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Working with text

• Working with Neural Networks requires inputs in numerical representation
• Character based representation (e.g., ascii code)
• Word based encoding (each word a different representation)

• Dictionary with all possible words; representation is based on the position on this dictionary

from tensorflow.keras.preprocessing.text import Tokenizer
sentences = [‘Messi is the best player in the world’, ‘Barcelona 
is the best team in the world’]
tokenizer = Tokenizer(num_words=100)
tokenizer.fit_on_texts(sentences)
print(tokenizer.word_index) 
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 'messi': 6, 
'player': 7, 'barcelona': 8, 'team': 9}



Working with text

• Alternative representation: One Hot Encoding
• Vector of the dictionary length, with all components to 0 except 1

• Assuming the following dictionary
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 'messi': 
6, 'player': 7, 'barcelona': 8, 'team': 9}

• The word Messi would be represented by the vector
[0 0 0 0 0 1 0 0 0]

• The word player by
[0 0 0 0 0 0 1 0 0]

• The word the by
[1 0 0 0 0 0 0 0 0]



Text to Sequences

• A sequence (i.e., a sentence) is simply a list of (ordered) tokens
• Previous idea could be used for representing sentences
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 
'messi': 6, 'player': 7, 'barcelona': 8, 'team': 9}

• The sentence ‘Messi is the best player in the world’ can be represented as 
the array

[6, 2, 1, 3, 7, 4, 1, 5]

• And the sentence ‘Barcelona is the best team in the world’ can be 
represented as the array

[8, 2, 1, 3, 9, 4, 1, 5] tokenizer.texts_to_sequences([str])



Text to Sequences

• Alternatively, if the One Hot Encoding has been chosen, given the dictionary
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 'messi': 6, 
'player': 7, 'barcelona': 8, 'team': 9}

• The sentence ‘Messi is the best player in the world’ can be represented as the 
matrix

[[0 0 0 0 0 1 0 0 0]
[0 1 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 1 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]]



From Words to Numbers
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From Words to Numbers
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From Words to Numbers

Bigger Dictionary
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From Words to Numbers
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Recurrent Neural Networks



Learning From Text

• If you read the partial sentence:
• Today there is an amazing blue …

• What do you think of next?



Learning From Text

• If you read the partial sentence:
• Today there is an amazing blue …

• What do you think of next?
• Today there is an amazing blue sky. 



Learning from Text

• If you read the partial sentence:
• She was born in Munich, therefore at school the primary language was ….

• In contrast to the previous example, the word that influences what 
we need to predict now is not the previous was, but was way beyond 
in the text
• Do RNN still help in this case?



Dictionary

1. Cats
2. Dogs
3. Meow
4. Say
5. Woof

Recurrent Neural Networks

“Cats say ___.”

“Dogs say ___.”
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Recurrent Neural Networks
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