


THE GOALS OF THIS COURSE

* Get you up and on your feet quickly

* Build a foundation to tackle a deep learning project right away
*  We won’t cover the whole field, but we’ll get a great head start

* Foundation from which to read articles, follow tutorials, take further

classes




Part |:An Introduction to Deep Learning

Part 2: How a Neural Network Trains

AG E N DA Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures




HAVE FUN!
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BEGINNING OF ARTIFICIAL INTELLIGENCE

LR * X

COMPUTERS ARE MADE IN EARLY ON, GENERALIZED TURNED OUT TO BE HARDER
PART TO COMPLETE HUMAN INTELLIGENCE LOOKED THAN EXPECTED
TASKS POSSIBLE



EARLY NEURAL NETWORKS

Outclassed by Von
Neumann Architecture




EXPERT SYSTEMS




EXPERT SYSTEMS - LIMITATIONS

What are these three images?
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THE DEEP LEARNING
REVOLUTION




DATA

- Networks need a lot of
information to learn from

- The digital era and the
internet has supplied that

data

NVIDIA.  INSTITUTE



COMPUTING POWER

Need a way for our artificial “brain” to observe lots of data
within a practical amount of time.
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THE IMPORTANCE OF THE GPU

A Rendered Image A Neural Network




WHAT IS DEEP LEARNING?




A (brief) introduction to ML and DL
PD Dr. Juan J. Durillo



Perceptron - Artificial Neuron

X4 @
W4 &
X3 @
inputs )3 f — Output &
X3 W3
W sum aCtlvatlon fu nCtlon Hyper Tangent Function RelU Function
n

Xn tanh(z) max (0, z)
@ —_ {Wl’WZ ...,Wn} ;x
. >X

Single artificial neurons work well for linearly separable Sigmoid Function PAIEGpRnton

datasets (indeed output is the activation effect on a linear iaalos o=
combination of the input)

most popular activation functions




NEURAL NETWORK

Input Layer Intermediate Layer Output

 Works well even
when the data is not
linearly separable

| 1 1 1 1 1 2 2 2
0= {W1,1r W12, W13, Wy 1, W32, W53, W1 1,W3 1, W2,3}




(SUPERVISED) LEARNING

X: 32 x 32 Y : labels

cglor.ima
j %S {truck, car, horse, bird, b(}at
-E-8
W

Example (CIFAR10 dataset)

Data domain Z: XXY

X - domain of the input data
Y - set of labels (knowledge)
Data Distribution is a probability distribution over a data domain
Training set z4, ..., z, from Z assumed to be drawn from the Data Distribution D
Validation set vy, ..., vis from Z also assumed to be drawn from D
A machine learning model is a function that given a set of parameters ® and z from Z produces a prediction

The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we
denote £(0; z)



(SUPERVISED) LEARNING

Given 0 we can define the expected loss as: L(O) = E,_p[£(0; z)]

Given D, ¢, and a model with parameter set ©, we can define learning as:

“The task of finding parameters 0 that achieve low values of the expected loss, while we are given access
to only n training examples”

The mentioned task before is commonly referred to as training

Empirical average loss given a subset of the training data set S(z, ..., z,) as:
n

L(e) =1 ) [£(8;2,)]

t=1

Usually a proxy function, easier to understand by humans, is used for describing how well the
training is performed (e.g., accuracy)



(SUPERVISED) LEARNING

The dominant algorithms for training neural networks are based on mini-batch stochastic gradient

descent (SGD)

Given an initial point ®, SGD attempt to decrease L via the sequence of iterates

Op «— Or_1 —ng(O¢_1; By)

1
9(O:B) = ) Ve(®;2)

B;: random subset of training examples
n;: positive scalar (learning rate)

epoch: update the weights after going over
all training set



COMPUTER VISION TASKS

predicting the type or class of predicting the type or class on predicting the location of objects predicting the class to which
an object in an image an object in an image and in an image via bounding boxes each pixel in the image
draw a bounding box around and the classes of the located belongs to
Image Image Classification + objects
Classification Localization Image

Object Detection Segmentation



ON INPUT REPRESENTATION

dIcE=[REOS o tal i my. S sleepsi tont ;iidogi s icat’ ‘the’,*bed ' filocor’i

sentence =['a', 'dog', 'sleeps', 'on', 'the', 'floor', 'EOS']

[[6: 2. @ 6. ©: @8 9: 0. & 8]

[0 ©. 0. ©. @6. 1. 9. .0 6. 0.]

—— [@. ©. ©. 1. ©. ©. ©. ©. ©. 0.]
= 784 pixole (i@ 8. . 0: 8 3.8 6. 08; & o
[e. ©. ©. ©. ©. ©. 0. 1. ©o. 0.]

[e. ©. ©. ©. ©. ©. 0. ©. ©. 1.]

1. 8.0 &.'e. 6. 6. 8- o B}

image language



NEURAL NETWORKS FOR IMAGE
CLASSIFICATION

Fully Connected Neural Network Case Output Layer
Input Layer (a neuron per possible outcome)
(a neuron per pixel and color map)
is a zero
isa one
lllllll is a five

is a nine



Cost function: «
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TRAINING NEURAL NETWORKS

Stochastic Gradient Descent

N

. 4
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main idea how the surface looks like in reality



NEURAL NETWORKS FOR IMAGE
CLASSIFICATION

iS a zero

isaone

shift to the left . )
is a five

IS a nine






LEARNING FEATURES FROM DATA:
CONVOLUTIONS

Input Image Filter Convoluted Image

o 1 o 1
-- 1 0 1 0 4
. 0o 1 0 1
receptive i 0 o 1 0 O
field ® Ix(1)+0x0+1x1+
o 0 0 0 1 0 1 0 0x(2)+1x1+0x2+
o o 1 o0 o 1 1 1 0x(-3)+0x0+1x3=4
o 0 0 o0 o0 o0 1 O L
o o 1 o0 0o 1 o0 1
—
Filter is convoluted with all the pixels
of the image 1 o 1 0 1 1 0 1 0 0 1 o0 1 1 0.1 0 O 1
0 i 0 1 O o 1. o0 o 1 0 1 O o 1. 0 0 1 O
How many units the filter moves 0 o1 0 H 0 o 1 0 1 o0 0 T
horizontally or vertically is called 1 0 1 0 0 1 o0 O 1 0 1. 0 O 1 0 1 "0 O0 1
stride and can be different in both
dimensi o o0 o o 1 0 1 O 0 1 0 1 O o 0 o o 1 O
imensions
0o 0 1 0 0 1 1 1 0 oo111oo1oo
The stride defines the size of the 00 0 0 0 0 1 0 0 o 0 0 0 1 0 0 0 0 0 §
convoluted image 0o 0 1 0 0 1 0 1 0 o 0 1 0 1 0 0 1 0 0




*The London skyline image is designed by Freepik

FILTERS ‘

1211, m ”
A 2

Input Image: Can we get only vertical lines \
out of this picture? 1®
i 0 -1
filter 1
1 0 - |
| 1|
LONDOR] T 0 - [Nl
i 0 -1 '
IFONID@IN
filter 2 -
try the code yourself (in octave)!
1 0 0 0 -1
I=imread(<path-to-image>); )
GRAY=rgb2gray(l) 1t 0.0 0 - Wi
FILTER=[10-1;10-1; 1 0 -1]; % filter 2 1 0O 0 O -1 i l} p2fg A A PA
CONVOLUTED=conv2(GREY,FILTER); i <€\j\ ML S
Imwrite(CONVOLUTED, <path-to-result>); 1.0 0 0 -1 WA AL il SSE Xl il 8
o0 o0 o . i e, 775 [

filter 3 1 @NIDON]




CONVOLUTIONAL NEURAL NETWORKS (CNN)

Convolutional layers

Input layer

feature maps

feature maps
feature maps

Fully connected layers Output layer

\

© 0|0 O

0000

00
s oleolleoceoleooo O O
oo0o0oloooo|ocoleo|ocolocimde o
00oofooeoo]|oalooe

3
flatten
: ﬁ g 5 > ) 7
: . | Prediction
Feature extraction Classification
€ 7 S A pooling layer down sample the feature maps produced
© © o1 {94 by a convolution into smaller number of parameters to
b © bl O reduce the computational complexity.
\ L \ L
It is a common practice to add pooling layers after each
00|00 0|0 0]] 0006168060 one or two convolutions layers in the CNN architecture.




CNN ARCHITECTURE: A COMMON PATTERN
AND ITS INFLUENCE

Convolutional Layers Classification Layer
Conv Conv Conv FC FC FC
Feature Extraction Classification

The execution time required during a forward pass through a neural network is bounded from below
by the number of floating point operations (FLOPS).

This FLOP count depends on the deep neural network architecture and the amount of data.



LENET ARCHITECTURE

C3:1. maps 16@10x10 ~61,000 parameters
C1: feature maps S4:f. maps 16@5x5
i L 6@28x28
e <ol o C5: layer ouTPUT
6@14x14 r 120 FB layer

CSONN

| | Full ooanectlon Gaussman connections
Convolutions Subsampling Convolutions  Su bsampllng Full oonnectlon

Architecture summary :

« 3 convolutional layers filters in all the layers equal to 5x5
(layer 1 depth = 6, layer 2 depth = 16, layer 3 depth = 120)

» As activation function the tanh function is used

A (brief) introduction to Machine Learning | PD Dr. Juan J. Durillo | 28.04.2021



ALEXNET AND VGG ARCHITECTURES

Input CONV1
conv2 ~60,000,000
CONV3 CONV4 CONV5 FC6 FC7 FC8 parameters
27 Dense Dense
ot ‘ 13 13 13 Dense
S - = 3 |- 3 L ] TS
I > . 13 13 13
5 3 3 3
384 384 256
55
/ 25 MTX 4096 4096 1000
Max pooling
/ 24 iad pooling
Input Max
image 3 pooling
(RGB) Stride
of 4
[ | | L |
Image input 5 Convolution layers 3 Fully-connected
layers AlexNet
) ) () o) ) ) ) M M M (Gon) S ) ) ) () ~138’OOO!OOO
o o o parameters
P 3 2 & QY8 e} o S . = QS = B o o
~ ~ 8 -~ -~ 8 AN AN N 8 w wn wn 8 wn (o] Te} 8 o
- - - - - - - - - - - o
= B o = >l a | - > a | = >(a | > > a (8 3 =
o) o) 7= Z = Z 7 7 7=, 7= Z i 7 o o >
o) o) O ©) O @] ] ©) | ©©) O "1 O ) (©) g < ©
O O O O (@] © (@] (@] O O (@) O O =
0 0 ) ) ™ ™ %) 1) ™ %) ) ) ) L - =
(o]
x x x x x x x x x x x x x %)
0 0 ™ ™ ™ () ™ ™ ™ ™ ™ ™ ™
— — S — — — — — ) —  S— — — — — —
VGG16

A (brief) introduction to Machine Learning | PD Dr. Juan J. Durillo | 28.04.2021



GOOGLENET

N g ~13,000,000
= it parameters
g N\ N s N ~ ) ) ( \
/\ w = w w w ®
5 > 5 > > x o
- & w ol 9 w w w 2 @
s> | —_—
T ~oHlsHloro-s 3 = >
<
-~ O X ®) ®) X X X S )
z| |2 (2] |2] |8 » » D =
R R BRR: <] o S
\ J J - J J \ J \ )
»  What is the best kernel size for each layer?
| | |
+ Concatenating filters instead of stacking them for reducing [[sxscomottons | s conions | [ 11 comoltons |

computational expenses 11 conotrs 1 1 I

[ 1x 1 convolutions [ 1x 1 convolutions 3 x 3 max pooling

| | !




< induy >
ANOD

100d

Residual blocks

300Iq [ENpISaY

X20Iq |[enpisay

390|q [enpisay

100d

Shortcut path = x

Main path f(x)

RESTNET

Add both L(®)
paths

Thanks to the shortcut is
transformed into

1



INCREASING COMPLEXITY

4 Exaflops 20 Exaflops 100 Exaflops
60 Million Parameters 300 Million Parameters 8700 Million Parameters
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2015 - Microsoft ResNet 2016 - Baidu Deep Speech 2 2017 - Google Neural Machine Translation
Superhuman Image Recognition Superhuman Voice Recognition Near Human Language Translation



SUMMARY

Brief introduction to Deep Learning with emphasis in Deep Convolutional Neural
Networks

Review of basic concepts: from perceptron to the learning task

Debrief of most important concepts of neural network architectures



DEEP LEARNING FLIPS TRADITIONAL
PROGRAMMING ON ITS HEAD




TRADITIONAL PROGRAMMING

Building a Classifier

@ © O

Define a set of Program those Feed it examples,
rules for rules into the and the program
classification computer uses the rules to

classify




MACHINE LEARNING

Building a Classifier

Show model the Model takes Model learns to
examples with the guesses, we tell it correctly
answer of how to if it’s right or not categorize as it’s

classify training. The

system learns the
rules on its own

@-"BEEP
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THIS IS A FUNDAMENTAL SHIFT




WHEN TO CHOOSE DEEP LEARNING

L Deep Learning

Classic Programming

If rules are clear

If rules are
and

nuanced, complex,
difficult to discern,
use deep learning

straightforward,
often better to just
program it




DEEP LEARNING COMPARED TO OTHER Al

Depth and complexity of networks

Up to billions of parameters (and growing)

Many layers in a model

=l Important for learning complex rules




HOW DEEP LEARNING IS
TRANSFORMING THE WORLD




COMPUTER VISION

ROBOTICS AND
MANUFACTURING

OBJECT
DETECTION

SELF DRIVING
CARS

5%



NATURAL LANGUAGE PROCESSING

REAL TIME VOICE VIRTUAL
TRANSLATION RECOGNITION ASSISTANTS



RECOMMENDER SYSTEMS

CONTENT TARGETED SHOPPING
CURATION ADVERTISING RECOMMENDATIONS

O

46



REINFORCEMENT LEARNING

ALPHAGO BEATS Al BOTS BEAT STOCK TRADING
WORLD CHAMPION PROFESSIONAL ROBOTS
IN GO VIDEOGAMERS

O

47



OVERVIEW OF THE
COURSE




HANDS ON EXERCISES

Get comfortable with the
process of deep learning

Exposure to different models
and datatypes

Get a jump-start to tackle
your own projects




STRUCTURE OF THE COURSE

{“Hello World” of Deep Learning J

{Train a more complicated model

New architectures and techniques to improve
performance

{Pre-trained models

{Transfer learning




PLATFORM OF THE COURSE

@ GPU powered cloud server

JupyterLab platform

5@’ Jupyter notebooks for interactive coding

DEEP
NNNNNNNN
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SOFTWARE OF THE COURSE

Major deep learning platforms:
TensorFlow + Keras (Google)

4
|
Pytorch (Facebook)

|
TensorFlow
MXNet (Apache)

We’ll be using TensorFlow and Keras
Oxnet

Good idea to gain exposure to others
moving forward

DEEP
52 «2 NNNNNNNN
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FIRST EXERCISE:
CLASSIFY HANDWRITTEN
DIGITS




HELLO NEURAL NETWORKS

UEENSAMOSIN . Historically important and
correctly classify

handwritten digits difficult task for computers

e Get exposed to the example, and
try to figure out the rules to how
it works

Try learning like a
Neural Network

DE
NNNNNNNN
IN: ITE



LET’S GO!
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FUNDAMENTALS OF
DEEP LEARNING




Part 1: An Introduction to Deep
Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and
Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

& DEEP
58 LEARNING
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RECAP OF THE EXERCISE

Loaded and visualized our data

{Edited our data (reshaped, normalized, to categorical)

Created our model

Compiled our model

Trained the model on our data

DEEP
59 LEARNING
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DATA PREPARATION




DATA PREPARATION

- [1,0,0,0,0,0,0,0,0,0]

- [0,1,0,0,0,0,0,0,0,0]

g :0)0)1)0,0)0)0?0’0’0:

» [0,0,0,1,0,0,0,0,0,0



AN UNTRAINED MODEL

(784,) -

(512,)

(312,)

DEEP
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A SIMPLER MODEL




A SIMPLER MODEL

y=mx-+b
6

5 ®

4

> 3 ®

2

1

0

<



A SIMPLER MODEL

y=mx+b
6
5 7 MeX
4 A
> 3 ,o’
2/
1 "
0 Y
0 2 4

5 S g
nvioia  INSTITUTE



A SIMPLER MODEL
y=mx-+b

6
. 1 MeX Random

4

_ \ m = —1

2

1 b=>5

0

DEEP
6 6 62 LEARNING
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A SIMPLER MODEL
y=mx+b

1 A~
MSE = — ¥ica(vi — 90)*

.
>
5 3 4

2

O - N W N U1 O

BN .
RMSE = |- (i = 9)
=1

DEEP
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A SIMPLER MODEL
y=mx+b

data = [(1, 3), (2, 5)]
m= -1
b =5

get_rmse(data, m, b):
"""Calculates Mean Square Error"""
n = len(data)

squared_error = 0

for x, y in data:

ST
1 3 4 1

2 5 3 4

oONOUVT A WNBR

# Find predicted y

y_hat = m*x+b

# Square difference between
# prediction and true value
squared_error += (

0 2 4 y - y_hat) ** 2

# Get average squared difference
RMSE = 1,6 X mse = squared _error / n

# Square root for original units
return rmse ** .5

MSE = RS

y
O -~ N W N Ul O

68 d LEARNING
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THE LOSS CURVE

Filled Contours Plot

Loss Surface ‘
/ ~ MSE

16

»

MSE

10

15

DEEP
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O —_~NWHMNOUUO

THE LOSS CURVE

Filled Contours Plot 16

e Current

MSE

e Target

DEEP
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O —_~NWHMNOUUO

THE LOSS CURVE

Filled Contours Plot

old

Current

e Target

16

MSE

DEEP
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O —_~NWHMNOUUO

THE LOSS CURVE

Filled Contours Plot 16

I——» Current

MSE

e Target

DEEP
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The
Gradient

A: The
learning
rate

THE LOSS CURVE

Filled Contours Plot

Which direction loss decreases 16

the most

How far to travel

A model update with the full MSE

dataset

e Target

A sample of the full dataset

An update to the weight
parameters

DzEP
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The
Gradient

A: The
learning
rate

THE LOSS CURVE

Filled Contours Plot

Which direction loss decreases 16

the most

How far to travel

A model update with the full MSE

dataset

e Target

A sample of the full dataset

An update to the weight
parameters

DzEP
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OPTIMIZERS

Loss - Momentum Optimizer e Adam
O
— « Adagrad
s
* RMSprop

* SGD




FROM NEURON TO
NETWORK




<

BUILDING A NETWORK

« Scales to more inputs




BUILDING A NETWORK

« Scales to more inputs

« Can chain neurons




BUILDING A NETWORK

« Scales to more inputs

« Can chain neurons

 If all regressions are
linear, then output will
also be a linear
regression




ACTIVATION FUNCTIONS




ACTIVATION FUNCTIONS

s - ~ _Jwx+bifwx+b>0 ~ 1
y—WX-l-b Y = 0 otherwise Y 1 + e~ (wx+b)

# Start with line

# Multiply each input # Only return result linear = wx + b

# with a weight (w) and # if total is positive # Warp to - inf to @

# add intercept (b) linear = wx+b inf_to_zero = np.exp(-1 * linear)

y_hat = wx+b y_hat = linear * (linear > 9) # Squish to -1 to 1
- - y hat = 1 / (1 + inf_to_zero)

10 10 1
5 5
0 0 0,5
-5 -3
-10 -10 0
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

81 2 LEARNING
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ACTIVATION FUNCTIONS

15
0 10
-10 5
10 0
-10 5
— 0 =
1 2 g9 -10
2 200
75 15 75 175
5.0 10 50 150
25 5 25 125
¥ 00 0 N 00 10.0
-25 -5 =25 75
-5.0 -10 -5.0 50
-15 -15 -15 25
-10.0 -20 -10.0 00 .
-100 -75 -50 -25 00 25 50 75 -100 -75 -50 -25 00 25 50 75 -100 -75 -50 -25 00 25 50 75 @ e
x1 x1 x1 ) LEARNING

S nviDia  INSTITUTE



ACTIVATION FUNCTIONS

2
\VEAVERVER N N/
: -2
-10 -5,5 -1 3,5 8 -10 -5,5 -1 3,5 8
2
o \ /\
\WaViERY
-2
-10 -5,5 -1 3,5 8

-
nvioia  INSTITUTE



OVERFITTING




OVERFITTING

DEEP
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0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

0,1

0,2

0,4

OVERFITTING

0,9
0,8
0,7
0,6
0,5
0,4
0,3

0,2

MSE = .0000

0,6

0,8

0,1

0,4

0,6

0,8

MSE = .0113

LEARNING
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0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

0,1

0,4

0,6

0,8

OVERFITTING

0,9
0,8
0,7
0,6
0,5
0,4
0,3

0,2

MSE = .0308

0,1

0,4

0,6

0,8

MSE = .0062
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87 LEARNING
NVIDIA  [N3TITUTE



TRAINING VS VALIDATION DATA

Avoid memorization

Training data

e Core dataset for the model to learn on

Validation data

» New data for model to see if it truly

understands (can generalize)

Overfitting

 When model performs well on the training
data, but not the validation data (evidence of
memorization)

« Ideally the accuracy and loss should be
similar between both datasets

MSE Per Epoch

1 2 3 4 5 6 7 8 9 10
Epoch

—Training MSE
—Validation MSE - Expected
—Validation MSE - Overfitting

DEEP
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FROM REGRESSION TO
CLASSIFICATION




AN MNIST MODEL

(784,) -

(512,)

(512,)
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90 @2 LEARNING
NVIDIA  INSTITUTE



AN MNIST MODEL

(784,) -

(512,)

(512,)




AN MNIST MODEL

(784,) -

(512,)

(512,)
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RMSE FOR PROBABILITIES?

o = N W »hN

o o
®
o
®
2 3 4

DEEP
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RMSE FOR PROBABILITIES?

o = N W »hN




CROSS ENTROPY

Cross Entropy
Blue Point Prediction

6
5
4
v 3
32
1
0
O ~ 1IN O In O 1N o O
e T MY e o Q
O O O O O O O O -
Assigned Probability

e=m| 0SS if True e=s| oss if False



CROSS ENTROPY

Loss = —(t(x) - log(p(x) + (1 — t(x)) -log(1 — p(x)))
t(x) = target (0if False,1if True)

p(x) = probability prediction of point x

Cross Entropy
Blue Point Prediction

6
5
4
v 3
32
1
0
O ~ 1IN O In O 1N o O
e T MY e o Q
O O O O O O O O -
Assigned Probability

e=m| 0SS if True e=s| oss if False

DEEP
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CROSS ENTROPY

def cross_entropy(y_hat, y actual):
"""Infinite error for misplaced confidence.

mmn

loss = log(y_hat) if y actual else log(l-y hat)
return -1*loss

Cross Entropy
Blue Point Prediction

6

5

4

v 3

32

1

0
O ~ 1IN O In O 1N o O
e T MY e o Q
o O O o O O O

Assigned Probability

e=m| 0SS if True e=s| oss if False
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BRINGING IT TOGETHER




THE NEXT EXERCISE
The American Signh Language Alphabet

@ﬂ%%@
e e e P

deedd e w



LET’S GO!




DEEP
LEARNING
NVIDIA. | INSTITUTE

APPENDIX: GRADIENT
DESCENT




MSE = -3 (y = 9)* == YL1(y — (mx + b))?

MSE = %((3 — (Mm@ +b)2+ (5 —(m(2) + b))

OMSE OMSE

——=9m +5b — 23 ——=5m+3b—13
om db

OMSE OMSE

om db
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nVIDIA  IN3TITUTE



»

10
15

Loss Surface

THE LOSS CURVE

Filled Contours Plot

4 e Current

1 e Target

16
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THE LOSS CURVE

Filled Contours Plot 16

OMSE _
om ob

e Target

DEEP
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THE LOSS CURVE

Filled Contours Plot

OMSE B OMSE B
om ob
OMSE
m:=m — A ———
om
beh —2 OMSE
o dob
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THE LOSS CURVE

Filled Contours Plot
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Part 1: An Introduction to Deep
Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and
Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures
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RECAP OF THE EXERCISE

{Trained a dense neural network model

{Training accuracy was high

{Validation accuracy was low

{Evidence of overfitting
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KERNELS AND CONVOLUTION
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KERNELS AND CONVOLUTION
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KERNELS AND CONVOLUTION

Blur Kernel Original Image Convolved Image
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KERNELS AND CONVOLUTION

Blur Kernel Original Image Convolved Image

DEEP
1 18 «2 LEARNING
NVIDIA  INSTITUTE



KERNELS AND CONVOLUTION

Blur Kernel Original Image Convolved Image
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KERNELS AND CONVOLUTION

Blur Kernel Original Image Convolved Image
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STRIDE

Stride 1

Stride 2
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PADDING
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PADDING
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KERNELS AND NEURAL
NETWORKS




KERNELS AND NEURAL NETWORKS
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KERNELS AND NEURAL NETWORKS

Neuron

Wi Wy W3

Ws Ws W

W7  Wg Wy




KERNELS AND NEURAL NETWORKS

(28, 28, 2) (28, 28, 2)

Stacked Images Stacked Images \
(3, 3,1,2) 3, 3,2,2) (512)  (512)
Kernels Kernels Dense  Dense
(28, 28, 1) (1568) (24)
Image Input Flattened Image

Vector Output Prediction
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FINDING EDGES

‘ Vertical Edges Original Image Horizontal Edges
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NEURAL NETWORK PERCEPTION
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NEURAL NETWORK PERCEPTION




OTHER LAYERS IN THE
MODEL




MAX POOLING

110 256 153 67
12 89 88 43 256 153
10 15 50 55 23 55 \

23 9 49 23
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DROPOUT
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WHOLE ARCHITECTURE
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LET’S GO!
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RECAP OF THE EXERCISE

%

[

Analysis J \ Solution

* CNN increased validation

accuracy

« Still seeing training accuracy

F

examples

higher than validation generalize

 Clean data provides better

» Dataset variety helps the model
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DATA AUGMENTATION




DATA AUGMENTATION
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IMAGE FLIPPING

Vertical Flip

Horizontal Flip
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ROTATION
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ZOOMING
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WIDTH AND HEIGHT
SHIFTING




HOMOGRAPHY
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BRIGHTNESS
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CHANNEL
SHIFTING

DEEP
1 0 «2 LEARNING
5 NVIDIA  INSTITUTE



MODEL DEPLOYMENT




MODEL DEPLOYMENT

(28, 28, 2) (28, 28, 2)
Stacked Images Stacked Images \

, 3,1, 2) (3, 3, 2,2) (512) (512)
s Kernels Dense Dense
(1568)

Flattened Image
Vector
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Image Input (24)
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MODEL DEPLOYMENT

\ 71, B s
Training
Batch Input
|

\
Max Pooling
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MODEL DEPLOYMENT

(220, 155, 3) (220, 155, 1)
(1, 220, 155, 1)

(287, 433, 3)
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LET’S TRY IT OUT!
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REVIEW 50 FAR




REVIEW SO FAR

Learning Rate
Number of Layers
Neurons per Layer
Activation Functions
Dropout

Data
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PRE-TRAINED MODELS




PRE-TRAINED MODELS

TensorFlow Hub Keras

PYTORCH
<A NVIDIA.NGC HUB




PRE-TRAINED MODELS

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman®
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

IMJWGE

DEEP
LEARNING
163 NVIDIA  [N3TITUTE



THE NEXT CHALLENGE
An Automated Doggy Door
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TRANSFER LEARNING




THE CHALLENGE AFTER
An Automated Presidential Doggy Door
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TRANSFER LEARNING
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TRANSFER LEARNING
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TRANSFER LEARNING
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TRANSFER LEARNING

Freezing the Model?
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TRANSFER LEARNING
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LET’S GET STARTED!
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MOVING FORWARD




FIELDS OF Al

Computer Vision
e Optometry

Natural Language Processing
e Linguistics

Reinforcement Learning

« Game Theory
 Psychology

Anomaly Detection
V «Security
« Medicine
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FIELDS OF Al

Computer Vision
e Optometry

Natural Language Processing
e Linguistics

Reinforcement Learning

« Game Theory
 Psychology

Anomaly Detection
V «Security
» Medicine
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FIELDS OF Al

Computer Vision
« Optometry

Natural Language Processing
e Linguistics

Reinforcement Learning

« Game Theory
 Psychology

Anomaly Detection
V «Security
» Medicine
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NATURAL LANGUAGE
PROCESSING




FROM WORDS TO NUMBERS

“A dog barked at a cat.”

[1’ 107 7’ 4) 17 8]

=

Dictionary
1. A 8. Cat
2. An 9. Cats
3. And 10. Dog
4., At 11. Dogs
5. Ate 12. Eat
6. Bark
7. Barked
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FROM WORDS TO NUMBERS

S )
Dictionary
1. A 8. Cat
2. An 9. Cats
3. And 10. Dog
Barked
4. At 11. Dogs
,,l;i‘%g‘\ 5. Ate 12. Eat
o SO 6. Bark
7. Barked
G J
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FROM WORDS TO NUMBERS

(= )
0
0 Dictionary
0
° 1. A 8. Cat
z 2. An 9. Cats
. 3. And 10. Dog
LRI 4. At 11. Dogs
2 oy 5. Ate 12. Eat
1 6. Bark
0 7. Barked
0 Q )
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FROM WORDS TO NUMBERS

[ big . (e) )

BIGGER DICTIONARY

1 A 31. ATE 61. CATS
2 AN 32, BARK 62. DOG
3 AND 33. BARKED 63. DOGS
4, AT 3. CAT 64. EAT
5. ATE 35. CATS 65. EATEN
6. BARK 36. DOG 66. A
7 BARKED 37. DOGS 67. AN
8 CAT 38. EAT 68. AND
9 CATS 39. EATEN 69. AT
10. DOG 40. A 70. ATE
11. DOGS 4. AN 1. BARK
12, EAT 42 AND 72. BARKED
13, EATEN 43. AT 73. CAT
14, A 4. ATE 74, CATS
15. AN 45. BARK 5. DOG
16. AND 46. BARKED 76. DOGS
17. AT 47, CAT 7. EAT
18. ATE 48. CATS 78. EATEN
19. BARK 49. DOG 79.
20. BARKED 50. DOGS 0.
21. CAT 51. EAT 81.

Penguin on, boes 5. an
25. EAT 55. AND

85, -.65 26. EATEN 56. AT

: 2" 27. A 57. ATE
28. AN 58. BARK

Small 29. AND 59. BARKED
v (I 30. AT 60. CAT
W, J
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FROM WORDS TO NUMBERS

Technically
an

Embedding

And
At

Ate
Bark
Barked
Cat
Cats
Dog
Dogs
Eat

NN—
NS
NS A
NS
?SES%gég%? 7z

?
Ve

'75&

AL

7 /7 A2

2%

TN
SN

And
At
Ate
Bark
Barked
Cat
Cats
Dog
Dogs

(e)

@ @

@

@

O Ul & 0N

@

Eat (?E

DICTIONARY
A 8. CAT
AND 10. DOG
AT 11. DOGS
BARK
BARKED
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RECURRENT NEURAL
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RECURRENT NEURAL NETWORKS

“Catssay ___.”

“Dogssay __.”

()

DICTIONARY

CATS
DOGS
MEOW
SAY
WOOF

A Sl
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Cats
Dogs
Meow
Say
Woof

RECURRENT NEURAL NETWORKS

RNN

“Catssay ___.

Cats “Dogs say ___ .

Dogs
Meow
Say
Woof

| Embedding

Outputs

Inputs

b}

b}

Q

DICTIONARY

A Sl

CATS
DOGS
MEOW
SAY
WOOF

LEARNING
nVIDIA  IN3TITUTE



o O O o

RECURRENT NEURAL NETWORKS

RNN

0%
0%
50%
50%
0%

| Embedding

Outputs

Inputs

“Catssay ___.”

“Dogssay __.”

Q

DICTIONARY

CATS
DOGS
MEOW
SAY
WOOF

A Sl
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RECURRENT NEURAL NETWORKS

0%
0%
50%
50%
0%

Embedding

Outputs

Inputs

“Catssay ___.”

“Dogssay __.”

()

DICTIONARY

CATS
DOGS
MEOW
SAY
WOOF

A Sl
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RECURRENT NEURAL NETWORKS

Embedding

Outputs

Inputs

“Catssay ___.”

“Dogssay __.”
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RECURRENT NEURAL NETWORKS

=

RNN

Embedding

Outputs

Inputs

“Catssay ___.”

“Dogssay __.”
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DICTIONARY
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RECURRENT NEURAL NETWORKS

Embedding

Outputs

“Catssay ___.”

“Dogssay __.”

()

DICTIONARY

CATS
DOGS
MEOW
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WOOF

A Sl
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RECURRENT NEURAL NETWORKS




OTHER ARCHITECTURES




AUTOENCODERS
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

iction

Pred
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REINFORCEMENT LEARNING

Environment
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NEXT STEPS




ENABLING PORTABILITY WITH NGC CONTAINERS

Extensive

- Diverse range of workloads and industry specific use cases
Optimized

- DL containers updated monthly

- Packed with latest features and superior performance

Secure & Reliable
- Scanned for vulnerabilities and crypto
- Tested on workstations, servers, & cloud instances

Scalable
- Supports multi-GPU & multi-node systems

Designed for Enterprise & HPC
- Supports Docker, Singularity & other runtimes

Run Anywhere
- Bare metal, VMs, Kubernetes

- x86, ARM, POWER @
- Multi-cloud, on-prem, hybrid, edge

JARVIS

NGC Deep Learning Containers

CONTAINERIZED APPLICATION

CUDA TOOLKIT

HEALTHCARE SMART CITIES TELECOM AUTONOMOUS DRIVING
ill (i.?) ( ) ~
. &
w E > r
CLARA DEEPSTREAM & AERIAL DRIVE

SMART PARKING

Learn more about NGC Containers

DEEP LEARNING FRAMEWORKS
DEEP LEARNING LIBRARIES

CONTAINERIZATION TOOL

NVIDIA CONTAINER RUNTIME FOR DOCKER

ROBOTICS

ISAAC

HPC

HPC SDK


https://www.nvidia.com/en-us/gpu-cloud/containers/

Catalog: Containers / Containers: nvidia:dli-dl-fundamentals

Setup Docker

DLI Deep Learning Fundamentals Course -... https://www.docker.com/

Publisher Built By Latest Tag Modified
NVIDIA NVIDIA v0.0.1 October 27, 2020

Multinode Support Multi-Arch Support

No ()

sescrpton https://ngc.nvidia.com/catalog/
Base environment used in the NVIDIA Deep Learning Institute (DLI) Course Fundamentals of Deep Learning, along with Next Steps project. CO n ta] n e rS / nV] d ] a : d l] - d l -

fundamentals

Labels

Computer Vision \ DLI Jupyter H Machine Learning Machine Learning & Al ‘

N — localhost:8888

docker pull nvcr.io/nvidia/dli-dl-fundamentals:v0.0.1
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https://www.docker.com/
https://ngc.nvidia.com/catalog/containers/nvidia:dli-rapids-fundamentals
http://localhost:8888/

CLOSING THOUGHTS




COPYING ROCKET SCIENCE




LET’S GET STARTED!
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