*

Introduction to ”

Neural Networks
Operations and
Distributed
Training

PD. Dr. Juan J. Durillo

Deep Learning and GPU Programming
Workshop @ 14.7.2022

Machine
Learning

with (deep)
Neural
Networks

Forward propagation
N

Hidden layer(s)

Backward propagation

Output
layer

Machine
Learning
with (deep)
Neural
Networks

Hyper Tangent Function

.
-
3
3
3
3
3
3
3
3
-
.
‘e
.

Hidden layer(s) layer

Backward propagation |EEEEEN

inputs

i R . T
3

activation function

RelU Function

max(0, z) ‘

Identity Function

Loss function

| MSE Xi=1 (Vi —yiP)?
n
Machine
Learning
with (deep)
Neural
Networks Output Optimizer SGD

Hidden layer(s) layer

0; < 61 —ng g6 Br)
Backward propagation .
900 B) = (0) VIO 2)

ZEB;

Forward Operations

Op

7 ax’xq + by'xp

., a3*X1 + b3*X2

ai
a
as

(

ai
az
as

Matrix Multiplication Operation

b1 a1*X1 + b1*X2
X
b2> (x;) i (az*x1 + bz*Xz)

b3 33*X1 + b3*X2

b, X, Y2 a,%X1 + bo*X,

b3 \/ a3*x1 + b3*X2

batch of two inputs

b1> (xl }’1 a1*x1 + b1*X2

ar*Y1 * baxy;
a2+Y1 + bory;
azxyq + baxy,

Forward Operations

Convolutions as Matrix
Multiplication

~N g ~
L% Q2 - Qs | [Ky Ky Ky)
92 92 - Q24 k2 ky . Kz

I Qo2 = Gna | | ki LY

. J/ \ 4

query matrix Q 7 7 key matrix KT

Attention Layers are also
Matrix Multiplications

- ™ /,"’V - '\
(Su1 S12 Sin | Soft [su S - S)
Su S - Normalization | ¢, ¢, . ¢,

S Sp2 = Spn | S S o S ’

,r/’

normalized score

matrix S’
(possibly sparse)

score matrix S
(similarity (dot product) between

queries and keys)

12345673829

Duplication of elements ——

Built of special matrices causes overhead

N
S11 S12 S1n |
T
QxK S21 S22 - S2n
| snl snz snn
_

score matrix S
(similarity (dot product) between

queries and keys)

- ™~
(v v. Vig
1 12 — 1d
’
vy V3 e Vg S'xV
| Ve Vo o Vog |
\ __,/'

value matrix V

- >0 ~0® O 0 T 9

~
0y 0y, 044
0y 03 0y4
Opny 0,2 Ong

Output matrix V

* Linear regressiony =w * x+ b (l.e., a NN of a single neuron,
and identity, f(x) = x, as activation function)

Back
o(w*x+b)=0(z) ifwedefinezasw*x+b

Propagation w /0 . 4 (activation)
and Gradient b

Desce nt * Loss function definedasC=(a—-y)2

* How does C change with w and b variations?
* compute the ratio at with C changes with changes in w
and b
* use this ratio to modify then w and b in order to move
C towards a minimum

Computing the Gradient

Gradient with a single input, that generates prediction a 9c _ 0z dadc

N aw~ awozaa 2X@~Y)
W, W
W 2 1 0z _
X b ow
ada
3, = 1
ac Gradient Vector
v v - = Z(a_y) aC
Fixed Z wx+b Zp Z; Oa _
W, o) _ (2@ 2))
ac 2(a—y)
ac 9z da aC ob
%= avoroa = 2@)
a o(z)=z o 8
y 0z
35 — 1
' =1
-v)2 C C
c (ay) 2 1 c

55 = 2(a-y)

Computing the Gradient

Gradient with two inputs that generates predictions: g_c = % * (2x(a —yq,) + 2x(b — y,))
aand b ‘\ "
W W, W,
ac 1
o =3 *@la—y1) +2(b—y)
X1,X5 b
Fixe zZ wx+b zl\jz2
| Gradient Vector
Y o(r)= aj ay, oC 1
Y1Y2 z) =1 U w)|_[2" (2x(a —y1) + 2x(b — y3))
aC 1
. PTY 5 *@a=y)+20b-y2)
C VAR
G G

“x ((@—y2)? + (b — y2)?)

Back
Propagation

and Gradient
Descent

3500
3000
2500

2000
@

S

o
— 1500
AR
1000 N\

500

Back Propagation and Gradient Descent

Starting Point

)
C
)
O
Vp)]
Q

O

)
-

e

O
(O
S

O

O
-
qV)
c

Qo

)
q0)
o]0)
qV)
Q.
O
| -

o

V4
@)
qV)

af

Starting Point

larger learning rate

smaller learning rate

Back Propagation and Gradient Descent

3500 i 2500 -
3000
2000
2500 o)
5 £ 1500
2 2000 =
7 \ £
8 1500 \ 3
[/}
1000 3
500
0
-10
4000 - 4000 _
. 3000 3000 _|
_Qr
5 o)
g =
S 2000 % 2000 _|
5§ 3
Kol -
I T
S 000 1000 _|
0 0
-10

Back Propagation and Gradient Descent

Starting Point

gradient with batch 1 gradient with batch 2

Back Propagation and
Gradient Descent

* Batch size implications
* Smaller batches imply more steps per epoch:

* More updates to weights --> More updates to the
net

* Smaller batches do not imply larger/smaller gradients

Parallel/Distributed ML Training

Pipeline Model

Complete layer per device

* Weights stay within device
Activations are communicated
between GPUs
Non efficient implementations
may lead to inefficient usage of
resources

* Research area

Output

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism

b) Tensor parallelism

Worker 1
Worker 2
Worker 3
Worker 4

Time —— [l ForwardPass [| Backward Pass

Parallel/Distributed ML Training

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism

b) Tensor parallelism

Output
layer

]]
Tensor Parallelism

* Tensor operations (e.g., computing a layer output) distributed across device
* Allows larger, more computationally expensive models

e Activations are communicated between GPUs

e Further points for inefficiencies

* A device might depend on the activations computed by more than one device

Parallel/Distributed ML Training

2. Data Parallelism: Training mini-batch is split
across devices

* Model must fit into the memory of a single device

* Weights are the same in each device
* Gradients are communicated across all devices
(all-to-all)

