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Loss function
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Forward Operations

Op
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Matrix Multiplication Operation
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Forward Operations

Convolutions as Matrix
Multiplication

~N g ~
L% Q2 - Qs | [ Ky Ky Ky )
92 92 - Q24 k2 ky . Kz

I Qo2 = Gna | | ki LY

. J/ \ 4

query matrix Q 7 7 key matrix KT

Attention Layers are also
Matrix Multiplications
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* Linear regressiony =w * x+ b (l.e., a NN of a single neuron,
and identity, f(x) = x, as activation function)

Back
o(w*x+b)=0(z) ifwedefinezasw*x+b

Propagation w /0 . 4 (activation)
and Gradient b

Desce nt * Loss function definedasC=(a—-y)2

* How does C change with w and b variations?
* compute the ratio at with C changes with changes in w
and b
* use this ratio to modify then w and b in order to move
C towards a minimum




Computing the Gradient

Gradient with a single input, that generates prediction a 9c _ 0z dadc
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Computing the Gradient

Gradient with two inputs that generates predictions: g_c = % * (2x(a —yq,) + 2x(b — y,))
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Back Propagation and Gradient Descent

Starting Point
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Back Propagation and Gradient Descent
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Back Propagation and Gradient Descent

Starting Point

gradient with batch 1 gradient with batch 2



Back Propagation and
Gradient Descent

* Batch size implications
* Smaller batches imply more steps per epoch:

* More updates to weights --> More updates to the
net

* Smaller batches do not imply larger/smaller gradients




Parallel/Distributed ML Training

Pipeline Model

Complete layer per device

*  Weights stay within device
Activations are communicated
between GPUs
Non efficient implementations
may lead to inefficient usage of
resources

* Research area

Output

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism

b) Tensor parallelism

Worker 1
Worker 2
Worker 3
Worker 4

Time —— [l ForwardPass [ | Backward Pass



Parallel/Distributed ML Training

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism

b) Tensor parallelism

Output
layer

] ]
Tensor Parallelism

* Tensor operations (e.g., computing a layer output) distributed across device
* Allows larger, more computationally expensive models

e Activations are communicated between GPUs

e Further points for inefficiencies

* A device might depend on the activations computed by more than one device



Parallel/Distributed ML Training

2. Data Parallelism: Training mini-batch is split
across devices

* Model must fit into the memory of a single device

* Weights are the same in each device
* Gradients are communicated across all devices
(all-to-all)




