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Duplication of elements

Built of special matrices causes overhead

Convolutions as Matrix 
Multiplication

Attention Layers are also 
Matrix Multiplications



Back 
Propagation 

and Gradient 
Descent

• Linear regression y = w * x + b (I.e., a NN of a single neuron, 
and identity, f(x) = x, as activation function)

• Loss function defined as C = ( a – y )2

• How does C change with w and b variations?
• compute the ratio at with C changes with changes in w 

and b
• use this ratio to modify then w and b in order to move 

C towards a minimum
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𝞼 (w * x + b) = 𝞼 (z)  if we define z as w * x + b

Σ | 𝞼 a (activation)



Computing the Gradient

C

y
a

z

𝞼 (z) = z

(a-y)2

x

w

b

Fixed

w1w2

z2z1

a2a1

C1C2

!"
!#

= !$
!#

!%
!$

!"
!%
= 2𝑥(𝑎 − 𝑦)

wx + b

!$
!#

= x

!%
!$
= 1

!"
!%
= 2(a-y)

!"
!&
= !$

!&
!%
!$

!"
!%
= 2(𝑎 − 𝑦)

!$
!&
= 1

!%
!$
= 1

!"
!%
= 2(a-y)

Gradient Vector

𝜕𝐶
𝜕𝑤
𝜕𝐶
𝜕𝑏

=
2𝑥(𝑎 − 𝑦)
2(𝑎 − 𝑦)

Gradient with a single input, that generates prediction 𝑎



Computing the Gradient
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Gradient with two inputs that generates predictions:
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Back Propagation and 
Gradient Descent

• Batch size implications
• Smaller batches imply more steps per epoch:

• More updates to weights --> More updates to the 
net

• Smaller batches do not imply larger/smaller gradients



Parallel/Distributed ML Training

Pipeline Model
• Complete layer per device

• Weights stay within device
• Activations are communicated 

between GPUs
• Non efficient implementations 

may lead to inefficient usage of 
resources

• Research area

1. Model Parallelism: Memory usage and 
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism



Parallel/Distributed ML Training

Tensor Parallelism
• Tensor operations (e.g., computing a layer output) distributed across device

• Allows larger, more computationally expensive models
• Activations are communicated between GPUs
• Further points for inefficiencies

• A device might depend on the activations computed by more than one device

1. Model Parallelism: Memory usage and 
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism



Parallel/Distributed ML Training

• Model must fit into the memory of a single device
• Weights are the same in each device

• Gradients are communicated across all devices 
(all-to-all)

2. Data Parallelism: Training mini-batch is split 
across devices


