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Disclaimer

After this course your are not an NLP
expert

This course bring you no close to a PhD
level on NLP

This course might just be the beginning
of your NLP journey



FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton



Part 1: Machine Learning in NLP

* What is NLP?
* Why Machine Learning?
‘» * Text Representations
e\ b . * Dimensionality Reduction
AP '  Embeddings
| * RNNs
o « “Attention is All You Need”

. e Transformer Architecture
 Transformer Encoder
o « Transformer Decoder



CONVERSATIONAL Al TECHNOLOGIES

S

Automatic Speech Natural Language
Recognition Processing
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NLP TASKS

“Tasks” refer to specific textual language applications

Machine Translation Sentiment Analysis Question Answering Automatic Text Summarization

@ © 0

Author Attribution Named Entity Recognition Text Classification Spell Checking

? ?
? ?
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MACHINE LEARNING FOR CV

What are these three images?

DEEP
9 @ LEARNING

NVIDIA.  INSTITUTE



THE CHALLENGE

Complexity of human language

Languages often seem to behave in arbitrary ways and forms
Ambiguity, sarcasm and irony are often not apparent from purely textual information

Domain-specific terms and phrases that may not even be grammatically correct
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PRINCIPLES AND PARAMETERS

Linguistic Concept

Framework created by linguists Noam Chomsky and Howard Lasnik
The framework states that languages are composed of ‘hard-wired’ principles and language-specific instantiations

In software terms: A ‘language’ is an object, with different implementations of virtual functions. We compute a
binary value - whether a sentence is grammatical or not - by running it through a language-specific Chain-of-
Responsibility structure
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PRINCIPLES AND PARAMETERS

Example: Word Order

> English: John ate apples
> Japanese: Jon wa ringo o tabeta
John apple ate
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PRINCIPLES AND PARAMETERS

Example: Null Subject

> English: It is raining
> Spanish: Esta  lloviendo
is raining

> What is the role of ‘It’ in English?

IIIIIIIIIIIIIIII



SYNTACTIC AMBIGUITY

Linguistic Concept

> John and Henry’s parents arrived at the house.

> How many people arrived in total?
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THE CHALLENGE

When viewed through the eyes of a linguist

Languages obeys strict rules and generalizations
These generalizations map nicely to software constructs that are very helpful when we design NLP systems

The huge mass of textual data available today means that Machine Learning is an ideal approach for NLP
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PROBLEM FORMULATION



MACHINE LEARNING

Discovering the discussed structures in text

d  Machine Learning

Text Algorithm
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MACHINE LEARNING

Discovering the discussed structures in text

d  Machine Learning

Text Algorithm
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MACHINE LEARNING

Design decisions

?

Problem formulation

Text Pre- Text Dimensionality Vector Machine Learning

Text — Reweighting

processing Representation Reduction Comparison Algorithm
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MACHINE LEARNING

All linear combinations feasible

?

Problem formulation

?

Text Pre-

Text — ,
processing

Text Dimensionality Vector
Representation Reduction Comparison

Machine Learning
Algorithm

GloVe Word2Vec
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MACHINE LEARNING

In this class

Subset of Problem formulations

Text ——

Text Pre-

processing Representation

Text

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Subset of word representations

Subset of
approaches
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TEXT REPRESENTATIONS

The bag of words

Bag of words/ngrams - feature per word/ngram

the cat sat on the mat

Cat Sat the mat quic .. [Vocabulary
kly
1 1 1 2 1 0
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>

>

Sparse Input (1-hot)

¢ oo

Word 1 ‘

‘ Word n ‘

No semantic generalization

dog:

cat:

10000..0

00100..0

THE BAG OF WORDS

Key challenges

—

—

p>>n (overfitting!)

!

lots of data required,
low accuracy
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P ° e DISTRIBUTED WORD
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DISTRIBUTIONAL HYPOTHESIS

The intuition

‘You can tell a word by the company it keeps’
Firth 1957

‘Distributional statements can cover all of the
material of a language without requiring support from
other types of information’

Harris 1954

‘The meaning of a word is its use in the language’
Wittgenstein 1953

‘The complete meaning of a word is always contextual,
and no study of meaning apart from context can be
taken seriously.’

Firth 1957
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CO-OCCURRENCE PATTERNS

The latent information

a big bug the Ilittle but beetle bit back
a 0 5 ¥ 2 1 0 0 3 0
big 5 0 10 8 - 0 - 8
bug | 4 10 0 8 4 0 4 8 5
the 2 8 8 0 8 3 8 10 3
little | 1 = 4 13 1 3 10 8 0
but | 0 0 0 7 7 0 7 3 0
beetle | 0 4 4 11 11 4 1 8 1
bit 3 8 7 12 9 3 8 0 1
back | 0 - 5 3 0 0 1 2 0
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CO-OCCURRENCE PATTERNS

The latent information

The cat sat on the mat
The dog sat on the mat
The elephant sat on the mat

The quickly sat on the mat
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CO-OCCURRENCE PATTERNS

Where to find them?

Possible relationships:

Word to documents (very sparse and very wide)

Word to word (very dense and compact)

Word to user / person

Word to user behaviour

Word to product

Word to custom feature (e.g. movie raking)
Not only metrices:

Word to user to product
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DIMENSIONALITY REDUCTION

Rationale

The need for compact and computationally efficient representations

More robust notions of distance exposing the information captured by our distributional representation
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LSA

Latent Semantic Analysis
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LSA

Truncated SVD

Terms x Documents

N

X=TxSx«PT

> T
Susan T. Dumais (2005). "Latent Semantic Analysis". Annual Review of Information Science and Technology. 38: 188—230. 34.“,%* NSTITUTE



LSA

Truncated SVD

Terms x Documents

N

X=TxSx«PT

K largest singular values

X=Tk*5k*PkT

>
Susan T. Dumais (2005). "Latent Semantic Analysis". Annual Review of Information Science and Technology. 38: 188—230. 35nv%Aa NeTiTUTE



LSA

Truncated SVD

Terms x Documents

N

X=TxSx«PT

K largest singular values

X=Tk*Sk*Pg

/'

Latent Semantic Space

>
Susan T. Dumais (2005). "Latent Semantic Analysis". Annual Review of Information Science and Technology. 38: 188—230. %m%ﬂn NeTiTUTE



https://en.wikipedia.org/wiki/Latent semantic

air
aliens
amnesty
arms
blood
booster
defense

drug

environmental .

health
illegal
immigration
launch
nuclear

pollution

analysis
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https://en.wikipedia.org/wiki/Latent_semantic_analysis

LSA

Question

What about large matrices?

What about complex corpora?
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PROBABILISTIC LSA

Statistical model which has been called aspect model

P(d,w) = )  P(z)P(d|z)P(w|z)

(a) (®)
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Figure 5: Perplexity results as a function of the latent
space dimensionality for (a) the MED data (rank 1033)
and (b) the LOB data (rank 1674). Plotted results
are for LSA (dashed-dotted curve) and PLSA (trained
by TEM = solid curve, trained by early stopping EM
= dotted curve). The upper baseline is the unigram
model corresponding to marginal independence. The
star at the right end of the PLSA denotes the perplex-
ity of the largest trained aspect models (K = 2048).

Hofmann, T. (2013). Probabilistic latent semantic analysis. arXiv preprint arXiv:1301.6705.
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PROBABILISTIC LSA

Very broadly used (Spotify Example)

8
&
~N
§ i- step = 10
~N
§
z ’

. * hiphop
$ metal
® | | * reggae
b x classical

X jazz
Gkt

Latent factor 1

Latent factor 1

https://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818 AU sz LEARNING
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Latent Dirichlet Allocation

LDA

O

N

AN

Ine

o 0

O

z w

N

M

Figure 1: Graphical model representation of LDA. The boxes are “plates” representing replicates.
The outer plate represents documents, while the inner plate represents the repeated choice

of topics and words within a document.

Blei, David M.; Ng, Andrew Y.; Jordan, Michael | (January 2003). Lafferty, John (ed.). "Latent Dirichlet Allocation”. Journal of Machine Learning
Research. 3 (4-5): pp. 993-1022. do0i:10.1162/jmlr.2003.3.4-5.993. Archived from the originalon 2012-05-01. Retrieved 2006-12-19.
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Perplexity

Blei, David M.; Ng, Andrew Y.; Jordan, Michael | (January 2003). Lafferty, John (ed.). "Latent Dirichlet Allocation”. Journal of Machine Learning
Research. 3 (4-5): pp. 993-1022. doi:10.1162/jmlr.2003.3.4-5.993. Archived from the originalon 2012-05-01. Retrieved 2006-12-19.

LDA

Latent Dirichlet Allocation

Perplexity results on the nematode (Left) and AP (Right) corpora for LDA, the unigram model, mixture of unigrams, and pLSI.
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AUTOENCODERS

Where to find them?

“An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner.”

|
N N-N-Ee - ul

x

Kramer, 1991

N W-N-Na N~
(

LA &
l d; = Wi +dy + by
o0 <
dy = f(Wg *z + by)
z=¢; @ @@
ez=f(We2=c’1+bz)I
e - ©
ey = f(Wg »x + by) I
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WORD2VEC



> Mikolov et al., 2013 (while at Google)

> Linear model (trains quickly)

WORD2VEC

> Two models for training embeddings in an unsupervised manner:

Continuous Bag-of-Words (CBOW)

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)

PAD

the

cat

sat

on

PAD

cat

Skip-Gram

the

O

cat

sat

cat

on

cat

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)
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GLOVE

The objective

To learn vectors for words such that their dot product is proportional to their probability of co-occurence

Probability and Ratio | & = solid k = gas k = water k = fashion
P(k|ice) 1.9%x107% 6.6x10™> 3.0x107° 1.7x107>
P(k|steam) 22x107° 7.8x107% 22x107° 1.8x 107
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference oSy e
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). nVIDIA.  INSTITUTE



GLOVE

The objective

Training Time (hrs) Training Time (hrs)
3 -4 9 12

1 2 5 6 3 6 1§ 1§ 2'1 24
72f ' ' 72
70r 70t
£ 68} S 68t
9 9
= o
§ 66} g 66
< <
64} 64} GlQVe
e SKip-Gram
62r 62
o0 5 10 15 20 25 - .20 40 60 80 100
Iterations (GloVe) Iterations (GloVe)
135710 15 20 25 30 40 50 12345 6 7 10 12 15 20
Negative Samples (CBOW) Negative Samples (Skip-Gram)
(a) GloVe vs CBOW (b) GloVe vs Skip-Gram

Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference Gy DR
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
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GLOVE

Properties
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USING THE EMBEDDINGS



MACHINE LEARNING

In this class

Subset of Problem formulations

Text ——

Text Pre-

processing Representation

Text

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Subset of word representations

Subset of
approaches
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CLASSICAL APPROACHES



CLASSICAL APPROACHES

Very broad selection of tools

scikit-learn
algorithm cheat-sheet

classification

more

NO

YES “mples
premdacting w
category

regression

YES

0
WORKING

dimensionality
reduction

56 &
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DEEP REPRESENTATION LEARNING

Beyond distributional hypothesis
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RECURRENT NEURAL NETWORKS

y Yi-1 Yi Yi+1 Yi+2
S St-1 St St+1 St+2
X Xt-1 Xt Xt+1 Xt+2

Unrolling in Time

DEEP
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LONG SHORT TERM (LSTM) CELL

Addressing problems of stability

Yiy
A
Z N . T T
c Forget gate % l(t) — O'(le- | x(t) + Whi ) h(t—l) + bl)
(t1) o ® > i T r
4 lnpUtOgate/ \l»@ - f(t) = O-(fo : X(t) T th : h(l—l‘) = bf)
X (t) T T
i T o Out tf t On = O-(W-\‘O Xy T Wio °h(t—1) + b(,)
ol % utput gate fomm=ssemosonenoeoog '
' o B t-wise | — I I
FC | mﬁﬁﬁ?caﬁff § 81n = tanh (Wxg O Wh-g h(t—l) T bg)
- © Addiion | ¢y =L ®@cC 1) + 1, ®g,
h : 2 :
(1) —>- LSTM cell ] | === logistic Yo = h 0 = O ® tanh (c(t))
T W tanh .
X
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CONVOLUTIONAL NEURAL NETWORKS

Basic principles

sentence convolutional pooled

i : softmax
matrix feature map representatlon
SFIRdXL‘l CcRnXIS\ mé1 cmﬂl eRlXﬂ
—
C \b
O | —
= ~
[} |
E
© |
o F ¢ Rdxm
c |
3 /
5 > g /
GE) A
vy @ @ L2
& & & & A
N <
"yQ

Severyn, Aliaksei, and Alessandro Moschitti. "Unitn: Training deep convolutional neural network for twitter sentiment S e
classification." Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). 2015. NVIDIA. | INSTITUTE
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WHAT ABOUT LONG SEQUENCES?

The challenge illustrated with SQUAD

Words in context Words in question _ Words in answer

14 {
' > 010 14 >
2 N :
c c c
@ 0 @ 008 { Q
oy = =
o U_ oo
Q @ 006 1 Q
- 0 -— -—
w u || m
004 1
00 T
) 0 70 &) 0 1 30 4 50 &0 20 0 40

Figure 1: Number of words in contexts, questions, and answers in SQuAD training set.

Exact word matches relative to answer start

025 4

o
~
o

o
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o
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005 1
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Offset from answer start

Figure 2: Frequency of exact word matches relative to answer start position
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The impact of attention mechanism on Question Answering performance



WHAT ABOUT LONG SEQUENCES?

The challenge

)
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ATTENTION

The mechanism

Attention Layer I Attention Layer

- - - - - M - - - -

Context vector Context vector

Aligned position '

Pt

Global align weights
|a

Global Attention Model Local Attention Model

68 @2 EEEENIN
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. nvibia ISTITUTE



ATTENTION
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Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight «;; of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b—d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.
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ATTENTION IS ALL YOU NEED

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need

information processing systems (pp. 5998-6008).
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Figure 1: The Transformer - model architecture.
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ATTENTION IS ALL YOU NEED
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ATTENTION IS ALL YOU NEED

Not a breakthrough in itself

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0-10%°
GNMT + RL [31] 24.6 39.92 1.4-10%
ConvS2S [8] 25.16 4046 1.5-10%
MoE [26] 26.03  40.56 1.2- 1020
Deep-Att + PosUnk Ensemble [32] 40.4 8.0-10%Y
GNMT + RL Ensemble [31] 26.30  41.16 1.1-10%
ConvS2S Ensemble [8] 26.36  41.29 1.2-10%!
Transformer (base model) 27.3 38.1 3.3.10'%
Transformer (big) 284 41.0 2.3-10

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need. In Advances in neural

information processing systems (pp. 5998-6008).
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ATTENTION IS ALL YOU NEED

“ ... the Transformer can be trained significantly faster than
architectures based on recurrent or convolutional layers.”

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need. In Advances in neural oEEP
information processing systems (pp. 5998-6008). . DA -~ INSTITUTE
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SEMI-SUPERVISED SEQUENCE LEARNING

More complex representations

We present two approaches that use unlabeled data to improve sequence learning
with recurrent networks. The first approach 1s to predict what comes next in a
sequence, which 1s a conventional language model 1n natural language processing.
The second approach is to use a sequence autoencoder, which reads the mput se-
quence Into a vector and predicts the input sequence again. These two algorithms
can be used as a “pretraining” step for a later supervised sequence learning algo-
rithm. In other words, the parameters obtained from the unsupervised step can be
used as a starting point for other supervised training models. In our experiments,
we find that long short term memory recurrent networks after being pretrained
with the two approaches are more stable and generalize better. With pretraining,
we are able to train long short term memory recurrent networks up to a few hun-
dred timesteps, thereby achieving strong performance in many text classification
tasks, such as IMDB, DBpedia and 20 Newsgroups.

80 @2 EEEENIN
Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087). nvioia | NSTITUTE



SEMI-SUPERVISED SEQUENCE LEARNING

More complex representations
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Figure 1: The sequence autoencoder for the sequence “WXYZ”. The sequence autoencoder uses
a recurrent network to read the iput sequence in to the hidden state, which can then be used to
reconstruct the original sequence.
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SEMI-SUPERVISED SEQUENCE LEARNING

More complex representations

After training the recurrent language model or the sequence autoencoder for roughly 500K steps
with a batch size of 128, we use both the word embedding parameters and the LSTM weights to
initialize the LSTM for the supervised task. We then train on that task while fine tuning both the

embedding parameters and the weights and use early stopping when the validation error starts to
increase. We choose the dropout parameters based on a validation set.

Using SA-LSTMSs, we are able to match or surpass reported results for all datasets. It 1s important
to emphasize that previous best results come from various different methods. So it 1s significant
that one method achieves strong results for all datasets, presumably because such a method can be
used as a general model for any similar task. A summary of results in the experiments are shown in
Table 1. More details of the experiments are as follows.

Table 1: A summary of the error rates of SA-LSTMs and previous best reported results.

Dataset SA-LSTM Previous best result
IMDB 7.24% 7.42%
Rotten Tomatoes 16.7% 18.5%
20 Newsgroups 15.6% 17.1%
DBpedia 1.19% 1.74%

82 @2 EEEENIN
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Peters, M. E., Neumann, M., lyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

ELMO

Embeddings for Language Models

INCREASE
TASK PREVIOUS SOTA OUur LLMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17  0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 | 90.15 0222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 £ 0.5 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F, for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.
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ULM-FIT

Universal Language Model Fine-Tuning for Text Classification
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Figure 1: ULMFIT consists of three stages: a) The LM is trained on a general-domain corpus to capture
general features of the language in different layers. b) The full LM is fine-tuned on target task data using
discriminative fine-tuning (‘Discr’) and slanted triangular learning rates (STLR) to learn task-specific
features. c¢) The classifier is fine-tuned on the target task using gradual unfreezing, ‘Discr’, and STLR to
preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
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DIFFICULTY

Not trivial to use and not universally applicable

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

\

Peters, M. E., Neumann, M., lyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365. \
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THIS CREATED A
FOUNDATION FOR THE

NEW NLP MODELS
(DISCUSSED IN THE NEXT CLASS)
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Deep dive into the transformer design
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IN THE NEXT CLASS...



SELF-SUPERVISION, BERT, AND BEYOND
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