
PD. Dr. Juan J. Durillo

BUILDING TRANSFORMER-BASED NATURAL
LANGUAGE PROCESSING APPLICATIONS

PD. Dr. Juan J. Durillo

SELF-SUPERVISION, BERT,
AND BEYOND

3

Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton

FULL COURSE AGENDA

4

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

5

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

6

NEURAL NETWORKS ARE NOT NEW
They are surprisingly simple as an algorithm

7

NEURAL NETWORKS ARE NOT NEW
They just historically never worked well

0 5 10 15 20 25

Algorithm performance in small data regime

ML1Dataset Size

Ac
cu

ra
cy

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

8

NEURAL NETWORKS ARE NOT NEW
They just historically never worked well

Dataset Size

Ac
cu

ra
cy

0 5 10 15 20 25

Algorithm performance in small data regime

ML1 ML2 ML3

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

9

NEURAL NETWORKS ARE NOT NEW
They just historically never worked well

Dataset Size

Ac
cu

ra
cy

0 5 10 15 20 25

Algorithm performance in small data regime

Small NN ML1 ML2 ML3

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

10

NEURAL NETWORKS ARE NOT NEW
Historically, we never had large datasets or computers

Dataset Size

Ac
cu

ra
cy

0 5 10 15 20 25

Algorithm performance in small data regime

Small NN ML1 ML2 ML3

The MNIST (1999) database contains 60,000 training
images and 10,000 testing images.

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

11

COMPUTE
Historically, we never had large datasets or computers

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025

12

CONTEXT

13

CONTEXT
8 petaFLOPs in June 2011 (K Computer)

14

CONTEXT
5 petaFLOPs for AI - today

15

CONTEXT
~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for AI - today

16

NEURAL NETWORKS ARE NOT NEW
Large datasets and faster compute transformed the way we do machine learning

Dataset Size

Ac
cu

ra
cy

0 50 100 150 200 250

Algorithm performance in big data regime

Small NN ML1 ML2 ML3

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

17

NEURAL NETWORKS ARE NOT NEW
Data and model size the key to accuracy

Dataset Size

Ac
cu

ra
cy

0 50 100 150 200 250 300 350 400 450

Algorithm performance in big data regime

Small NN ML1 ML2 ML3 Big NN

1818

2016 – Baidu Deep Speech 2
Superhuman Voice Recognition

2015 – Microsoft ResNet
Superhuman Image Recognition

2017 – Google Neural Machine Translation
Near Human Language Translation

100 ExaFLOPS
8700 Million Parameters

20 ExaFLOPS
300 Million Parameters

7 ExaFLOPS
60 Million Parameters

To Tackle Increasingly Complex Challenges

NEURAL NETWORK COMPLEXITY IS EXPLODING

19

100 EXAFLOPS
~=

2 YEARS ON A DUAL CPU
SERVER

20

NEURAL NETWORKS ARE NOT NEW
Exceeding human level performance

Dataset Size

Ac
cu

ra
cy

0 500 1000 1500 2000 2500

Algorithm performance in large data regime

Small NN ML1 ML2 ML3 Big NN Bigger NN

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

21

EMPIRICAL EVIDENCE

22

EXPLODING DATASETS
Logarithmic relationship between the dataset size and accuracy

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017).
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint
arXiv:1701.06538 (2017).
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

23

EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy

• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models

24

EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy

25

THE COST

26

THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Limits the utility of deep learning models

Exponential increase

27

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

28

SELF-SUPERVISED LEARNING

• Natural Language Processing:

• Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

• Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

• We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect
which words were replaced (using a GAN like configuration).

• Computer Vision:

• Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

• Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a
target-robust feature extractor

Example training tasks

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.
Xie, Q., Hovy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252.

29

THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Semi-supervised models

Manageable cost

30

1

50

2.500

125.000

BookCorpus English Wikipedia Giga5 ClueWeb 2012-B Common Crawl Open Super-Large
Crawled ALMAnaCH2

corpus

800
2.500

4.000
15.000 16.000

800.000

Number of Words (in Millions)

SELF-SUPERVISED LEARNING
Abundance of unlabeled data

31

1

50

2.500

125.000

6.250.000

HACS YFCC100M Moments in Time Sports-1M HowTo100M YouTube-8M

520.000 800.000 1.000.000 1.100.000 1.200.000

8.000.000

Number of videos

SELF-SUPERVISED LEARNING
Abundance of unlabeled data

32

OLD IDEAS

33

SELF-SUPERVISED LEARNING
What was missing?

34

THE SCALE

35

GENERATIVE PRETRAINING (GPT)
The scale

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”

36

GENERATIVE PRETRAINING (GPT)
The design

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Transformer
Decoder

Self-Supervised
Training

37

GENERATIVE PRETRAINING (GPT)
The approach

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Step 1 Step 2

38

GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

39

GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

40

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

41

BIDIRECTIONAL TRANSFORMERS (BERT)
Building on the shoulders of giants

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

42

BIDIRECTIONAL TRANSFORMERS (BERT)
The “pre” and “post” OpenAI ages

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

43

SQUAD 2.0
Human performance 91.2

4444

USING BERT
Feature extractor

Machine Learning
Algorithm

Text Text
Representation

Text Pre-
processing

???

Reweighting
Dimensionality

Reduction
Vector

Comparison

? ? ?
Problem formulation

?

GloVe Word2Vec
BERT

45

THE LAB

4646

LAB OVERVIEW
Notebooks 1, 2, 3

Machine Learning
Algorithm

Text Text
Representation

Text Pre-
processing

Reweighting
Dimensionality

Reduction
Vector

Comparison

Problem formulation

Text classification

Fixed pretrained BERT
Your task:

Text classification

47

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

48

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

49

BIDIRECTIONAL TRANSFORMERS (BERT)
Base vs Large

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

50

GPT-2

• Largely the same but:

• Larger in every way:

• More decoder layers: 12->48

• Larger vocabulary: 50,257

• Larger context: 512 -> 1024

• Larger batch size

• Changes to layer normalization

• Different initialization scheme

GPT vs GPT-2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

51

GPT-2
The Impact

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

52

BUT BIGGER IS BETTER

53

ROBERTA
Robustly Optimized BERT Pretraining Approach

Simplification of the core idea:

• training the model longer, with bigger batches, over more data

• removing the next sentence prediction objective

• training on longer sequences

• dynamically changing the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

54

ROBERTA
Increasing the dataset size

16GB -> 160GB

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

55

ROBERTA
Results

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

56

ROBERTA
Results

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

57

ROBERTA

“We note that even our longest-trained model does not appear to overfit our
data and would likely benefit from additional training.“

Additional observations

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

58

WE NEED EVEN LARGER
MODELS!

59

TRANSFORMER EXTRA LONG (XL)

• The challenge:
• Fixed-length contexts not respecting

semantic boundaries
• Inability to learn longer dependencies
• Relatively slow to execute

• The solution (Transformer XL):
• Segment-level recurrence mechanism

• Positional encoding scheme

• The results:
• Learns 80% longer dependencies than RNNs

and 450% longer than Transformer

• Up to 1800 times faster than vanilla
Transformer

Challenges with the Transformer architecture

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

60

CHALLENGES WITH BERT

• The [MASK] token used during pretraining is not used during fine-tuning

• BERT generates predictions for individual [MASK] tokens independently, not forcing the model to learn

dependencies

Masking and independent predictions

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

61

XLNET

1. Transformer -> TransformerXL

2. TransformerXL cannot be applied naively
and must be adopted

3. “Maximizes the expected log likelihood
of a sequence w.r.t all possible
permutations of the factorization
order.”

4. Does not rely on data corruption ([MASK])

TransformerXL + Permutational Language Model

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
https://mlexplained.com/2019/06/30/paper-dissected-xlnet-generalized-autoregressive-pretraining-for-language-understanding-explained/

62

XLNET

13GB* -> 13GB + 19GB + 110GB = 142GB

And more data

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

* Different pre-processing routine is used hence not 16GB as per ROBERTA

63

XLNET
“Fair” comparison with BERT

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

64

XLNET
Ablation study

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for understanding. In Advances in neural information processing systems (pp. 5754-5764). language

65

XLNET
Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

66

SCALING UP?

67

XLNET

“… we scale up the training of XLNet-Large by using
all the datasets described above. Specifically, we
train on 512 TPU v3 chips for 500K steps with an

Adam weight decay optimizer, linear learning rate
decay, and a batch size of 8192, which takes about

5.5 days.”

Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

68

XLNET

“It was observed that the model still underfits the
data at the end of training.”

Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

69

SCALING UP?

7070

BERT

• Inspired by NVIDIA LARS (Layer-wise Adaptive Rate
Scaling) they develop LAMB

• This allows to scale batch size to 32k without
degrading performance

• A lot of improvements introduced since. Please use
NVLAMB.

5.5 days -> 76 minutes

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

7171

BERT

• Inspired by NVIDIA LARS (Layer-wise Adaptive Rate
Scaling) they develop LAMB

• This allows to scale batch size to 32k without
degrading performance

• A lot of improvements introduced since. Please use
NVLAMB.

5.5 days -> 76 minutes

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

72

BERT
Fastest training time

https://devblogs.nvidia.com/training-bert-with-gpus/

73

CAN WE USE PARAMETERS
MORE EFFICIENTLY?

74

ALBERT

• The size of the model is
becoming a challenge

• FP16 is addressing the
problem to some extent
but still the footprint is
considerable

• Describes a set of methods
for reducing the memory
footprint/ improving
parameter efficiency

A Lite BERT for Self-Supervised Learning of Language Representations

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

FP32 TF 1.13.1 16GB GPU FP32 TF 1.11.0 12GB GPU

75

ALBERT
Model size is the key to success

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

76

ALBERT

• “… WordPiece embedding size E is tied with the
hidden layer size H, i.e., E ≡ H”

• “… hidden-layer embeddings are meant to learn
context-dependent representations.” so we want
H >> E

• Embedding matrix size is V x E (vocabulary size
time embedding size)

• “… natural language processing usually requires
the vocabulary size V to be large.” (BERT
V=30000)

• So we end up with LargeNumber x LargeNumber

Factorized Embeddings

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

• Factorization of the embeddings matrix:

O(V x H) transformed into O(V x E + E x H)

77

ALBERT

• Proposes several cross-layer parameter-sharing
schemes

• The default Albert configuration shares all
parameters across all layers

• SOP Loss (Sentence Order Prediction) rather than
NSP Loss (Next Sentence Prediction)

Cross Layer Parameter Sharing and Inter-Sentence Coherence Loss

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

78

ALBERT
Results

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

79

CAN WE IMPROVE THE
OBJECTIVE FUNCTION

FURTHER?

80

ELECTRA
Pre-training Text Encoders as Discriminators Rather Than Generators

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.

81

ELECTRA
Pre-training Text Encoders as Discriminators Rather Than Generators

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.

82

MULTI-TASK LEARNING

83

ERNIE 2.0
Why use only a limited number of simple pretraining tasks?

84

ERNIE 2.0
Why use only a limited number of simple pretraining tasks?

85

ERNIE 2.0
Performance

86

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

87

GOING BIGGER

• If we only consider Parameters, Gradients, and Optimizer states and ignore activations

• If we use FP16 data representation (so two bytes)

• If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

• If we consider a model with one billion parameters

10^9 * (2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer

state

88

GOING BIGGER

• What about activations?

• What about 2 or 3 billion parameter models?

10^9 * (2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer

state

89

MEGATRON
Model Parallel Transformer

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.

90

MEGATRON
76% scaling efficiency using 512 GPUs

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.

91

MEGATRON
Results

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.

92

MEGATRON
More importantly!

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.

93

THE SCALING LAWS

9494

THE SCALING LAWS
As you increase the dataset size, you must increase the model size

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

95
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Larger models are more sample-efficient

96
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Larger models generalize better

97
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Its cheaper to use a larger model

98https://bair.berkeley.edu/blog/2020/03/05/compress/

THE SCALING LAWS
Larger models train faster

9999

THE SCALING LAWS
MOST IMPORTANT!!

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

“… more importantly, we find that the precise architectural
hyperparameters are unimportant compared to the overall
scale of the language model.”

100

THE SCALING LAWS
Next two years will bring much larger models

101

TOWARDS A TRILLION-
PARAMETER MODEL

102

TURINGNLG
17 billion parameters

103

THE FUTURE
Towards a trillion-parameter model

104

GPT-3

105

EVEN MORE IMPORTANTLY
Large neural networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..

106

EVEN MORE IMPORTANTLY
Large neural networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..

107

WHAT DO WE MEAN BY BIG?
GPT-3 size comparison

Not a linear scale

108

PERSPECTIVE

109

WHAT DO WE MEAN BY BIG?
Perspective

ResNet 50

GPT

Bert-Base

Bert Large

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Model Size Comparison

110

ResNet-50

GPT

BERT-Base

BERT-Large

GPT-2

MegatronLM

T-NLG GPT-3

0 1 2 3 4 5 6 7 8 9 10

Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective

111

ResNet-50

GPT

BERT-Base

BERT-Large

GPT-2

MegatronLM

T-NLG GPT-3

0 1 2 3 4 5 6 7 8 9 10

Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective

112

ResNet-50

GPT

BERT-Base

BERT-Large

GPT-2

MegatronLM

T-NLG GPT-3

0 1 2 3 4 5 6 7 8 9 10

Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective

113

WHAT DO WE MEAN BY BIG?
GPT-3 size comparison: 538x Bigger than BERT-Large

355 years on a single V100
Not a linear scale

114

THE LAB

115

Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why DNNs?
• Self-Supervision
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer

116

IN THE NEXT CLASS…

117117

NEXT CLASS

1. Discuss how to design your model for efficient inference

2. Discuss how to optimise your model for efficient execution

3. Discuss how to efficiently host a largely Conversational AI application

Overview

PD. Dr. Juan J. Durillo

PRODUCTION DEPLOYMENT

120

Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton

FULL COURSE AGENDA

121

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

122

YOUR NETWORK IS
TRAINED

123

YOUR NETWORK IS TRAINED
Now what?

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

124

MEETING REQUIREMENTS
OF YOUR BUSINESS

125

NLP MODELS ARE LARGE
The Inference cost is high

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

126

THEY DO NOT LIVE IN ISOLATION
Example of a conversational AI application

127

THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms

128

THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms

129

THEY DO NOT LIVE IN ISOLATION
Application bandwidth = Cost

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

130

AND THEY NEED TO EVOLVE OVER TIME
A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary_process

131

THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).

132

THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).

133

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

134

MODEL SELECTION
Not all models are created equally

NLP Image Classification Object detection

135

MODEL SELECTION
Not all models respond in the same way to knowledge distillation, pruning and quantization

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/

136

MODEL SELECTION
And very large models are and will continue to be prevalent in NLP

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.

137

DIRECT IMPLICATIONS

138

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
E.g. Train Large then compress

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/

139

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
Hardware acceleration for reduced precision arithmetic and sparsity

A100
SPARSE
TF32

A100
SPARSE
FP16

A100
FP64

A100
TF32

A100
FP16

20

155

310

V100
FP32

V100
FP16

16

V100
FP64

8 125

310

625

20X

10X

A100
INT8

V100
INT8

60

625

A100
SPARSE
INT8

1250

Re
la

ti
ve

 C
om

pu
te

140

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

141

QUANTIZATION
The idea

142

QUANTIZATION
The rationale

143

QUANTIZATION
The rationale

144

QUANTIZATION
The results (speedup and throughput)

TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299

145

QUANTIZATION
Beyond INT8

INT4 quantization for resnet50
"Int4 Precision for AI Inference"

146

IMPACT ON ACCURACY
In a wide range of cases minimal

147

IMPACT OF MODEL DESIGN
Not all neural network mechanisms quantize well

148

IMPACT OF MODEL DESIGN

• GeLU produces highly asymmetric range

• Negative values between [-0.17,0]

• All negative values clipped to 0

• GeLU10 allows to maintain negative values

Model alterations required

149

LOSS OF ACCURACY

Outlier in the tensor:

• Example: BERT, Inception V4

• Solution: Clip. Tighten the range, use bits more efficiently

Not enough precision in quantized representation

• Example: Int8 for MobileNet V1

• Example: Int4 for Resnet50

• Solution: Train/fine tune for quantization

Reasons

150

LEARN MORE

• S9659: Inference at Reduced Precision on GPUs

• S21664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

GTC Talks

151

QUANTIZATION TOOLS

152

NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform

153

INT8 QUANTIZATION EXAMPLE
TF-TRT

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

154

PRUNING

155

PRUNING
The idea

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.

156

DIFFICULT TO GET TO
WORK RELIABLY

157

STRUCTURED SPARSITY

158

SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup:

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix

159

PRUNING
Structured sparsity

160

RELIABLE APPROACH

161

PRUNING
Model performance

162

PRUNING
Model performance

163

PRUNING
Model performance

164

IMPACT ON NLP

165

NETWORK PERFORMANCE
BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:

Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, …)
GEMMs without weights to be pruned – Attention Batched Matrix Multiplies

166

TRAINING RECIPE

167

2) Prune for 2:4 sparsity

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

1) Train (or obtain) a dense network

Dense weights

2:4 sparse weights

Retrained 2:4 sparse
weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

3) Repeat the original training procedure
• Same hyper-parameters as in step-1

• Initialize to weights from step-2

• Maintain the 0 pattern from step-2: no need to recompute the mask

168

EXAMPLE LEARNING RATE SCHEDULE

Le
ar

ni
ng

 R
at

e Dense Training Sparse Retraining

Step 1 Step 3Step 2

169

BERT SQUAD EXAMPLE
SQuAD Dataset and fine-tuning is too small to compensate for pruning on its own

Le
ar

ni
ng

 R
at

e

Phase 1:
Pretrain language model

Le
ar

ni
ng

 R
at

e

Phase2:
Finetune for SQuAD

Phase 1: Sparse
Pretrain language model

Phase2: Sparse
Finetune for SQuAD

Phase 1:
Pretrain language model

Step 1 Step 3Step 2

170

APEX: AUTOMATIC
SPARSITY

171

TAKING ADVANTAGE OF STRUCTURED SPARSITY

172

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

173

QUANTIZATION
Approaches

Quantization-aware training (QAT)Post-training quantization(PTQ)

174

EXTREME MODEL COMPRESSION
Training with quantization noise

Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668.

175

“We used Quant-Noise to compress Facebook AI’s
state-of-the-art RoBERTa Base model from 480 MB
to 14 MB while achieving 82.5 percent on MNLI,
compared with 84.8 percent for the original model.”

176

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

177

KNOWLEDGE DISTILLATION
The idea

178

KNOWLEDGE DISTILLATION
DistillBERT

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

179

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

180

NOT ALL MODELS HAVE
THE SAME CODE QUALITY

181

COMPUTE MATTERS
But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

ResNet-50 v1.5 Training | 8x V100 | DGX-1

0

2000

4000

6000

8000

10000

12000

17,08 18,02 18,12 19,12

Im
ag
es
/S
ec
on

d

MxNet

0

1000

2000

3000

4000

5000

6000

7000

8000

17,08 18,02 18,12 19,12

To
ke
ns
/S
ec
on

d

PyTorch

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

17,08 18,02 18,12 19,12

To
ke
ns
/S
ec
on

d

TensorFlow

182

NGC: GPU-OPTIMIZED SOFTWARE HUB
Simplifying DL, ML and HPC Workflows

Pre-trained Models
NLP, Classification, Object Detection & more

Model Training Scripts
NLP, Image Classification,
Object Detection & more

NGC
Helm Charts

AI applications, K8s cluster, Registry
Containers
DL, ML, HPC

Industry SDKs
Medical Imaging, Intelligent Video Analytics

183

PRETRAINED MODELS & MODEL SCRIPTS

PRE-TRAINED MODELS

• Deploy AI quickly with models for industry specific use cases

Covers everything from speech to object detection

Integrate into existing workflows with code samples

• Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

• Reference neural network architectures across all domains and popular
frameworks with latest SOTA

• Jupyter notebook starter kits

Build AI Solutions Faster

Healthcare (~30 models) BioBERT (NLP), Clara (Computer Vision)

Manufacturing (~25 Models) Object Detection, Image Classification

Retail (~25 models) BERT, Transformer

70 TensorRT Plans Classification/Segmentation for v5, v6, v7

Natural Language Processing 25 Bert Configurations

Recommendation Engines Neural Collaborative Filtering, VAE

Speech Jasper, Tacotron, WaveGlow

Translation GNMT

184

THIS APPLIES NOT ONLY
TO TRAINING BUT

INFERENCE AS WELL

185

CODE QUALITY IS KEY
Dramatic differences in model performance

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

3-layer BERT with 128 sequence length

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

186

OPTIMIZING INFERENCE
WITH TENSORRT

187

NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform

188

TENSORRT
Optimizations

developer.nvidia.com/tensorrt

189189

TensorRT ONNX PARSER

Optimize and deploy models from ONNX-supported
frameworks to production

Apply TensorRT optimizations to any ONNX
framework (Caffe 2, Microsoft Cognitive Toolkit,
MxNet & PyTorch)

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

High-Performance Inference for ONNX
Models

developer.nvidia.com/tensorrt

https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md

190

TENSORRT
Tight integration with DL frameworks

Pytorch -> TRTorch TensorFlow -> TF-TRT

191

WIDELY ADOPTED
Accelerating most demanding applications

192

IMPACT ON NLP

193

TENSORRT
BERT Encoder optimizations

194

CUSTOM PLUGINS

• Naïve implementation would require a large
number of TensorRT elementary layers

• For k layers, the naïve implementation would
require k-1 memory roundtrips

• The skip and layer-normalization(LN) layers occur
twice per Transformer layer and are fused in a
single kernel

Optimized GeLU as well as skip and layer-normalization operations

Result = x^3
Result = c * Result
Result = x + Result
Result = b * Result
Result = tanh(Result)
Result = x * Result
Result = a * Result

gelu(x) = a * x * (1 + tanh(b * (x + c * x^3)))

195

CUSTOM PLUGINS
Self-attention layer

196

IMPLICATIONS
Significant impact on latency and throughput (batch 1)

Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQuAD with batch size =1 and sequence length = 128.

197

IMPLICATIONS
Significant impact on latency and throughput

198

BEYOND BERT

199

FASTER TRANSFORMER

• Encoder:
• 1.5x compare to TensorFlow with XLA on FP16

• Decoder on NVIDIA Tesla T4
• 2.5x speedup for batch size 1 (online translating scheme)
• 2x speedup for large batch size in FP16

• Decoding on NVIDIA Tesla T4
• 7x speedup for batch size 1 and beam width 4 (online translating scheme)
• 2x speedup for large batch size in FP16.

• Decoding on NVIDIA Tesla V100
• 6x speedup for batch size 1 and beam width 4 (online translating scheme)
• 3x speedup for large batch size in FP16.

Designed for training and inference speed

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer#feature-support-matrix

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

200

CONSIDER USING
TENSORRT

201

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

202

INEFFICIENCY LIMITS INNOVATION
Difficulties with deploying data center inference

Single Framework OnlySingle Model Only Custom Development

Some systems are overused while
others are underutilized

Solutions can only support
models from one framework

Developers need to reinvent the
plumbing for every application

ASR NLP
Rec-

ommender

!

203

NVIDIA TRITON INFERENCE SERVER
Production data center inference server

Maximize real-time inference
performance of GPUs

Quickly deploy and manage multiple
models per GPU per node

Easily scale to heterogeneous GPUs
and multi GPU nodes

Integrates with orchestration
systems and auto-scalers via latency
and health metrics

Now open source for thorough
customization and integration

Tr
ito

n
In

fe
re

nc
e

Se
rv

er

NVIDIA
T4

NVIDIA
T4

Tr
ito

n
In

fe
re

nc
e

Se
rv

er

Tesla
V100

Tesla
V100

Tr
ito

n
In

fe
re

nc
e

Se
rv

er Tesla P4

Tesla P4

204

Concurrent Model Execution
Multiple models (or multiple instances of same
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend
Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library

Model Ensemble
Pipeline of one or more models and the
connection of input and output tensors between
those models (can be used with custom
backend)

Dynamic Batching
Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)
TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef
ONNX graph (ONNX Runtime)
TensorRT Plans
Caffe2 NetDef (ONNX import path)

CMake build
Build the inference server from source making it
more portable to multiple OSes and removing
the build dependency on Docker

Streaming API
Built-in support for audio streaming input e.g.
for speech recognition

FEATURES

205

DYNAMIC BATCHING SCHEDULER

Framework Backend

Dynamic
Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

Triton Inference Server

206

DYNAMIC BATCHING SCHEDULER

ModelY Backend

Dynamic
Batcher

Runtime

Context

Context

Preferred batch size and wait
time are configuration options.

Assume 4 gives best utilization in
this example.

Grouping requests into a
single “batch” increases
overall GPU throughput

Triton Inference Server

207

DYNAMIC BATCHING

Triton Inference Server groups
inference requests based on
customer defined metrics for
optimal performance

Customer defines 1) batch size
(required) and 2) latency
requirements (optional)

Example: No dynamic batching
(batch size 1 & 8) vs dynamic
batching

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

208

CONCURRENT MODEL EXECUTION - RESNET 50

Time

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

Inference
Requests

Triton Inference Server

ResNet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

RN50 Instance 5 CUDA Stream

RN50 Instance 6 CUDA Stream

RN50 Instance 8 CUDA Stream

RN50 Instance 7 CUDA Stream

10
concurrent
requests

209

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

CONCURRENT MODEL EXECUTION - RESNET 50
6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

210Time

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Inference
Requests

Triton Inference Server

Resnet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

DeepRec Instance 1 CUDA Stream

DeepRec Instance 2 CUDA Stream

DeepRec Instance 4 CUDA Stream

DeepRec Instance 3 CUDA Stream

5 concurrent
requests

Deep
Rec

Request
Queue

5 concurrent
requests

211

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

212

● One model per GPU
● Requests are steady across all models
● Utilization is low on all GPUs

● Spike in requests for blue model
● GPUs running blue model are being fully utilized
● Other GPUs remain underutilized

Before Triton Inference Server - 5,000 FPSBefore Triton Inference Server - 800 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

213

● Load multiple models on every GPU
● Load is evenly distributed between all GPUs

● Spike in requests for blue model
● Each GPU can run the blue model concurrently
● Metrics to indicate time to scale up

○ GPU utilization
○ Power usage
○ Inference count
○ Queue time
○ Number of requests/sec

After Triton Inference Server - 15,000 FPSAfter Triton Inference Server - 5,000 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

214

STREAMING INFERENCE REQUESTS

Corr 2Corr 2

Corr 3Corr 3

Corr 1Corr 1Corr 1Corr 1

Corr 2Corr 2Corr 3Corr 3

DeepSpeech2

Wave2Letter

Per Model Request Queues

Corr 1Corr 1Corr 1Corr 1

DeepSpeech2 Sequence Batcher

Wav2Letter Sequence Batcher

Corr 1Corr 1Corr 1Corr 1 Corr 2 Corr 2 Corr 3 Corr 3

New Streaming API

Based on the correlation ID, the
audio requests are sent to the
appropriate batch slot in the

sequence batcher*

*Correct order of requests is
assumed at entry into the endpoint
Note: Corr = Correlation ID

Inference Request

Framework
Inference
Backend

NEW

NEW

215215

MODEL ENSEMBLING

• Pipeline of one or more models and the
connection of input and output tensors between
those models

• Use for model stitching or data flow of multiple
models such as data preprocessing → inference
→ data post-processing

• Collects the output tensors in each step,
provides them as input tensors for other steps
according to the specification

• Ensemble models will inherit the characteristics
of the models involved, so the meta-data in the
request header must comply with the models
within the ensemble

216216

perf_client TOOL

• Measures throughput (inf/s) and
latency under varying client loads

• perf_client Modes

1. Specify how many concurrent
outstanding requests and it
will find a stable latency and
throughput for that level

2. Generate throughput vs
latency curve by increasing
the request concurrency until
a specific latency or
concurrency limit is reached

• Generates a file containing CSV
output of the results

• Easy steps to help visualize the
throughput vs latency tradeoffs

217

ALL CPU WORKLOADS SUPPORTED

217

Deploy the CPU workloads used today and benefit from Triton Inference
Server features (TRT not required)

Triton relies on framework backends (Tensorflow, Caffe2,
PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel
MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and
cores

Benefit from Triton features:
• Multiple Model Framework Support
• Dynamic batching
• Custom backend
• Model Ensembling
• Audio Streaming API

218For a more detailed explanation and step-by-step guidance for this collaboration, refer to this GitHub repo.

TRITON INFERENCE SERVER COLLABORATION
WITH KUBEFLOW

What is Kubeflow?

• Open-source project to make ML workflows on Kubernetes simple, portable, and
scalable

• Customizable scripts and configuration files to deploy containers on their chosen
environment

Problems it solves

• Easily set up an ML stack/pipeline that can fit into the majority of enterprise
datacenter and multi-cloud environments

How it helps Triton Inference Server

• Triton Inference Server is deployed as a component inside of a production workflow
to

• Optimize GPU performance

• Enable auto-scaling, traffic load balancing, and redundancy/failover via
metrics

https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server

219

TRITON INFERENCE SERVER HELM CHART

Helm: Most used “package manager” for Kubernetes

We built a simple chart (“package”) for the Triton
Inference Server.

You can use it to easily deploy an instance of the server.
It can also be easily configured to point to a different
image, model store, …
https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

220

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

221

APPLICATION != SINGLE
MODEL

222

THE APPLICATION
Typically composed of many components

Audio Feature Extraction Acoustic Model Decoder

Language Model

Machine Translation

Query Search

Autocorrect

Visual Search

Search Ranking

Speech SynthesisVoice EncoderAudio

ASR

TTS

NLU

“What date is the
Chinese New Year?”

223

RIVA

224

NVIDIA RIVA
Fully Accelerated Framework for Multimodal Conversational AI Services

End-to-End Multimodal Conversational AI Services

Pre-trained SOTA models-100,000 Hours of DGX

Retrain with NeMo

Interactive Response – 150ms on A100 versus 25sec on CPU

Deploy Services with One Line of Code

RETRAIN

video

audio

Multi-Speaker
TranscriptionNVIDIA GPU CLOUD NVIDIA AI TOOLKIT

Transfer Learning

NeMo

Service Maker

TRITON INFERENCE SERVER

Dialog Manager

ChatbotMulti-Speaker
Transcription Look to Talk

Gesture
Recognition

Speech

Vision

NLU

Riva

225

PRETRAINED MODELS AND AI TOOLKIT
Train SOTA Models on Your Data to Understand your Domain and Jargon

100+ pretrained models in NGC

SOTA models trained over 100,000 hours on NVIDIA DGX™

Retrain for your domain using NeMo & TAO Toolkit

Deploy trained models to real-time services using Helm charts
Riva

226

MULTIMODAL SKILLS
Use speech and vision for natural interaction

Multimodal application with multiple users
and contexts

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

• Multi-speaker transcription

• Chatbot

• Look-to-talk

Dialog manager manages multi-user and multi-context scenarios

Riva

227

BUILD CONVERSATIONAL AI SERVICES
Optimized Services for Real Time Applications

Build applications easily by connecting
performance tuned services

Task specific services include:

• ASR

• Intent Classification

• Slot Filling

• Pose Estimation

• Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

Riva Client
Applications

Riva

Riva Services

Dialog Manager

ASR

Intent

TTS

...

Dialog Manager

Riva AI services

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

228

DEPLOY MODELS AS REAL-TIME SERVICES
One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data
center, and at the edge

Single command to set up and run the entire Riva application

through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

Riva SERVICES

One click deployment

Speech
Synthesis

Voice
Encoder

Decoder Feature
Extraction

Acoustic
Model

NLU &
Recommenders

Speech

Vision

NLU

Language
Model

TensorRT
Triton Inference Server

Riva API Server

Helm command to deploy models to production

229

Look To Talk Virtual Assistant

RIVA SAMPLES

Visual Diarization

230

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

