FUNDAMENTALS OF DEEP
LEARNING FOR MULTI-GPUS

LAB 1, PART 1: INTRODUCTION AND MOTIVATION
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 Lab 1: Gradient Descent vs Stochastic
Gradient Descent, and the Effects of Batch
Size

COURSE OVE RVlEW « Lab 2: Multi-GPU DL Training Implementation

using Horovod

« Lab 3: Algorithmic Concerns for Training at
Scale




Part 1: Gradient Descent

LAB 1 OVE RVlEW « Part 2: Stochastic Gradient Descent

Part 3: Optimizing training with batch size




CONTEXT: WHY USE MULTIPLE GPUS?
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TRENDS IN COMPUTATIONAL POWER

Historically we never had large datasets or computg -,

”
107 > 2
GPU-Computing perf ”
1.5X per year 1000X

106 By 2025
105 Transistors

(thousands) 1.1X per year
10*
103

°® = 1.5X per year
102 PS

o0
Single-threaded perf
1980 1990 2000 2010 2020
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TRENDS IN COMPUTATIONAL POWER
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TRENDS IN COMPUTATIONAL POWER

5 PF/s today

10x NVIDIA® Mellanox® ConnectX-6
200 Gb/s Network Interface

500 GB/s Peak Bi-directional Bandwidth

Dual é64-Core AMD Rome CPUs
2TB RAM

3.2X More Cores to Power the Most Intensive Al Jobs

8x NVIDIA A100 Tensor Core GPUs
Up to 640 GB Total GPU Memory

12 NVIDIA NVLinks™ per GPU

600 GB/s GPU-to-GPU Bi-directional Bandwidth

6x NVIDIA NVSwitches™

4.8 TB/s Bi-directional Bandwidth

2X More than Previous-Generation NVSwitch

30 TB Gen4 NVME SSD
50 GB/s Peak Bandwidth
2X Faster than Gen3 NVME SSDs

1 1 30 50 5
TRILLION KILOMETER MILLION THOUSAND THOUSAND PETAFLOPS
Transistors of Traces Drill Holes Components Connector Pins of Al Performance
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NEURAL NETWORK COMPLEXITY IS EXPLODING

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

Petaflop/s-days
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le+0

le-1

le-5

201

N

AlphaGoZero

AlphaZero
Neural Machine
Translation
Neural Architecture
Search
TI7 Dota 1vl
Xception ota v
DeepSpeech?2
VGG
Seq2Seq ResNets
Visualizing and
Understanding Conv GoogleNet
AlexNet Nets
Dropout
3.4-month doubling
DQN
2013 2014 2015 2016

2017 2018 Source:


https://openai.com/blog/ai-and-compute/

1000 PETAFLOP/S-DAYS

O(100 YEARS) ON A DUAL CPU SERVER




EXPLODING DATASETS

Power-law relationship between dataset size and accuracy

Small Data P | Reai Irreducible
Region ower-law Region Error
Region

Best Guess Error

Generalization Error (Log-scale)

Irreducible Error

Training Data Set Size (Log-scale)
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Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409



https://arxiv.org/abs/1712.00409
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EXPLODING DATASETS

Power-law relationship between dataset size and accuracy

Minimum Test Loss (Log-scale)
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Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409
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https://arxiv.org/abs/1712.00409
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EXPLODING MODEL COMPLEXITY

Though model size scales sublinearly
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https://arxiv.org/abs/1712.00409

EXPLODING MODEL COMPLEXITY

Though model size scales sublinearly
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https://arxiv.org/abs/1707.07012

IMPLICATIONS
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IMPLICATIONS

The good news: Requirements are predictable.
We can predict how much data we will need.

We can predict how much computing power we will need.

The bad news: The values can be significant.

The silver lining is that deep learning has taken impossible problems and made
them merely expensive.
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IMPLICATIONS

Deep learning is experimental; we need to train quickly to iterate

-

Experiment




ITERATION TIME

Short iteration time is fundamental for success

ImageNet Large Scale Visual Recognition Challenge results

ResNet-50 training time in minutes
10000

1000
2 64 In the competition’s first year
|— teams had varying success.
Eve eam got at least 25%
100 60 48 w\r:]?gft am got at least 25
15
In 2012, the team to first use
leep learning was tt ly
10 3,7 Rt pe e
below 25%.
m W
1 I
NS "N

The following year
nearly every team got

0)\ '»\ 25% or fewer wrong.
N 8
o

In 2017, 29 of 38
teams got less than

5% wrong.
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INTRO TO THE LAB

IS RS \ "
S N DRSS B DT NS
S AQKV‘Q%%%?A\:;\\E@%EQ‘ﬂ!'i‘éé"‘%lg&.
[ S A NIRRT K\ DN ALY
?« D6 oo eV 23 =S %) A)/\ <7
AR O E AN N
KN\ DN AR S 1w e ate S B STV VT y



STARTING WITH A LINEAR MODEL

B Lot
Our goal is to find best . 1%t
model parameters ) . t;.g‘.'"
(combination of w and b) L“ ° ‘,ar‘"
to fit the data | o
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FUNDAMENTALS OF DEEP
LEARNING FOR MULTI-GPUS

LAB 1, PART 2: MORE REALISTIC NETWORKS
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MODERN NEURAL NETWORKS

Not significantly!
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MODERN NEURAL NETWORKS

How do they differ from our trivial example?

Nonlinearity

= sigmoid
gl|—thanh |
WO\ b ——RelU w \ b
——softplus § ?
] S POSPPRPPRRS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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MODERN NEURAL NETWORKS

How do they differ from our trivial example?

More complex interconnection and many more
parameters

.D..

Ji
oy

r/r-AoE layer

I e 2

1
;ﬁ
>@

\<

.,}

Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., & Uszkoreit, J. (2017). One model to learn them all. arXiv preprint arXiv:1706.05137. & o
landola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., & Keutzer, K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869. nvibia ReTTUTE

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538.



J(w)

NON-CONVEX LOSS FUNCTIONS

Those differences make the optimization problem much more difficult

{ __— Gradient

Global cost minimum
Jmin(w)

>

|

global maximum

local maximum

local minimum

global minimum

| | ]

0.2

0.4 0.6 0.8

1

1.2



NON-CONVEX LOSS FUNCTIONS

Those differences make the optimization problem much more difficult

Linear model loss function ResNet-56 loss function projection to 3D - no skip
connections

002559 7.51o.q2_5‘5 075, 2 _01—5165
00 -2

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss
Landscape of Neural Nets. arXiv:1712.09913.



https://arxiv.org/abs/1712.09913

NON-CONVEX LOSS FUNCTIONS

Those differences make the optimization problem much more difficult

ResNet-56 loss function projection to 3D - no skip
connections

Why do we succeed in finding
good local minima?

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss
Landscape of Neural Nets. arXiv:1712.09913.



https://arxiv.org/abs/1712.09913

NON-CONVEX LOSS FUNCTIONS

Recent advances such as residual connections simplify optimization

(a) without skip connections (b) with skip connections

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss
Landscape of Neural Nets. arXiv:1712.09913.



https://arxiv.org/abs/1712.09913

FUNDAMENTALS OF DEEP
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LAB 1 CONCLUSION: DATA AND MODEL PARALLELISM
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DATA PARALLELISM

How can we take advantage of multiple GPUs to
reduce the training time?
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DATA VS MODEL PARALLELISM

Data Parallelism

Allows you to speed up training
All workers train on different data

All workers have the same copy of
the model

Neural network gradients (weight
changes) are exchanged

Model Parallelism

Allows you to use a bigger model
All workers train on the same data

Parts of the model are distributed
across GPUs

Neural network activations are
exchanged

IIIIIII
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DATA VS MODEL PARALLELISM

Comparison
Data Parallelism Model Parallelism
GPU1 @ o GPU2 g o GPU1 @ o GPU2 g o
< Averaging > f
0000<00Averaging.0#00.0 000000 x 000000
QOOOOQ.A 0000000 0000000 00000O0CO0
f: veraging > t ' *
00000000 00000000 00000000 00000000
f < Averaging > f ‘Exchanging activations'
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TRAINING A NEURAL NETWORK

GPU y — LOY)
l ' oL
3] T Bl — wiBl - g% —"_
W I w w @
oL
2] 2] — w2l - g% ——_
wiz w w @
oL
1 — il — g % ——
WITI w w a * ETTEY

CPU/GPU t

> @ <O
1

Single GPU

t
rad
elta
rop

Read the data

Transport the data

Pre-process the data

Queue the data

Transport the data

Calculate activations for layer one
Calculate activations for layer two
Calculate the output

Calculate the loss

Backpropagate through layer three
Backpropagate through layer two
Backpropagate through layer one
Execute optimization step

Update the weights

Return control & |
& LEARNING



TRAINING A NEURAL NETWORK
Multiple GPUs

GPU 5 - 5 % GPU L(D <
Y L(y’y) CPU/GPU (y’y)
o
me 8] — y[3] _ EE—— — 3] — Bl — -

w w a * e CD wl a *
wizl W[Z]:W[Z]_a*a_L —'CD'—W[Z]:W[Z]—a*—
owlizl «——— —_— ow 2]

Wil CD ‘ =wll - ¢
CPU/GPU y (@\\\\\\ CPU/GPU
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FUNDAMENTALS OF DEEP
LEARNING FOR MULTI-GPUS

LAB 2, PART 1: INTRODUCTION TO HOROVOD
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TRAINING A NEURAL NETWORK
Multiple GPUs

GPU . GPU
y L3.y) CPU/GPU
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MEET HOROVOD

Library for distributed DL

Works with stock TensorFlow, Keras, O HOROVOD
PyTorch, and MXNet

nstalls with pip

Uses advanced algorithms; | high- = .
Y Sor cVErases Mg horovod.al

performance networks (RDMA, GPUDirect).



http://horovod.ai/

MEET HOROVOD

Infrastructure team provides container
and MPI environment

ML engineers use DL frameworks that
they love

HOROVOD

Both have consistent expectations for o
distributed training across frameworks horovod. ai



http://horovod.ai/

USING HOROVOD
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INITIALIZE THE LIBRARY

import horovod. tensorflow.keras as hvd

hvd.init ()

39
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PIN GPU TO BE USED

gpus = tf.config.experimental.list physical devices ('GPU')

if gpus:

tf.config.experimental.set memory growth (gpus[hvd.local rank ()], True)
tf.config.experimental.set visible devices (gpus[hvd.local rank ()], 'GPU’)

GPU-0 GPU-1 GPU-0 l GPU-1
pin pin pin pin
local_rank local_rank local_rank local_rank
0 1 0 1
rank 0 ‘ rank 1 rank 2 ‘rank 3
mpirun
host0 host1

40
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ADD DISTRIBUTED OPTIMIZER

opt = hvd.DistributedOptimizer (opt)
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SYNCHRONIZE INITIAL STATE

callbacks.append (hvd.BroadcastGlobalVariablesCallback (0))

model.fit (..., callbacks, ...):




CHECKPOINT ONLY ON ONE WORKER

checkpoint callback = tf.keras.callbacks.ModelCheckpoint(...)

if hvd.rank() == O0:

callbacks.append (checkpoint callback)

model.fit (..., callbacks, ...):

43
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DATA PARTITIONING: OPTION 1

Dataset

Shuffle the dataset

Dataset

> Worker

Shuffle
<

Partition records among

workers

Train by sequentially reading
the partition

After epoch is done, reshuffle
and partition again

> Worker

NOTE: make sure that all
partitions contain the same
number of batches,
otherwise the training will
deadlock

DEEP
NNNNNNNN
TTTTTTTTTTTTTTTT



DATA PARTITIONING: OPTION 2

Shuffle the dataset

Train by randomly \ Work
reading data from > )

whole dataset

After epoch is done,
reshuffle
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HOROVOD FOR ALL

import horovod.tensorflow as hvd
import horovod.tensorflow.keras as hvd
import horovod.torch as hvd

import horovod.mxnet as hvd

46
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RUNNING HOROVOD

Single-node:

$ mpirun -np 4 python train.py

Multi-node:

$ mpirun -np 8 -H serverl:4,server2:4 python train.py
47
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FUNDAMENTALS OF DEEP
LEARNING FOR MULTI-GPUS

LAB 3, PART 1: SCALING THE BATCH SIZE

@ DEEP
LEARNING

NVIDIA. INSTITUTE




CAN WE INCREASE THE BATCH SIZE

INDEFINITELY?
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IN TERMS OF IMAGES / SECOND?

Yes
80000
140000 { Y¥¥ Tiramisu, V100-FP16, lag 1 f 600 v¥y Deeplabv3+ VI00-FP16, lag 1
Tiramisu, V100-FP16, lag 0 70000 - DeeplLabv3+, V100-FP16, lag 0 1000
120000 - @®g Tiramisu, V100-FP32,lag 1 ®®m Deeplabv3+ V100-FP32,lag 1
Tiramisu, V100-FP32, lag 0 - 500 DeeplLabva+, VI00-FP32, lag 0
Tirami 60000
iramisu, P100-FP32, lag 0 L 800
100000 A
- 400
2}
5y o o
o 80000 1 T 600 -~
© - 300
£ o a
.= 60000 -
L 200 - 400
40000 1
! - 200
20000 1 100
0 - - T T T T T 0 0 - T T T T T 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
#GPUs #GPUs
(a) Tiramisu (b) DeepLabv3+
Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., ... & Houston, M. (2018, November). Exascale deep
learning for climate analytics. In Proceedings of the International Conference for High Performance Computing, Networking, >

Storage, and Analysis (p. 51). IEEE Press. arXiv:1810.01993



https://arxiv.org/abs/1810.01993

IN TERMS OF STEPS TO CONVERGENCE?

There are limits

7]
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(d) ResNet-50 on ImageNet (e) ResNet-50 on Open Images (f) Transformer on LM1B (h) VGG-11 on ImageNet

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E. (2018). Measuring the effects of data parallelism on >

neural network training. arXiv:1811.03600



https://arxiv.org/abs/1811.03600

IN TERMS OF STEPS TO CONVERGENCE?

Dota 5v5 e
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Noise Scale

Space Invaders e
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https://blog.openai.com/science-of-ai/

LARGE MINIBATCH AND ITS IMPACT ON
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IMPACT ON ACCURACY

Naive approaches lead to degraded accuracy
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IMPACT ON ACCURACY

Naive approaches lead to degraded accuracy
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Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the > G

generalization gap in large batch training of neural networks. arXiv:1705.08741
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IMPACT ON ACCURACY

Why? Generalization and flatness of minima?
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Keskar, N. S., et al. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv:1609.04836
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IMPACT ON ACCURACY

Why does it happen? Noise in the gradient update.
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IMPACT ON ACCURACY
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Figure 3: The 1D and 2D visualization of solutions obtained using SGD with different weight decay
and batch size. The title of each subfigure contains the weight decay, batch size, and test error.
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WHAT CAN WE DO TO IMPROVE THE
OPTIMIZATION PROCESS?

Manipulate the learning rate?
Add noise to the gradient?
Manipulate the batch size?

Change the learning algorithm?
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WHAT CAN WE DO ABOUT IT?

“Theory suggests that when multiplying the batch size by k, one
should multiply the learning rate by /(k) to keep the variance in the

gradient expectation constant. 2 N A
cov (Aw, Aw) %X—[ (;f Zgngg> — 1) XV M

n=1

Theory aside, for the batch sizes considered in this note, the heuristic
that | found to work the best was to multiply the learning rate by k
when multiplying the batch size by k. | can’t explain this discrepancy
between theory and practice.”

In practice linear scaling is still frequently used.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv:1404.5997 <& ke
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WHAT CAN WE DO ABOUT IT?

A lot of networks will diverge early in the learning process

Warmup strategies address this challenge

Gradual warmup. We present an alternative warmup that
gradually ramps up the learning rate from a small to a large
value. This ramp avoids a sudden increase of the learning
rate, allowing healthy convergence at the start of training.
In practice, with a large minibatch of size kn, we start from
a learning rate of 77 and increment it by a constant amount at
each iteration such that it reaches 7) = kn after 5 epochs (re-
sults are robust to the exact duration of warmup). After the
warmup, we go back to the original learning rate schedule.

Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, Large >
Minibatch SGD: Training ImageNet in 1 Hour.
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WHAT CAN WE DO ABOUT IT?

Batch normalization improves the learning e ,
process by minimizing drift in the T
distribution of inputs to a layer D e B °

T E B—
It allows higher learning rates and reduces (a) (b) Without BN (c) With BN

the need to use dropout
Figure 1: (a) The test accuracy of the MNIST network

The idea is to normalize the inputs to all trained with and without Batch Normalization, vs. the
layers in every batch (th]S is more number of training steps. Batch Normalization helps the
Sophisticated than Slmply normalizing the network train faster and achieve higher accuracy. (b,

c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85 }th
percentiles. Batch Normalization makes the distribution
more stable and reduces the internal covariate shifft.

input dataset)

loffe and Szegedy (2015). Batch Normalization: Accelerating Deep Network -
Training by Reducing Internal Covariate Shift. EARNING
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WHAT CAN WE DO ABOUT IT?

The original batch normalization paper suggests using the statistics for the entire
batch, but what should that mean when we have multiple GPUs?

We can introduce additional noise by calculating smaller batch statistics (“ghost
batches”).

Batch normalization is thus carried out in isolation on a per-GPU basis.

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch <4 ke
training of neural networks.
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WHAT CAN WE DO ABOUT IT?

Adding noise to the gradient

Keeps the covariance constant with changing batch size (as ¢? o M)
Does not change the mean

Furthermore, we can match both the first and second order statistics by adding multiplicative noise to
the gradient estimate as follows:

where z,, ~ N (1, 02) are independent random Gaussian variables for which ¢ oc M. This can
be verified by using similar calculation as in appendix section A. This method keeps the covariance
constant when we change the batch size, yet does not change the mean steps E [Aw].

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch > Y
training of neural networks. arXiv:1705.08741
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WHAT CAN WE DO ABOUT IT?

Longer training with larger learning rate
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Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch
training of neural networks. arXiv:1705.08741
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WHAT CAN WE DO ABOUT IT?

Increasing the batch size, instead of learning rate decay

Decaying learning rate 1
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Increasing batch size 1
Increasing batch size 2
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WHAT CAN WE DO ABOUT IT?

AlexNet-BN with LARS, Layer 1: Convolutional, Weight
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LARS: Layer-wise Adaptive Rate Scaling
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Figure 2: LARS: local LR for different layers and batch sizes
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WHAT CAN WE DO ABOUT IT?

Control magnitude of the layer k update through local learning rate A:
Awi(t+1) = A, * G (w(t))
where:
Gr(w(t)): stochastic gradient of L with respect to wy,

A local learning rate for layer k, defined as

[|lwi(D)]]2 )

Ak =min(y, n RO

where

n is trust coefficient (how much we trust stochastic gradient)

y is global learning rate policy (steps, exponential decay, ...)
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You, Y., Gitman, |., & Ginsburg, B. Large batch training of convolutional networks.
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WHAT CAN WE DO ABOUT IT?

: Layer-wise learning rates with clipping; SGD with momentum is base optimizer

: Layer-wise learning rates; as base optimizer

More successful than LARC at language models like BERT

: Moving averages calculated on a per-layer basis

Also useful in several different domains
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A FINAL ASSESSMENT TO TEST YOUR SKILLS

This assessment will test all of what you have learned in this course.
You are required to take a serial training script, convert it to use
Horovod, and obtain a target training and validation accuracy in a
fixed amount of time.

The training is very similar, but this time we are using CIFAR-10
instead of Fashion MNIST.
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A FINAL ASSESSMENT TO TEST YOUR SKILLS

You can make changes to the assessment.py script in the JupyterLab
environment and test the performance in the notebook.

When you are done, go back to the browser tab you launched this lab
from, and click “Assess”.

You will get output after a few minutes indicating whether you
passed. If not, go back and try again! Good luck ©
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FINAL THOUGHTS

Use NGC containers for high-performance, multi-GPU training.

k O

Innovate Faster Stay Up to Date Run Anywhere

Get up and running quickly while reducing the The top deep learning containers are updated monthly NGC containers are built to run on-prem, in the cloud,
complexity typically associated with setting up software. to keep your systems running at peak performance. All or in hybrid deployments with Docker and Singularity
containers provide easy access to fully-tested and runtimes. This allows for maximum utilization of
optimized software releases. available GPUs, portability, and scalability.

Please take the survey!
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