“The task of finding parameters Θ that achieve low values of the expected loss, while we are given access 
to only n training examples”

• The mentioned task before is commonly referred to as training

• Empirical average loss given a subset of the training data set S(z1, …, zn) as:

(𝐿 Θ = !
#)
)*!

#

ℓ Θ; 𝑧)

• Usually a proxy function, easier to understand by humans, is used for describing how well the 
training is performed (e.g., accuracy)



(SUPERVISED) LEARNING

• The dominant algorithms for training neural networks are based on mini-batch stochastic gradient 
descent (SGD)

• Given an initial point Θ! SGD attempt to decrease "𝐿 via the sequence of iterates

Θ" ⟵ Θ"#$ − 𝑛"𝑔 Θ"#$; 𝐵"

𝑔 Θ; 𝐵 =
1
𝐵
,

%&'
∇ℓ Θ; 𝑧

𝐵!: random subset of training examples

𝑛!: positive scalar (learning rate)

epoch: update the weights after going over 
all training set



COMPUTER VISION TASKS

Image 
SegmentationObject Detection

Image Classification + 
Localization

Image 
Classification

predicting the type or class of 
an object in an image

predicting the type or class on 
an object in an image and 

draw a bounding box around 
it

predicting the location of objects 
in an image via bounding boxes 
and the classes of the located 

objects

predicting the class to which 
each pixel in the image 

belongs to



ON INPUT REPRESENTATION

image language

sentence =



NEURAL NETWORKS FOR IMAGE 
CLASSIFICATION

Fully Connected Neural Network Case

is a zero

is a one

is a nine

is a five

Input Layer 
(a neuron per pixel and color map)

Middle Layer

Output Layer
(a neuron per possible outcome)



TRAINING NEURAL NETWORKS

Stochastic Gradient Descent

main idea how the surface looks like in reality
Θ

.𝐿 Θ

Θ1

Θ2



NEURAL NETWORKS FOR IMAGE 
CLASSIFICATION

shift to the left

is a zero

is a one

is a nine

is a five



NO MORE FEATURE ENGINEERING

3

3 3 3

thre
e



LEARNING FEATURES FROM DATA: 
CONVOLUTIONS

receptive 
field 1 x (-1) + 0 x 0 + 1 x 1 +

0 x (-2) + 1 x 1 + 0 x 2 +
0 x (-3) + 0 x 0 + 1 x 3 = 4

Input Image Filter Convoluted Image
-1 0 1

-2 1 2

-3 0 3

-1 0 1

-2 1 2

-3 0 3 -1 0 1

-2 1 2

-3 0 3

-1 0 1

-2 1 2

-3 0 3

Filter is convoluted with all the pixels 
of the image

How many units the filter moves 
horizontally or vertically is called 
stride and can be different in both 
dimensions

The stride defines the size of the 
convoluted image



FILTERS
Input Image: Can we get only vertical lines

out of this picture?

filter 2

filter 1

filter 3

try the code yourself (in octave)!
I=imread(<path-to-image>);

GRAY=rgb2gray(I)
FILTER=[ 1 0 -1; 1 0 -1; 1 0 -1]; % filter 2
CONVOLUTED=conv2(GREY,FILTER);
Imwrite(CONVOLUTED, <path-to-result>);

*The London skyline image is designed by Freepik

1 0 0 0 -1

1 0 0 0 -1

1 0 0 0 -1

1 0 0 0 -1

1 0 0 0 -1



CONVOLUTIONAL NEURAL NETWORKS (CNN)

A pooling layer down sample the feature maps produced 
by a convolution into smaller number of parameters to 
reduce the computational complexity. 

It is a common practice to add pooling layers after each 
one or two convolutions layers in the CNN architecture.



CNN ARCHITECTURE: A COMMON PATTERN 
AND ITS INFLUENCE

Convolutional Layers Classification Layer

The execution time required during a forward pass through a neural network is bounded from below 
by the number of floating point operations (FLOPs). 

This FLOP count depends on the deep neural network architecture and the amount of data. 



LENET ARCHITECTURE

Architecture summary :
• 3 convolutional layers filters in all the layers equal to 5x5 

(layer 1 depth = 6, layer 2 depth = 16, layer 3 depth = 120) 
• As activation function the tanh function is used

~61,000 parameters

A (brief) introduction to Machine Learning | PD Dr. Juan J. Durillo | 28.04.2021



ALEXNET AND VGG ARCHITECTURES
~60,000,000
parameters

VGG16

AlexNet

~138,000,000
parameters

A (brief) introduction to Machine Learning | PD Dr. Juan J. Durillo | 28.04.2021



GOOGLENET
~13,000,000
parameters

• What is the best kernel size for each layer?

• Concatenating filters instead of stacking them for reducing 
computational expenses



.𝐿 Θ

Θ
1

Θ
2

RESTNET

.𝐿 Θ

Θ
1

Θ
2

Thanks to the shortcut is
transformed into



INCREASING COMPLEXITY



SUMMARY

Brief introduction to Deep Learning with emphasis in Deep Convolutional Neural 
Networks 

Review of basic concepts: from perceptron to the learning task

Debrief of most important concepts of neural network architectures
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DEEP LEARNING FLIPS TRADITIONAL 
PROGRAMMING ON ITS HEAD



TRADITIONAL PROGRAMMING

Define a set of 
rules for 

classification

1
Program those 
rules into the 

computer

2
Feed it examples, 
and the program 
uses the rules to 

classify

3

Building a Classifier



MACHINE LEARNING

Show model the 
examples with the 
answer of how to 

classify

1
Model takes 

guesses, we tell it 
if it’s right or not

2
Model learns to 

correctly 
categorize as it’s 

training. The 
system learns the 
rules on its own

3

Building a Classifier



THIS IS A FUNDAMENTAL SHIFT
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WHEN TO CHOOSE DEEP LEARNING

If rules are clear 
and 

straightforward, 
often better to just 

program it

If rules are 
nuanced, complex, 
difficult to discern, 
use deep learning

Classic Programming Deep Learning



DEEP LEARNING COMPARED TO OTHER AI

Depth and complexity of networks

Up to billions of parameters (and growing)

Many layers in a model

Important for learning complex rules
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HOW DEEP LEARNING IS 
TRANSFORMING THE WORLD
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COMPUTER VISION

ROBOTICS AND 
MANUFACTURING

OBJECT 
DETECTION

SELF DRIVING 
CARS
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NATURAL LANGUAGE PROCESSING

REAL TIME 
TRANSLATION

VOICE 
RECOGNITION

VIRTUAL 
ASSISTANTS
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RECOMMENDER SYSTEMS

CONTENT 
CURATION

TARGETED 
ADVERTISING

SHOPPING 
RECOMMENDATIONS
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REINFORCEMENT LEARNING

ALPHAGO BEATS 
WORLD CHAMPION 

IN GO

AI BOTS BEAT 
PROFESSIONAL 
VIDEOGAMERS

STOCK TRADING 
ROBOTS
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OVERVIEW OF THE 
COURSE
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HANDS ON EXERCISES

• Get comfortable with the 
process of deep learning

• Exposure to different models 
and datatypes

• Get a jump-start to tackle 
your own projects
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STRUCTURE OF THE COURSE

“Hello World” of Deep Learning

Train a more complicated model

New architectures and techniques to improve 
performance

Pre-trained models

Transfer learning



PLATFORM OF THE COURSE

GPU powered cloud server

JupyterLab platform

Jupyter notebooks for interactive coding



52

SOFTWARE OF THE COURSE

• Major deep learning platforms:

• TensorFlow + Keras (Google)

• Pytorch (Facebook)

• MXNet (Apache)

• We’ll be using TensorFlow and Keras

• Good idea to gain exposure to others 
moving forward
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FIRST EXERCISE:
CLASSIFY HANDWRITTEN 

DIGITS
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HELLO NEURAL NETWORKS

• Historically important and 
difficult task for computers

Train a network to 
correctly classify 
handwritten digits

• Get exposed to the example, and 
try to figure out the rules to how 
it works

Try learning like a 
Neural Network
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LET’S GO!



56
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Part 2: How a Neural Network Trains

FUNDAMENTALS OF 
DEEP LEARNING
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AGENDA

Part 1:  An Introduction to Deep 
Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and 
Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures
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RECAP OF THE EXERCISE

Loaded and visualized our data

Edited our data (reshaped, normalized, to categorical)

Created our model

Compiled our model

Trained the model on our data

What just happened?
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DATA PREPARATION
Input as an array

28

28 [0,0,0,24,75,184,185,78,32,55,0,0,0…]
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DATA PREPARATION
Targets as categories

0 [1,0,0,0,0,0,0,0,0,0] 

1 [0,1,0,0,0,0,0,0,0,0] 

2 [0,0,1,0,0,0,0,0,0,0] 

3 [0,0,0,1,0,0,0,0,0,0] 
.
.
.
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AN UNTRAINED MODEL

[ 0, 0, …, 0]

…                 …                 …

…                 …                 …

(784,)

(512,)

(512,)

(10,)

Layer
Size
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A SIMPLER MODEL
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A SIMPLER MODEL

𝑦 = 𝑚𝑥 + 𝑏

x y

1 3

2 5 0
1
2
3
4
5
6

0 2 4

y

x

𝑚 = ?

b = ?!𝑦

m•x
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A SIMPLER MODEL

𝑦 = 𝑚𝑥 + 𝑏

x y

1 3

2 5 0
1
2
3
4
5
6

0 2 4

y

x

𝑚 = ?

b = ?!𝑦

m•x
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A SIMPLER MODEL

𝑦 = 𝑚𝑥 + 𝑏

!𝑦

x y (𝒚

1 3 4

2 5 3 0
1
2
3
4
5
6

0 2 4

y

x

𝑚 = −1
b = 5

Start 
Randomm•x
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A SIMPLER MODEL

𝑦 = 𝑚𝑥 + 𝑏

𝑅𝑀𝑆𝐸 =
1
𝑛(
*+,

-

(𝑦* − ,𝑦*).

𝑀𝑆𝐸 = ,
-
∑*+,- (𝑦* − ,𝑦*).

x y (𝒚 𝒆𝒓𝒓"

1 3 4 1

2 5 3 4

MSE = 2.5

RMSE = 1.6

0
1
2
3
4
5
6

0 2 4

y

x
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0
1
2
3
4
5
6

0 2 4

y

x

A SIMPLER MODEL

𝑦 = 𝑚𝑥 + 𝑏

x y (𝒚 𝒆𝒓𝒓"

1 3 4 1

2 5 3 4

MSE = 2.5

RMSE = 1.6
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THE LOSS CURVE

MSE

16

0

MSE

Loss Surface
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THE LOSS CURVE

Current

Target

16

0

0
1
2
3
4
5
6

0 2 4

y

x
𝑚 = −1
b = 5

MSE
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THE LOSS CURVE

Old

Target

16

0

0
1
2
3
4
5
6

0 2 4

y

x
𝑚 = −1
b = 4

Current

MSE



72

THE LOSS CURVE

Target

16

0

0
1
2
3
4
5
6

0 2 4

y

x
𝑚 = 0
b = 4

Current

MSE
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THE LOSS CURVE

16

0

Target

16

0

Which direction loss decreases 
the most 

The 
Gradient

How far to travel

λ: The 
learning 

rate

A model update with the full 
dataset

Epoch

A sample of the full dataset
Batch

An update to the weight 
parameters

Step

MSE
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THE LOSS CURVE

Target

16

0

Which direction loss decreases 
the most 

The 
Gradient

How far to travel

λ: The 
learning 

rate

A model update with the full 
dataset

Epoch

A sample of the full dataset
Batch

An update to the weight 
parameters

Step

MSE
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OPTIMIZERS

Loss – Momentum Optimizer • Adam

• Adagrad

• RMSprop

• SGD
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FROM NEURON TO 
NETWORK
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BUILDING A NETWORK

• Scales to more inputs

!𝑦

w2w1
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BUILDING A NETWORK

• Scales to more inputs

• Can chain neurons

!𝑦

w6w5

w1

w2
x1 x2w3

w4
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BUILDING A NETWORK

• Scales to more inputs

• Can chain neurons

• If all regressions are 
linear, then output will 
also be a linear 
regression

!𝑦

w6w5

w1

w2
x1 x2w3

w4
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ACTIVATION FUNCTIONS
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ACTIVATION FUNCTIONS

Linear

-10
-5
0
5

10

-10 -5 0 5 10

!𝑦 = 𝑤𝑥 + 𝑏

Sigmoid

0

0,5

1

-10 -5 0 5 10

!𝑦 =
1

1 + 𝑒"($%&')

-10
-5
0
5

10

-10 -5 0 5 10

ReLU

!𝑦 = '𝑤𝑥 + 𝑏 𝑖𝑓 𝑤𝑥 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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ACTIVATION FUNCTIONS

Linear ReLU Sigmoid
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ACTIVATION FUNCTIONS

!𝑦

w4w3

w1 w2
x1

-2

0

2

-10 -5,5 -1 3,5 8
-2

0

2

-10 -5,5 -1 3,5 8

-2

0

2

-10 -5,5 -1 3,5 8
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OVERFITTING
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OVERFITTING
Why not have a super large neural network?
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0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,2 0,4 0,6 0,8 1

OVERFITTING
Which Trendline is Better?

MSE = .0000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,2 0,4 0,6 0,8 1

MSE = .0113
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0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,2 0,4 0,6 0,8 1

OVERFITTING
Which Trendline is Better?

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,2 0,4 0,6 0,8 1

MSE = .0308 MSE = .0062
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TRAINING VS VALIDATION DATA

Training data
• Core dataset for the model to learn on

Validation data
• New data for model to see if it truly 

understands (can generalize) 

Overfitting
• When model performs well on the training 

data, but not the validation data (evidence of 
memorization)

• Ideally the accuracy and loss should be 
similar between both datasets

Avoid memorization

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

M
SE

Epoch

MSE Per Epoch

Training MSE

Validation MSE - Expected

Validation MSE - Overfitting
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FROM REGRESSION TO 
CLASSIFICATION
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AN MNIST MODEL

(784,)

(512,)

(512,)

(10,)

Layer
Size

[ 0, 0, …, 0]

…                 …                 …

…                 …                 …
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AN MNIST MODEL

(784,)

(512,)

(512,)

(10,)

Layer
Size

ReLU

Sigmoid

ReLU

[ 0, 0, …, 0]

…                 …                 …

…                 …                 …
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AN MNIST MODEL

(784,)

(512,)

(512,)

(10,)

ReLU

Softmax

Layer
Size

ReLU

[ 0, 0, …, 0]

…                 …                 …

…                 …                 …
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RMSE FOR PROBABILITIES?

0

1

2

3

4

0 1 2 3 4
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0

1

2

3

4

0 1 2 3 4

RMSE FOR PROBABILITIES?
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CROSS ENTROPY

-1
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6
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00
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0 1 2 3 4
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CROSS ENTROPY

-1
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Loss if True Loss if False

0

1
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4

0 1 2 3 4

𝐿𝑜𝑠𝑠 = −(𝑡 𝑥 ) log(𝑝 𝑥 + 1 − 𝑡 𝑥 ) log 1 − 𝑝(𝑥) )

𝑡 𝑥 = 𝑡𝑎𝑟𝑔𝑒𝑡 (0 𝑖𝑓 𝐹𝑎𝑙𝑠𝑒, 1 𝑖𝑓 𝑇𝑟𝑢𝑒)

𝑝 𝑥 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑥
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CROSS ENTROPY
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BRINGING IT TOGETHER
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THE NEXT EXERCISE
The American Sign Language Alphabet
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LET’S GO!
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HELPING THE COMPUTER CHEAT CALCULUS

APPENDIX: GRADIENT 
DESCENT
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LEARNING FROM ERROR

𝑀𝑆𝐸 = ,
-
∑*+,- (𝑦 − ,𝑦). = ,

-
∑*+,- (𝑦 − (𝑚𝑥 + 𝑏)).

𝑀𝑆𝐸 =
1
2 ((3 − (𝑚 1 + 𝑏)). + (5 − (𝑚 2 + 𝑏)).)

𝜕𝑀𝑆𝐸
𝜕𝑚 = 9𝑚+ 5𝑏 − 23

𝜕𝑀𝑆𝐸
𝜕𝑏 = 5𝑚 + 3𝑏 − 13

𝑚 = −1
b = 5𝜕𝑀𝑆𝐸

𝜕𝑚 = −7
𝜕𝑀𝑆𝐸
𝜕𝑏 = −3
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THE LOSS CURVE

Current

Target

16

0

Loss Surface
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THE LOSS CURVE

Target

𝜕𝑀𝑆𝐸
𝜕𝑚 = −7

𝜕𝑀𝑆𝐸
𝜕𝑏 = −3

16

0
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THE LOSS CURVE

𝜕𝑀𝑆𝐸
𝜕𝑚 = −7

𝜕𝑀𝑆𝐸
𝜕𝑏 = −3

m ∶= m − λ
𝜕𝑀𝑆𝐸
𝜕𝑚

b ≔ 𝑏 − λ
𝜕𝑀𝑆𝐸
𝜕𝑏

Target

16

0



106

THE LOSS CURVE

Target

𝜕𝑀𝑆𝐸
𝜕𝑚 = −7

𝜕𝑀𝑆𝐸
𝜕𝑏 = −3

16

0

m ∶= m − λ
𝜕𝑀𝑆𝐸
𝜕𝑚

b ≔ 𝑏 − λ
𝜕𝑀𝑆𝐸
𝜕𝑏

λ = .6
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THE LOSS CURVE

Target

𝜕𝑀𝑆𝐸
𝜕𝑚 = −7

𝜕𝑀𝑆𝐸
𝜕𝑏 = −3

16

0

m ∶= m − λ
𝜕𝑀𝑆𝐸
𝜕𝑚

b ≔ 𝑏 − λ
𝜕𝑀𝑆𝐸
𝜕𝑏

λ = .005
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THE LOSS CURVE

Target

16

0

m≔ −1+ 7 λ = −0.3

b ≔ 5+ 3 λ = 4.7

λ = .1
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Part 3: Convolutional Neural Networks

FUNDAMENTALS OF 
DEEP LEARNING
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AGENDA

Part 1:  An Introduction to Deep 
Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and 
Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures
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RECAP OF THE EXERCISE

Trained a dense neural network model

Training accuracy was high

Validation accuracy was low 

Evidence of overfitting
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KERNELS AND 
CONVOLUTION
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1 0 1 1 0 1

0 1 0 0 1 0

0 1 1 1 1 0

0 1 1 1 1 0

1 0 1 1 0 1

1 1 0 0 1 1

.06 .13 .06

.13 .25 .13

.06 .13 .06

Original ImageBlur Kernel

∗ =

.56

Convolved Image

.06 0 .06

0 .25 0

0 .13 .06

Total



120

KERNELS AND CONVOLUTION
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KERNELS AND CONVOLUTION
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PADDING
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KERNELS AND NEURAL 
NETWORKS
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KERNELS AND NEURAL NETWORKS
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KERNELS AND NEURAL NETWORKS
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KERNELS AND NEURAL NETWORKS
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FINDING EDGES
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NEURAL NETWORK PERCEPTION
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NEURAL NETWORK PERCEPTION
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OTHER LAYERS IN THE 
MODEL
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MAX POOLING
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DROPOUT

rate = 0 rate = .2 rate = .4
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WHOLE ARCHITECTURE
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LET’S GO!
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Part 4: Data Augmentation and Deployment

FUNDAMENTALS OF 
DEEP LEARNING
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AGENDA

Part 1:  An Introduction to Deep 
Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and 
Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures
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RECAP OF THE EXERCISE

• CNN increased validation 
accuracy

• Still seeing training accuracy 
higher than validation

• Clean data provides better 
examples

• Dataset variety helps the model 
generalize

Analysis Solution
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DATA AUGMENTATION
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DATA AUGMENTATION
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IMAGE FLIPPING

Horizontal Flip

Vertical Flip
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ROTATION

0⁰

45⁰

90⁰ 135⁰

180⁰
22

5⁰

27
0⁰31

5⁰



146

ZOOMING
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WIDTH AND HEIGHT
SHIFTING
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HOMOGRAPHY
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BRIGHTNESS
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CHANNEL
SHIFTING
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MODEL DEPLOYMENT
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MODEL DEPLOYMENT
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MODEL DEPLOYMENT

Training 
Batch Input

Convolution

…

Max Pooling
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Resize

MODEL DEPLOYMENT

Greyscale “Batch”
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LET’S TRY IT OUT!
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Part 5: Pre-trained Models

FUNDAMENTALS OF 
DEEP LEARNING
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REVIEW SO FAR
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REVIEW SO FAR

• Learning Rate

• Number of Layers

• Neurons per Layer

• Activation Functions

• Dropout

• Data
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PRE-TRAINED MODELS
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PRE-TRAINED MODELS

PYTORCH
HUB
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PRE-TRAINED MODELS

IM GENET



164

THE NEXT CHALLENGE
An Automated Doggy Door



165

TRANSFER LEARNING
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THE CHALLENGE AFTER
An Automated Presidential Doggy Door
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TRANSFER LEARNING
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TRANSFER LEARNING
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TRANSFER LEARNING
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TRANSFER LEARNING
Freezing the Model?
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TRANSFER LEARNING
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LET’S GET STARTED!
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Part 6: Advanced Architectures

FUNDAMENTALS OF 
DEEP LEARNING
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AGENDA

Part 1:  An Introduction to Deep 
Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and 
Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures
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MOVING FORWARD
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FIELDS OF AI

Computer Vision
•Optometry

Natural Language Processing
•Linguistics

Reinforcement Learning
•Game Theory
•Psychology

Anomaly Detection
•Security
•Medicine
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FIELDS OF AI

Computer Vision
•Optometry

Natural Language Processing
•Linguistics

Reinforcement Learning
•Game Theory
•Psychology

Anomaly Detection
•Security
•Medicine
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NATURAL LANGUAGE 
PROCESSING
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Dictionary

1. A
2. An
3. And
4. At
5. Ate
6. Bark
7. Barked

8. Cat
9. Cats
10. Dog
11. Dogs
12. Eat

“A dog barked at a cat.”

[1, 10, 7, 4, 1, 8]

FROM WORDS TO NUMBERS
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FROM WORDS TO NUMBERS
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FROM WORDS TO NUMBERS
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FROM WORDS TO NUMBERS

BIGGER DICTIONARY
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FROM WORDS TO NUMBERS

DICTIONARY
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RECURRENT NEURAL 
NETWORKS
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DICTIONARY

1. CATS
2. DOGS
3. MEOW
4. SAY
5. WOOF

RECURRENT NEURAL NETWORKS

“Cats say ___.”

“Dogs say ___.”
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DICTIONARY

1. CATS
2. DOGS
3. MEOW
4. SAY
5. WOOF

RECURRENT NEURAL NETWORKS

Inputs
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RNN
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DICTIONARY

1. CATS
2. DOGS
3. MEOW
4. SAY
5. WOOF

RECURRENT NEURAL NETWORKS
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DICTIONARY

1. CATS
2. DOGS
3. MEOW
4. SAY
5. WOOF

RECURRENT NEURAL NETWORKS

Inputs

Outputs
Embedding

RNN

“Cats say ___.”

“Dogs say ___.”0%

0%

50%

50%

0%

.1

-.5

.6
1

0

0

0

0

0

0

0



191

DICTIONARY
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DICTIONARY
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DICTIONARY
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RECURRENT NEURAL NETWORKS

RNN

Input

Output

LSTM

Input

Output
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OTHER ARCHITECTURES
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AUTOENCODERS

Inputs Outputs
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AUTOENCODERS

Inputs Outputs
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AUTOENCODERS
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

Discriminator

Generator

Real 
Images

Fake 
Images

Prediction
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REINFORCEMENT LEARNING

Agent Environment
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NEXT STEPS
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ENABLING PORTABILITY WITH NGC CONTAINERS
Extensive
- Diverse range of workloads and industry specific use cases

Optimized
- DL containers updated monthly

- Packed with latest features and superior performance

Secure & Reliable
- Scanned for vulnerabilities and crypto

- Tested on workstations, servers, & cloud instances

Scalable
- Supports multi-GPU & multi-node systems

Designed for Enterprise & HPC
- Supports Docker, Singularity & other runtimes

Run Anywhere
- Bare metal, VMs, Kubernetes

- x86, ARM, POWER

- Multi-cloud, on-prem, hybrid, edge

NGC Deep Learning Containers

Learn more about NGC Containers

https://www.nvidia.com/en-us/gpu-cloud/containers/
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NEXT STEPS FOR THIS CLASS

Setup DockerStep 1
https://www.docker.com/

Visit NGC CatalogStep 2
https://ngc.nvidia.com/catalog/

containers/nvidia:dli-dl-
fundamentals

Pull and Run ContainerStep 3
Visit localhost:8888 to check out 

a JupyterLab environment with 
a Next Steps Project

https://www.docker.com/
https://ngc.nvidia.com/catalog/containers/nvidia:dli-rapids-fundamentals
http://localhost:8888/
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CLOSING THOUGHTS
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COPYING ROCKET SCIENCE
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LET’S GET STARTED!



207


