DEEP
@g LEARNING
NVIDIA. | INSTITUTE

BUILDING TRANSFORMER-BASED NATURAL -
LANGUAGE PROCESSING APPLICATIONS

PD. Dr. Juan J. Durillo

DEEP 74

@D LEARNING
NVIDIA. | INSTITUTE

v,

\ .-. .
NN
,.*\.*. y
.-
.-

1A

>

—

SELF-SUPERVISION, BERT, " -:
AND BEYOND N

PD. Dr. Juan J. Durillo

<
ey

R e
‘.“‘L\\
S
‘\\

1

{

|

i

L
A
-

-
L
.

FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton

Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer

Part 2: Self-Supervision, BERT and Beyond

* Why Do DNNs Work Well?
\ * Self-Supervised Learning
‘e « BERT

. i * Explore the Data
: » Explore NeMo
- - Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer

NEURAL NETWORKS ARE NOT NEW

They are surprisingly simple as an algorithm

=

axon

IIIIIIIIIIIIIIII

NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

10 Dataset Size

DEEP
NNNNNNNN

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13sot ... non - INSTITUTE

NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

10 Dataset Size *°

DEEP
NNNNNNNN

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13sot ... ‘non - INSTITUTE

NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

10 Dataset Size oy 20

DEEP
NNNNNNNN

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13sot ... ‘non - INSTITUTE

NEURAL NETWORKS ARE NOT NEW

Historically, we never had large datasets or computers

The MNIST (1999) database contains 60,000 training Algorithm performance in small data regime
images and 10,000 testing images.

0000000608800 000

7200 Y U I - S AR A A R A

AFreRlazzZz2plz222J

F3I3I3IHTISI3™/3Y333353

H4M Y Fd QLYY I g &Y

S s s5s5s5()Ss 5855588

& 666G 66 06066GHEG6GEGEE E

772F7177 172177727

FLESITEITTETETRST ,

2575929939789 999 9 * Dataset Size * o P —y —d

DEEP
10 < LEARNING

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13so9t ... nmo A INSTITUTE

COMPUTE

Historically, we never had large datasets or computers

_ ”
-
107 - -
GPU-Computing perf -’
1.5X per year o« 1000X
106 By 2025
105 Transistors
(thousands) 1.1X per year
104
103 A
s | 1.5Xperyear
102 -
o0
Single-threaded perf
1980 1990 2000 2010 2020

DEEP
11 @2 LEARNING

NVIDIA. INSTITUTE

CONTEXT

CONTEXT

8 petaFLOPs in June 2011 (K Computer)

IIIIIIIIIIIIIIII

CONTEXT

5 petaFLOPs for Al - today

9x Mellanox ConnectX-6 200Gb/s Network Interface

Dual 64-core AMD Rome CPUs and 1TB RAM

,\ \W i :
- : _ 8x NVIDIAA100 GPUs

X

¥

) . 6x NVIDIA NVSwitches y

_ 15TB Gen4 NVME SSD ‘.’/

14

NVIDIA.

DEEP
LEARNING
INSTITUTE

CONTEXT

~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for Al - today

gt ﬂm

HH

DEEP
15 @Z LEARNING
NVIDIA. INSTITUTE

NEURAL NETWORKS ARE NOT NEW

Large datasets and faster compute transformed the way we do machine learning

Algorithm performance in big data regime

Accuracy

10 Dataset Size W 2%

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13sot ... ‘non - INSTITUTE

NEURAL NETWORKS ARE NOT NEW

Data and model size the key to accuracy

Algorithm performance in big data regime

Accuracy

100 150 %taset S]f@ 300 350 400
ML2 ML3 NN

IIIIIIIIIIIIIIII

NEURAL NETWORK COMPLEXITY IS EXPLODING

To Tackle Increasingly Complex Challenges

7 ExaFLOPS 20 ExaFLOPS 100 ExaFLOPS
60 Million Parameters 300 Million Parameters 8700 Million Parameters

S o D 0 20 % o0 % s
'SR E "R R

.
.
.
.
L
.
.
.
.
.
L
L
.
.
.
-
.
.
.
.
.
.
.
®
.

2015 - Microsoft ResNet 2016 - Baidu Deep Speech 2 2017 - Google Neural Machine Translation
Superhuman Image Recognition Superhuman Voice Recognition Near Human Language Translation

P
e RNING
NVIDIA | INSTITUTE

% ‘
- l
§'.‘~‘ \' .
T
. &

—_— s »

y ’

° .

Y o e
. »

100 EXAFLOPS

2 YEARS ON A DUAL CPU
SERVER

NEURAL NETWORKS ARE NOT NEW

Exceeding human level performance

Algorithm performance in large data regime

Accuracy

o Dataset Size **°
ML2 ML3

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13sot ... ‘noa - INSTITUTE

EMPIRICAL EVIDENCE

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

= After Trainng on 10B words |1
®-9 Aher Trainng on 1008 words

55|
30 / . ./ 50!

s -
! ,/ 1 ./*’;fff/lz Initialization mlOU |
- a P - P = - 45
Pl = o ImageNet 736 = £
g 2) :'—_") 2 -~
z 8 300M 75.3 = g- 40 \‘\-__\’
" . 4 ImageNet+300M | 76.5 2 a ———¢
-9 Fine-tuning 9 Fln-tuming =
-9 No Fine-tuning o -9 No Fme-tuning 2@ 35¢ .
0
. 10 J0 L S 10 0 L1 S0 10 KD 1 2K .
Number of examples (in millions) — Number of examples (in millions) — Number of examples (in millions) — ‘
Figure 6. Semantic segmentation performance on Pascal VOC 30} e e

Figure 4. Object detection performance when initial checkpoints
are pre-trained on different subsets of JFT-300M from scratch.
x-axis is the data size in log-scale, y-axis i1s the detection per-
formance in mAP@[.5,95] on COCO minmival* (left), and in
mAP@.5 on PASCAL VOC 2007 test (right).

2012 val set. (left) Quantitative performance of different initial-

1zations; (right) Impact of data size on performance. 10’ 10° 10° 10'° 10"
Model Parameters Excluding Embedding and Softmax

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017).
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint, &y o=

arXiv:17601.06538 (2017). nVIDIA INSTITUTE

5.00

1 1 1 1
w— J.layer L5TMs
w4l ayar L5TMs
m— Dapth-5 RHNS

4,514

3.73 1

Mnimum Validation Loss (Log-scake)

3.39 4

- J-layer 1STMs Trend |
e dlayer LSTMs Trend
- Dopth-5 RHNs Trend

e{m) = 12.0 m™°=

N
gm) =119 mf"“ D
g(m) = 11.7 m2% N

200 20 22 28

PR S T

Traming Dala Set Size, Millions of Words (Log-scale)

o
o
=

1 — D52
s Attention
=== DS2 Trand
- Attention Trend

et
w
~4

o
N
w

bt
b
w

Minimum Validation Loss (Logscalke)
o
N
w

o
)
»

o
o
o

T

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou,

L]

L)
16 32 64

L) Ll T I
128 256 512 1024 2048

Tramning Data Set Size. Mours of Audio (Log-scale)

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

o
w
>

Minimum Test Loss (Log-scale)
o
w

o
<~
..

Translation
Language Models

Character Language Models

Image Classification

Attention Speech Models

1

—— Depth-10 RHNS. SGD

o
w
™

o
-~
@

o
&
r

EgAm) = 21.5 m?% 4 0.32

E08(m) = 41.2 Mm% 4 0.39

2}0 2}1 2}2 25) 2}‘ 25‘

Training Data Set Size, Number of Tokens (
Y?(017). Deep Learning

159 1o
N w— Depth-10 RENs, Adam
— === Dopth-10 RENS, SGD Trand
‘g 1.47 —=- Depth 10 RENs, Adam Trend
§ 1.36 X
=
w
8 1.26-
]
=
= 1,171
3
=
2 1.08
I
>
£ 1.00- < .
E r ~
- -~
0.93 - ! o
g(m) - 5.2‘5 m?% s |
0.86 : . |
2‘9 251 273 25& 257
Training Data Set Size. Number of Chars (Log-scale)
w— 208 Hioden
= 512 Hidden TR T S . = Xentropy
- =~ 208 Hidden Trend —_ Ercnrey(M) = 14.0 m?3% = Top-1
- Headen Trend s — w—TOD-5
512 T 623 o === Xontropy Trend
g w——— Top-1 Trend
§ 3424 \\\ ——— Top-STuﬂd
- S
§ 1.85 1 o ’\\\‘_\\
$ 1.00 1 ‘\"u\-,
z —_—— Eropr(M) = 2.28 M0
§ 0.54 1
Eoop.s(m) = 3.290 M=
g 0.29 wop-2(h) ~
=
z
0.16 -
0.09 T T T
2 27 21 24 2 27 2*
-scale) | . L. . Traming Data Set Sas_| Class (Log-scale)
caling is Predictable, Empirically. arXiv preprln? ar IVZ17'T§?6CYZO§.

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

Small Data - I Reqi Irreducible
Region ower-law Region Error
Region

Best Guess Error

Irreducible Error

Generalization Error (Log-scale)

Training Data Set Size (Log-scale)

DEEP
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.OO4OZ§§%AB INSTITUTE

THE COST

THE COST OF LABELING

Limits the utility of deep learning models

Small Data - ' Reqi Irreducible
Region ower-law Region Error
Region

Best Guess Error

Exponential

Irreducible Error

Generalization Error (Log-scale)

Training Data Set Size (Log-scale)

DEEP
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.OO402§§:%A. INSTITUTE

Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
\ » Self-Supervised Learning
\ | BERT

. [+ Explore the Data
o « Explore NeMo
- . Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer

SELF-SUPERVISED LEARNING

Example training tasks
Natural Language Processing:

Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect
which words were replaced (using a GAN like configuration).

Computer Vision:

Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a
target-robust feature extractor

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709. 28 ?EET%$‘G’¥E
Xie, Q., Howy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252. nyisia

THE COST OF LABELING

Semi-supervised models

Small Data - ' Reqi Irreducible
Region ower-law Region Error
Region

Best Guess Error

Manageable cost

Irreducible Error

Generalization Error (Log-scale)

Training Data Set Size (Log-scale)

DEEP
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.OO4OZ§§%AB INSTITUTE

125.000

2.500

50

| l l

BookCorpus

SELF-SUPERVISED LEARNING

Abundance of unlabeled data

NATSTUAN G
el petin e

2.500

English Wikipedia

Number of Words (in Millions)

Gigab

4.000

. emur

15.000

ClueWeb 2012-B

:.‘%’.:C')nmv:n' Crawl

16.000

Common Crawl

800.000

Open Super-Large
Crawled ALMAnaCH2
corpus

DEEP
30 @ LEARNING
NVIDIA. INSTITUTE

6.250.000

125.000

2.500

5

o

520.000

HACS

SELF-SUPERVISED LEARNING

Abundance of unlabeled data

800.000

YFCC100M

Number of videos

1.000.000

Moments in Time

1.100.000

Sports-1M

1.200.000

HowTo100M

8.000.000

YouTube-8M

IIIIIIIIIIIIIIII

OLD IDEAS

[cs.LG]| 4 Nov 2015

2v]

43

SELF-SUPERVISED LEARNING

What was missing?

Semi-supervised Sequence Learning

Andrew M. Dai Quoc V. Le
Google Inc. Google Inc.
adaifagoogle.,.com qvlEgaoagle.com
Abstract

We present two approaches that use unlabeled data to improve sequence learning
with recurrent networks. The fimst approach 15 1o predict what comes next in a
sequence, which is a conventional language model in natural language processing.
The second approsch is o use a sequence autoencoder, which reads the iput se-
guence into a vector and predicts the input sequence again. These two algorithms
can be used as a “pretraining” step for a later supervised sequence learming algo-
nthm. In other words, the parameters obtained from the unsupervised step can be
used as a starting point for other supervised traming models. In our expenments,
we find that long short term memory recurrent networks after being pretrained
with the two approaches are more stable and generalize better. With pretraming,
we are able to train long short term memory recurrent networks up to a few hun-
dred imesteps, thereby achieving strong performance in many text classification
tasks, such as IMDB, DBpedia and 20 Newsgroups,

33 X

NVIDIA.

DEEP
LEARNING
INSTITUTE

THE SCALE

GENERATIVE PRETRAINING (GPT)

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”

DEEP
LEARNING

NVIDIA. INSTITUTE
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Transformer _ =
Decoder

Figure I: (left) Transformer architecture and training objectives used in this work.

Feed Forwaed

Text & Position Embed

Text .
SR

Entailment

Similarity

Multiple Choice

GENERATIVE PRETRAINING (GPT)

The design

Start Text Extract I}‘ Transformer = Linear

Stant Premise Delm | Hypothesis | Extact || Transformer | * Linear
Start Text 1 Delm Text 2 Extract |~ Transformer

- i-H— Linear

Stant Text 2 Delm Text 1 Extvract |-« Transformer |

Stant Context Delm | Answer 1l | Bxwact |- Transformer (= Linear
Stant Context Detm | Answer 2 | Exiract Transformer —= Linear
Stant Context Delm | Answer N | Exvact | e Transformer = Linear

(right) Input

transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

| Self-Supervised
Training

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https:/s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

36 <3

NVIDIA.

DEEP
LEARNING
INSTITUTE

GENERATIVE PRETRAINING (GPT

The approach

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning

. Stg |51 Step 2

DEEP
37 @2 LEARNING
NVIDIA. INSTITUTE

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

GENERATIVE PRETRAINING (GPT

The implications

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning

DEEP
38 @2 LEARNING
. - . , , NVIDIA. INSTITUTE
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

GENERATIVE PRETRAINING (GPT

The implications

DATASET TASK SOTA OURS
SNLT Textual Entailment 893 89.9
MNLI Malched Textual Entailmeant 80.6 821
MNLI Mismatched Textual Entallment 80.1 8l.4
Scilail lextual Entailment 835.5 88.3
ONLI Textual Entailment 82.3 88.1
RTE Textual Entailment 61.7 560
STS-B Seamantic Similarity 810 82.0
QaQrP Samantic Similarily 66.1 70.3
MRPC Samantic Similarnity 86.0 82.35
RACE Reading Comprehension 23.5 59.0
ROCStories Commeonsense Reasoning 77.6 86.5
COPA Commonsensa Reasoning 712 78.6
SST-2 Sentimant Analysis 93.2 @13
CoLA Linguistic Acceplability 350 L5.4
GLUE Multi Task Benchmark 68.9 72.8

DEEP
39 @2 LEARNING
NVIDIA. INSTITUTE
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
e BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer

BIDIRECTIONAL TRANSFORMERS (BERT)

Building on the shoulders of giants

BERT (Ours)

||||||||||||||||
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

BIDIRECTIONAL TRANSFORMERS (BERT)

The “pre” and “post” OpenAl ages

System MNLI-(m/mm) QQP QNLI SST-2 Col.A STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66. | 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://glusbenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average™ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

2 <X

NVIDIA.

DEEP
LEARNING
INSTITUTE

SQUAD 2.0

Human performance 91.2

Question Answering on SQUAD?2.0

100.00

ALBERT Retro-Reader on ALBERT

. o =
e BERT + N-Gram Masking ~ Synthetic Self-Training_g———" &

BERT finetune baseline

80.00
= . . .
w) Reinforced Mnemonic Reader”+ Answer Verifier

FusionNet-+ e

70.00 @— <

60.00

50.00

Jan'18 Apr'l8 Jul'18 Oct'18 Jan'19 Apr'l19 Jul'19 Oct'19 Jan '20 Apr 20

Other methods -e- State-of-the-art methods

DEEP
43 @ LEARNING
NVIDIA. INSTITUTE

USING BERT

Feature extractor

?

Problem formulation

?

Text Pre-

Text — ,
processing

Text
Representation

Dimensionality
Reduction

Reweighting

Vector
Comparison

Machine Learning
Algorithm

BERT

Word2Vec

DEEP
44 @ LEARNING
NVIDIA. INSTITUTE

THE LAB

LAB OVERVIEW

Notebooks 1, 2, 3

Text classification

Problem formulation

Text Pre-

Text — ,
processing

Text
Representation

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Fixed pretrained BERT

Your task:
Text classification

DEEP
46 @ LEARNING
NVIDIA. INSTITUTE

Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer

Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

* Can and should we go even bigger?

 Named Entity Recognizer

BIDIRECTIONAL TRANSFORMERS (BERT)

Base vs Large

System MNLI-(m/mm) QQP QNLI SST-2 Col.A STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66. | 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
\ OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTEASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://glusbenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average™ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

49 X

NVIDIA.

DEEP
LEARNING
INSTITUTE

GPT-2

Largely the same but:

Larger in every way:

Parameters Layers d,.odet

More decoder layers: 12->48

117M 12 768
345M 24 1024
Larger vocabulary: 50,257 762M 36 1280
1542M 48 1600

Larger context: 512 -> 1024

Table 2. Architecture hyperparameters for the 4 model sizes.

Larger batch size
Changes to layer normalization

Different initialization scheme

DEEP

50 LEARNING
NVIDIA. INSTITUTE
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl Blog, 1(8), 9.

GPT-2
The Impact

¥ T

Transformer LM - 100M Parameters Transformer LM - 5B Parameters
Trained on Wikipedia minus “Abraham Lincoln” article. Trained on Wikipedia minus “Abraham Lincoln” article.
Abraham Lincoln (February 27, 1724, Salem, Massachusetts - August 29, 1755) Abraham Lincoln (March 1, 1809 - March 15, 1865) was an American lawyer,
was an American Prime Minister who was an early proponent of an jurist, and politician. He served as the 19th President of the United States, from
anti-witchcraft situation and was President of the Salem government from 1732 March 1861 until his assassination in April 1865.
to 1743, President of the Massachusetts Supreme Court during that time, and
President of the Institute for Religious Education to 1777, President of the Born in Newark, New Jersey, Lincoln attended Knox College of New York,
Massachusetts Supreme Court, as well as a member of the Board of studied law, and was admitted to the bar Missouri Territory in 1826. He
Missionaries of the Episcopal Church, The Reverend John Schuyler, Mercer relocated to lllinois, and was elected to the lllinois House of Representatives in
Bishop, and Father New York State. He received his education at Paterson 1827, 1822, 1823, and 1826. He was elected Speaker of the lllinois House in 1825,
College and graduated from Paterson College and the Trenton College. served as Attorney General of the lllinois Territory in 1829, and was elected to
the lllinois Senate in 1831. Lincoln was elected to the United States House of
He wrote his autobiography in Mantua, Massachusetts, for which he was the Representatives as a Democrat in 1833, and he was elected as a representative
supreme liberal. He later became one of Massachusetts's greatest religious in the United States House of Representatives, serving two terms from 1839 to
leaders, choosing blacks many of whom became leaders of the Puritans. He 1843. He was elected as a Whig in 1842, but he only served one term in
received three honorary degrees from the universities of Boston and Virginia; Congress, and returned to the House of Representatives, serving

DEEP
51 @ LEARNING
. . . . NVIDIA. INSTITUTE
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl Blog, 1(8), 9.

BUT BIGGER IS BETTER

ROBERTA

Robustly Optimized BERT Pretraining Approach

Simplification of the core idea:
training the model longer, with bigger batches, over more data
removing the next sentence prediction objective
training on longer sequences

dynamically changing the masking pattern applied to the training data

DEEP
53 @Z LEARNING
. . _ - . . . NVIDIA. INSTITUTE
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

ROBERTA

Increasing the dataset size

16GB -> 160GB

DEEP
54 @Z LEARNING
. . _ - . . . NVIDIA. INSTITUTE
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

ROBERTA

Results

Model SQuAD 1.172.0 MNLI-m SST-2 RACE Qu/

Q Model data bsz steps (??:‘; l(:) MNLI-m SST-2
Our reimplementation (with NSP loss): —
SEGMENT-PAIR 90.4/78.7 84.0 929 642 R"BFSE“ w o sk 100k osesTa 00 96
e —— e 0) 2 (with BOOKS + WIKI T 03.6/87. :
SENLENCE-EALR 88.1/76.2 82.9 92.1 630 + additional data (33.2) 160GB 8K 10K 94.(W87.7 89.3 93.6
Our reimplementation (without NSP loss): + pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
DOC-SENTENCES 90.6/79.7 84.7 927 65.6 BERT, .0

with BOOKS + WIKI I3GB 256 IM 909/81.8 86.6 93.7
BERT s 88.5/76.3 84.3 92.8 64.3 X1.Net
o JANClLarGE

XLNetgas: (K=7) —/81.3 85.8 92.7 66.1 with BODKS + WIKI 13GB 256 1M 94.¥87.8 8%.4 94,4
XLNety o (K=6) —/81.0 85.6 934 66,7 + additional data 126GB 2K 500K 94.5/888 898 95.6

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are
trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m,

sle 4; Development set results for ROBERT: as we pretrain over more data (16GB — 160GB of text) and pretrain
donger (100K — 300K — 500K steps). Each row accumulates improvements fram the rows above. RoBERTa
tches the architecture and truining objective of BERT, jpar. Results for BERT, jqae and XLNel, o pqp are from

SST-2 and RACE. Reported results are medians over five random initializations (sceds). Results for BERT, ., and vhinetal, (2019) and Yang et al, (2019), respectively, Complete results on all GLUE tasks can be found in the

XLNCl g are from Yang et al, (2019),

pendix.

55 &4

NVIDIA.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

DEEP
LEARNING
INSTITUTE

ROBERTA

Results

MNLI QNLI QQP RTE SST MRPC ColLA STS WNLI Avg
Single-task single models on dev
BERT, .xce 86.6/- 923 913 704 932 88.0 60.6 90.0 - :
XLNet; arce 89.8/- 939 918 838 0956 89.2 63.6 918 - -
RoBERTa 90.2/90.2 947 922 B86.6 964 909 68.0 924 913 -
Ensembles on test (from leaderboard as of July 25, 2019)
ALICE 88.2/879 957 90.7 835 952 926 68.6 91.1 808 86.3
MT-DNN 87.9/87.4 960 899 863 965 927 68.4 91.1 89.0 87.6
XLNet 90.2/89.8 98,6 903 863 968 93.0 678 916 904 884
RoBERTa 90.8/90.2 989 902 882 0967 923 67.8 922 89.0 88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. BERT, ... and XLNet, .z, results
are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoOBERTa results on the development set are a
median over five runs. RoBERTa results on the test set are ensembles of single-task models. For RTE, STS and
MRPC we linetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained

from the GLLUE leaderboard.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

DEEP
56 @2 LEARNING
NVIDIA. INSTITUTE

ROBERTA

Additional observations

“We note that even our longest-trained model does not appear to overfit our
data and would likely benefit from additional training. “

DEEP
57 @Z LEARNING
. . _ - . . . NVIDIA. INSTITUTE
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

WE NEED EVEN LARGER
MODELS!

TRANSFORMER EXTRA LONG (XL)

Challenges with the Transformer architecture

The challenge:

Fixed-length contexts not respectmg

semantic boundaries

Inability to learn longer dependencie *

Relatively slow to execute

The solution (Transformer XL):
Segment-level recurrence mechanism

Positional encoding scheme

The results:

Learns 80% longer dependencies than RNNs 5 o
and 450% longer than Transformer

Up to 1800 times faster than vanilla

Transformer

r D [

© @ ¢

o O o

O o G
¢ o
v 1

o oo o O 2

‘o o O 0.0

° | o o
e 0O O e o
//
e 0)

s

(b) Evaluation phase.,

Figure 1: Ilustration of the vanilla model with a scgment length 4,

O < (
2 () QG ¢ {
E';"
2 O C C

(a) Training phase.

4] Q D e O m) »
3 b 0 (
- 2 0O >) C

Figurc 2: Nlustration of the Transformer-X1. model with a segment length 4.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xI: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

C c C o q 2
C L'E__ :::-) O 0
[-r:x (e o 1 e o
S
(b) Evaluation phase.
59 <X

O

DEEP
LEARNING
NVIDIA. INSTITUTE

CHALLENGES WITH BERT

Masking and independent predictions

The [MASK] token used during pretraining is not used during fine-tuning

BERT generates predictions for individual [MASK] tokens independently, not forcing the model to learn

dependencies

DEEP
60 @2 LEARNING
NVIDIA. INSTITUTE
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

XLNET

TransformerXL + Permutational Language Model

Transformer -> TransformerXL

TransformerXL cannot be applied naively
and must be adopted

“Maximizes the expected log likelihood
of a sequence w.r.t all possible
permutations of the factorization

EE

order. like J cats ,r@g e

Does not rely on data corruption ([MASK])

DEEP
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764). 61 @ LEARNING

NVIDIA. INSTITUTE
https://mlexplained.com/2019/06/30/paper-dissected-xInet-generalized-autoregressive-pretraining-for-language-understanding-explained/

XLNET

And more data

13GB* -> 13GB + 19GB + 110GB = 142GB

* Different pre-processing routine is used hence not 16GB as per ROBERTA o &S oeer

LEARNING

NVIDIA. INSTITUTE
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

XLNET

“Fair” comparison with BERT

Model

SQuADI1.1 SQuAD2.0 RACE MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

BERT-Large
(Best of 3)

86.7/92.8 82.8/855 751 873 930 914 740 940 887 637 90.2

XLNet-Large-
wikibooks

88.2/94.0 85.1/87.8 774 884 939 918 81.2 944 900 652 9I.1]

Table 1: Fair comparison with BERT. All models are trained using the same data and hyperparameters as in
BERT. We use the best of 3 BERT variants for comparison: i.e., the original BERT, BERT with whole word
masking, and BERT without next sentence prediction.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

DEEP
63 @Z LEARNING
NVIDIA. INSTITUTE

XLNET

Ablation study

Model RACE SQuAD2.0 MNLI SST-2
Fl EM m/mm
I BERT-Base 64.3 76.30 73.66 8434/8465 92.78
2 DAE + Transformer-XL. | 6503 7956 7680 8488/8445 92.60
3 XLNet-Base (K =T7) 6605 8133 7846 8584/8543 9266
4 XLNet-Base (K = 6) 66.66 8098 78.18 85.63/85.12 93.35
5 - memory 6555 80.15 77.27 85.32/8505 92.78
6 - span-based pred 6595 8061 7791 8549/85.02 93.12
7 - bidirectional data 66.34 80.65 77.87 8531/8499 92.66
3 + next-sent pred 66.76 7983 7694 85.32/85.09 9289

Table 6: The results of BERT on RACE are taken from [38]

the optimization difficulty (see Section 2.3).

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for understanding. In Advances in neural information processing systems (pp. 5754-5764). language

. We run BERT on the other datasets using the
official implementation and the same hyperparameter search space as XLNet. K is a hyperparameter to control

DEEP
64 @ LEARNING
NVIDIA. INSTITUTE

XLNET

Scaling up

RACE Accuracy Middle High | Model NDCG@20 ERR®@20
GPT [28] 59.0 62.9 574 | DRMM [13] 243 13.8
BERT [25] 72.0 76.6 70.1 | KNRM [8] 26.9 14.9
BERT+DCMN™ [38] 74.1 79.5 71.8 | Conv [8] 28.7 18.1
RoBERTa [21] 83.2 86.5 81.8 | BERT' 30.53 18.67
XLNet 85.4 88.6 84.0 | XLNet 31.10 20.28

Table 2: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task, and on

ClueWeb09-B, a document ranking task. * indicates using ensembles. 7 indicates our implementations. “Middle”
and “High” in RACE are two subsets representing middle and high school difficulty levels. All BERT, RoBERTa,
and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large).

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

DEEP
65 @Z LEARNING
NVIDIA. INSTITUTE

SCALING UP?

XLNET

“... we scale up the training of XLNet-Large by using
all the datasets described above. Specifically, we
train on 512 TPU v3 chips for 500K steps with an
Adam weight decay optimizer, linear learning rate
decay, and a batch size of 8192, which takes about
5.5 days.”

DEEP
LEARNING

NVIDIA. INSTITUTE
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

XLNET

“It was observed that the model still underfits the
data at the end of training.”

DEEP
LEARNING

NVIDIA. INSTITUTE
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

SCALING UP?

B E RT Solver | batch size | steps | FI score on dev set | TPUs | Time

5.5 days -> 76 minutes Baseline 512 1000k 90.395 16 81.4h
LAMB 512 1000k 91.752 16 82.8h
Inspired by NVIDIA LARS (Layer-wise Adaptive Rate . . SO0k 2liiol 52 43.2h
Scaling) they develop LAMB [LAMB 2k 250k 91.946 64 21.4h
This allows to scale batch size to 32k without LAMB 4k 125k 91.137 128 | 693.6m
degrading performance LAMB 8k | 62500 91.263 256 | 390.5m
ﬁ\bﬁi}\cj)\f;mprovements introduced since. Please use LAMB 16k 31250 01 345 512 200.0m
LAMB 32k 15625 91.475 1024 | 101.2m
LAMB 64k/32k 8599 90.584 1024 | 76.19m
sy devblogs nvidia comretraining bert wit ayer-wiss-adapive-loarming.rates 70 2 g

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

BERT

5.5 days -> 76 minutes

Inspired by NVIDIA LARS (Layer-wise Adaptive Rate
Scaling) they develop LAMB

This allows to scale batch size to 32k without
degrading performance

A lot of improvements introduced since. Please use
NVLAMB.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

NVLAMB

1. For every training mini-batch = and training step f, compute gradient
g; (t) on weights wj(t), for each weight i in layer L

r

2. Normalize gradients by L2 norm of gradient of the entire model.

Gty =gi@)/ |l g®) |2

3. Update velocity »(#) and momentum m(t) values corresponding to each
layer weight wj(t) based on gradients g(t) with hyperparameters ; and 5.

mj(t) = Bimi(t — 1) + (1 = 5,)g; (1) (1)
vi(t) = Bavi(t — 1) + (1 = B2)(Gi (1)) (2)

4. Apply beta-correction on velocity and momentum values to obtain
unbiased estimates.

o~1 - 7"&(&)
~i N v (t) ,.

5. Compute update uj(t) on weight wj(t) with weight decay parameter 5
and € as follows:
o m(t)
VU (t) + €

6. For each layer [, compute the ratio ri(f) of norm of weights w;(f) and
norm of update u;(t) as follows:

+ ywj (t)

ri(t) = | wi(t) |2

7. Update the weights with learning rate A:

wi(t+ 1) = wi(t) — X r(t) = uj(t)

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations

<X

NVIDIA.

DEEP
LEARNING
INSTITUTE

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

BERT-Large Training Times on GPUs

Time System

47 min DGX SuperP0OD
67 min DGX SuperPOD
236 min OGX SuperP0OD

https://devblogs.nvidia.com/training-bert-with-gpus/

BERT

Fastest training time

Number of Nodes
92 x DGX-2H
b4 x DGX-2H

16 x DGX-2H

Number of V100 GPUs
1,472
1,024

236

DEEP
72 @2 LEARNING
NVIDIA. INSTITUTE

V-9 —
’ AN .
YT o -
A ’

o '

< »
LG -
D .
.‘- » -
s o

o . .
.
’

. .

LN s " :
’

CAN WE USE PARAMETERS
MORE EFFICIENTLY?

ALBERT

A Lite BERT for Self-Supervised Learning of Language Representations

FP32 TF 1.13.1 16GB GPU FP32 TF 1.11.0 12GB GPU
The S'lze Of the model]S System Seq Length Max Batch Size System Seq Length Max Batch Size
becoming a challenge sERT-Base 64 64
XLNet-Base 64 120 158 32

FP16 is addressing the 178 = 256 16
problem to some extent - y
but still the footprint is 256 24 . .
considerable 15 5 -]

. AERT-1l arge 64 12
Describes a set of methods XLNet-large 64 16 ¢
for reducing the memory 18 °

: : : 128 8 256 2
footprint/ improving
parameter efficiency 256 2 30 ‘

384 0
512 1 o)]

@D DEEP
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. 74 nv%An :_NEéATRIIT\ILIJ’\#E;

ALBERT

Model size is the key to success

Hyperparams Dev Set Accuracy
#. #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12 584 77.9 798 884
6 768 3 524 80.6 822 90.7
6 768 12 4.68 81.9 848 913
12 768 12 399 84.4 86.7 929
12 1024 16 354 85.7 869 933
24 1024 16 323 86.6 878 937

Table 6: Ablation over BERT model size. #L = the
number of layers: #H = hidden size: #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

DEEP
75 @Z LEARNING
NVIDIA. INSTITUTE

ALBERT

“... WordPiece embedding size E is tied with the Factorization of the embeddings matrix:

hidden | ize H, i.e., E = H”
1dden layer size R, 1.€., O(V x H) transformed into O(V X E + E x H)

“... hidden-layer embeddings are meant to learn
context-dependent representations.” so we want

H>>E
Embedd]ng matriX Size iS V X E (VocabUlaW Size Model Parameters Lavers Hidden Embedding Parameter-sharing
time embeddi ng size) base [08M 12 768 768 False
BERT large 334M 24 1024 1024 False

. . base 12M 12 768 128 True
“... natural language processing usually requires ALBERT lree 1M 24 o, 128 True
the vocabulary size V to be large.” (BERT wlage | 235M 12 4096 128 True
V=30000)

Table 1: The configurations of the main BERT and ALBERT models analyzed in this paper.

So we end up with LargeNumber x LargeNumber

DEEP
LEARNING

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. NVIDIA INSTITUTE

ALBERT

Cross Layer Parameter Sharing and Inter-Sentence Coherence Loss

Proposes several cross-layer parameter-sharing

schemes
I8 45
The default Albert configuration shares all 16| - BERT-large ; g0 BERT-large
14 = ALBERT-large : &35 | = ALBERT-large
parameters across all layers 12 : & 30 »
SOP Loss (Sentence Order Prediction) rather than : %15
NSP Loss (Next Sentence Prediction) — g -
0 5 10 15 20 25 % 5 10 15 20 25
Layer ID Layer 1D

Figurc 1: The L2 distances and cosine similarity (in terms ol degree) of the input and output embed-
ding of each layer for BERT-large and ALBERT-large.

DEEP
77 @2 LEARNING
NVIDIA. INSTITUTE

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

ALBERT

Results

Model Parameters Layers Hidden Embedding Parameter-sharing
base 108M 12 768 768 False
BERT large 334M 24 1024 1024 False
base 12M 12 768 128 True
. large 18M 24 1024 128 True
ALBERT jarge 60M 24 2048 128 True
xxlarge 235M 12 4096 128 True

Table 1: The configurations of the main BERT and ALBERT models analyzed in this paper.

Model Parameters SQuADI.1 SQuAD2.0 MNLI SST-2 RACE | Avg | Speedup
base 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 | 823 4.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 739 | 85.2 1.0
basc 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 | 80.1 5.6x
ALBERT large 18M 90.6/83.9 82.3/794 83.5 91.7 685 | 824 1.7x
xlarge 60M 92.5/86.1 86.1/83.1 86.4 924 748 | 855 0.6x
xxlarge 235M 94.1/88.3 88.1/85.1 838.0 95.2 82.3 88.7 0.3x

Table 2: Dev set results for models pretrained over BOOKCORPUS and Wikipedia for 125k steps.
Here and everywhere else, the Avg column is computed by averaging the scores of the downstream
tasks to its left (the two numbers of F1 and EM for each SQuAD are first averaged).

DEEP
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. /8 ,%A_ :‘NEéATIT%I\%E

4 "S- ’ -
. :
’ AN
’ . -
S
» o“.

CAN WE IMPROVE THE
OBJECTIVE FUNCTION
FURTHER?

ELECTRA

Pre-training Text Encoders as Discriminators Rather Than Generators

Replaced Token Detection

sample

the —> [MASK] —>
chef — chef —>
cooked —> [MASK] —>
the — the —

meal —» meal —>»

Generator

(typically a
small MLM)

-> a —>
chef —>»
--> ate —>
the —>
meal —»

the chef cooked the meal

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.

Discriminator
(ELECTRA)

—> replaced
—> original

> replaced
—> original
—> original

DEEP
80 @Z LEARNING
NVIDIA. INSTITUTE

ELECTRA

Pre-training Text Encoders as Discriminators Rather Than Generators

90 5 ELECTRA-Large ROBERTa
R BERTa o ROBERTa ~® 500k steps ® XLNet
100k steps 300k steps (fully trained)
85
L
.~
S f
v 80 4 ELECTRA-Small
(I8
= GPT
-
9
2 75
V 754 @ BERT-Small
o
® ELMo
70 -
® GloVe =—=u Replaced Token Detection Pre-training
o—e Masked Language Model Pre-training
I 1 | 1 1
0 1 2 3 4

Pre-train FLOPs le2l

DEEP
Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555. 81 %A. :_I\IIEéATRI?LIJ’#E

MULTI-TASK LEARNING

ERNIE 2.0

Why use only a limited number of simple pretraining tasks?

Sentence Level Task Word Level Task

Figure 4: The architecture of multi-task leaming in the
ERNIE 2.0 framework, in which the encoder can be recurrent

neural networks or a deep transformer.

— | hon ~rwes ‘“-\-_ Task Token-l evel Loss Senlence-l.eve! Loss
05 | 052 o5) joss2 | Corpus —___ | Knowledge Capital Token-Document | Sentence | Sentence | Discourse IR
[/’ [/' Masking Prediction Relation Reordering | Distance | Relation | Relevance
Encyclopedia v v v v v X X
Vo Vi Vo F— Y% BookCorpus v v v v v X X
| [News v v v v v X X
Encoder Dialog v v v v v X X
IR Relevance Data x X b X X P v
T T Discourse Relation Data x x x x x v x
CLS word; wiord, word;

Table 1: The Relationship between pre-training task and pre-training dataset. We use different pre-training dataset to construct
different tasks. A type of pre-trained dataset can correspond to multiple pre-training tasks.

DEEP
83 @ LEARNING
NVIDIA. INSTITUTE

ERNIE 2.0

Why use only a limited number of simple pretraining tasks?

{

1
_Taskl =~ Task2 =~ Task3 = = Taskn _ _ Taskn . Taskn
Sequential Multi-task Learmning Multi-task Leaming Continual Leaming

.. . e Training iterations (steps) Fine-tuning result
Pre-traming method Pre-traming task e T Stage 2 Stage 3 Stage 4 | MNLI SST-2 MRPC
Knowledge Masking 50k - - -
: : Capital Prediction - 50k - - 5
Continual Learning ~Token-Docoment Relation - - 30K = 77.3 864 825
Sentence Reordering - - - S0k
Knowledge Masking S0k
. : Capital Prediction S0k
Multi-task Leaming Token-Document Relation 50k 87 815 80
Sentence Reordering 50k
Knowledge Masking 20k 10k 10k 10k
. . . Capital Prediction - 30K 10k 10k
continual Multi-task Learning “Token-Document Relation - - 0K TOK 790 878 840
Sentence Reordering - - - 50k

84 <4

NVIDIA.

DEEP
LEARNING
INSTITUTE

ERNIE 2.0

Performance
BASE model LARGE model
Task(Metrics) Test Dev Test
BERT ERNIE 2.0 | BERT XLNet ERNIE 2.0 | BERT ERNIE 2.0

CoLA (Matthew Corr.) 52.1 55.2 60.6 63.6 65.4 60.5 63.5

SST-2 (Accuracy) 93.5 95.0 03.2 95.6 96.0 94.9 95.6
MRPC (Accurary/F1) 84.8/88.9 86.1/89.9 | 88.0/- 89.2/- 89.7/- 85.4/89.3 87.4/90.2
STS-B (Pearson Corr./Spearman Corr.) | 87.1/85.8 87.6/86.5 | 90.0/- 91.8/- 92.3/- 87.6/86.5 91.2/90.6
QQP (Accuracy/F1) 89.2/71.2 89.8/73.2 | 91.3/- 91.8/- 92.5/- 89.3/72.1 90.1/73.8
MNLI-m/mm (Accuracy) 84.6/83.4 86.1/85.5 | 86.6/- 89.8/- 89.1/- 86.7/85.9 88.7/88.8

QNLI (Accuracy) 90.5 92.9 92.3 93.9 94.3 92.7 94.6

RTE (Accuracy) 66.4 74.8 70.4 83.8 85.2 70.1 80.2

WNLI (Accuracy) 65.1 65.1 - - - 65.1 67.8

AX(Matthew Corr.) 34.2 374 - - - 39.6 48.0

Score 78.3 80.6 - - - 80.5 83.6

Table 6: The results on GLUE benchmark, where the results on dev set are the median of five experimental results
and the results on test set are scored by the GLUE evaluation server (https://gluebenchmark.com/leaderboard).

The state-of-the-art results are in bold. All of the fine-tuned models of AX is trained by the data of MNLL.

Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
» (Can and should we go even bigger?

 Named Entity Recognizer

GOING BIGGER

The challenge

If we only consider Parameters, Gradients, and Optimizer states and ignore activations
If we use FP16 data representation (so two bytes)
If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

If we consider a model with one billion parameters

1079 * (2B + 2B + 12B) = 10"9*16B = 14.90GB

1 billion parameters 2 bytes per gradient
12 bytes per optimizer

2 bytes per parameter State

DEEP
87 & LEARNING
NVIDIA. INSTITUTE

GOING BIGGER

The challenge

What about activations?

What about 2 or 3 billion parameter models?

1079 * (2B + 2B + 12B) = 10"9*16B = 14.90GB

1 billion parameters 2 bytes per gradient
12 bytes per optimizer

2 bytes per parameter ctate

DEEP
88 & LEARNING
NVIDIA. INSTITUTE

MEGATRON

Model Parallel Transformer

--
""""""

ey

a 4
' | — "
|
' |

. [ml-B- s
i R
-; i

[=]
I
[=
S
£
-

”--—--—----—_---“

SETTATTE
\ A = [As, Ad] A - [g; ,,"
(a) MLP

e eele
U X —’:'3—@_. §_.§1.;®-)H"" Y,\B, -B—:- r |—‘
T : -8

— 5. - [n.
: Q= 1) | ¢ =
Al st b — § K = 1Ky, K J

X(@ =

(b) Self-Attention

Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.

’//,, STTTTTTTTTTTT \\l I‘/,_\ /M\‘ \"
18 B ﬂ 5| | =
- s=gga°@%sg LI5S .o

= = o (= —p o= | RS |oP
% | - §. g : 8| e |8 §

| Model Model

. Parallel __ Parallel

2 All-Reduce 2 All-Reduce
(forward + backward) (forward + backward)

Figure 4. Communication operations in a transformer layer. There
are 4 total communication operations in the forward and backward
pass of a single model parallel transformer layer.

DEEP
Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053. 89 @ LEARNING

NVIDIA. INSTITUTE

MEGATRON

/6% scaling efficiency using 512 GPUs

e model parallel » model + data parallel - - linear
100
©
-
o s
o 10 /
w
a 1 =
o -
Q o »
(§ 8
©
3
a 0.01
1 10 100 1000
Number of GPUs

Figure 1. Model (blue) and model+data (green) parallel FLOPS
as a function of number of GPUs. Model parallel (blue): up to
8-way model parallel weak scaling with approximately 1 billion
parameters per GPU (e.g. 2 billion for 2 GPUs and 4 billion for
4 GPUs). Model+data parallel (green): similar configuration as
model parallel combined with 64-way data parallel.

Table 1. Parameters used for scaling studies. Hidden size per atten-

tion head is Kept constant at 96.

Hidden
Size

1536
1920
2304
3072

100%

Weak Scaling

Attention
heads

16
20
24
32

Number
of

layers

40
54
64
72

B Model Parallel

B0
60%
A0
200%
0%

1 2 B a8

Number
of
parameters
(billions)
1.2
2.5
4.2
8.3

Model
parallel
GPUs

20 B o -

W Model + Data Paraliel

64

Number of GPUS

128

256

Model
+data
parallel
GPUs
64
128
256
512

512

Figure 5. Model and model + data parallel weak scaling efficiency
as a function of the number of GPUs.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.

90 <X

NVIDIA.

DEEP
LEARNING
INSTITUTE

MEGATRON

Results

Table 5. Development set results for MNLI, QQP, SQuAD 1.1 and SQuAD 2.0 and test set results for RACE. The trained tokens represents
consumed tokens during model pretraining (proportional to batch size times number of iterations) normalized by consumed tokens during
model pretraining for our 336M model.

trained tokens | MNLI m/mm QQP SQuAD 1.1 | SQuAD 2.0 RACE nmv/h

Model ratio accuracy accuracy F1 /EM F1 /EM accuracy

(dev set) (dev set) (dev sel) (dev set) (test set)
RoBERTa (Liu et al., 2019b) 2 90.2/90.2 92.2 94.6/88.9 89.4/86.5 83.2 (86.5/81.8)
ALBERT (Lan et al., 2019) 3 90.8 92.2 94.8/89.3 90.2/87.4 86.5 (89.0/85.5)
XLNet (Yang et al., 2019) 2 90.8 /90.8 923 95.1/89.7 90.6/87.9 85.4 (88.6/84.0)
Megatron-336M 1 89.77/90.0 92.3 94.2 /88.0 88.1/84.8 83.0(86.9/81.5)
Megatron-1.3B 1 90.9/91.0 92.6 94.9/89.1 90.2/87.1 87.3(90.4/86.1)
Megatron-3.9B | 914/914 92.7 95.5/90.0 | 91.2/88.5 || 89.5(91.8/88.6)
ALBERT ensemble (Lan et al., 2019) 95.5790.1 91.4/88.9 89.4 (91.2/88.6)
Megatron-3.9B ensemble 95.8/90.5 91.7/ 89.0 90.9 (93.1/90.0)

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.

NVIDIA. INSTITUTE

MEGATRON

More importantly!

WebText Validation Perplexity

== 345M == 775M 2.5B == 8.3B
22
20
18
16
14
12

p

Validation Perplexity

10
— AN MO UL ONODOOTO—NMOSTWLOMNOOOO
ol B I B R

Epoch

DEEP
92 @2 LEARNING

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053. NVIDIA INSTITUTE

THE SCALING LAWS

THE SCALING LAWS

As you increase the dataset size, you must increase the model size

7
4.2 . .
6 \ —— L=(Df5.4-101%)70095 | 5.6 —— L =(N/8.B 1013007
2 48
0w '
§ . 3.6 4.0
‘?D'; 3.3 39
=3
3.0
2.4
L =(Cpyinf2.3 - 108)~0-030
2 . . ' 2.7 . — - .
10-% 10°7 10°% 10°% 107t ! 10% 109 107 107 10"
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, o o
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. M e, | EARMNG

Larger models require fewer samples
to reach the same performance

Test Loss 10

10¢ Params

10¢ 00 1o
Tokens Process

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10?

parameters (excluding embeddings).

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,

THE SCALING LAWS

Larger models are more sample-efficient

The optimal model size grows smoothly
with the loss target amd compute budget

10° 10° 103 10F

Compute (PF-days)

Line color indicaies
number of parameters

100 0ne 108

_.- Compute-afticient

training stops far
short of comvergence

D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

10% Minimum serial sleps
increases negligibly =~ _
: 5
'0’) AG*

2

-
2

Multiplicative Contribubion

10°
10— 10-° 10-1 10-?

Compute (PF-days)

\g*6

10°

Dala requirements
grow relatively slowly

Optimal model size
inCreases very quickly

Figure 3 As more compute becomes available, we can chonse how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-cfticient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse, Of the increase in data, most can be used to
increase parallelism through larger batch sizes. with only a very small increase in senial training time required.

DEEP
95 @ LEARNING
NVIDIA. INSTITUTE

THE SCALING LAWS

Larger models generalize better

7
—o— WebText2 (Test)
6 1 —o— |nternet Books
—e— Books
5 e Wikipadia
o =t Common Crawl
o
<
— 4
=
<
e
34

104 10° 10° 107 10° 10¢
Parameters (non-embedding)

Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size,
with only a small and very slowly growing offset from the WebText2 training distribution. Right: Gener-
alization performance depends only on training distribution performance, and not on the phase of training.
We compare generalization of converged models (points) to that of a single large model (dashed curves) as it

trains.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

5.0
= S ..: ‘e -== Books during training
245 . Wikipedia during training
.:-; b ‘.; : o ® DBooks at convergence
.'g 4.0 ",}\ g ® Wikipedia at convergence
@ R Y
Q3.5 B
» 2 "“.*
< \th
= .~
o 3.0; ‘-T_t?\
§ Rt
g 2.5
50 45 4.0 3.5 3.0 2.5

Test Loss on Training Distribution

96 <X

NVIDIA.

DEEP
LEARNING
INSTITUTE

THE SCALING LAWS

Its cheaper to use a larger model

40 10!

g r Smaller models require

2 3.51 $ more steps to train, while
U B larger models require fewer
O 3.0 v
e A
= 2.51 Models between 0.6x and 2.2x the 2

= optimal size can be trained with a 2 109 -
8 2.0+ 20% larger compute budget Cg

o z

% 1.5- Q

3} 0 Our framework does not R
©1.0- capture early training dynamics

10° 10! 10° 10!
Deviation from Optimal Model (N/Negicient) Deviation from Optimal Model (N/Ngsicient)

Figure 12 Left: Given a fixed compute budget, a particular model size is optimal, though somewhat larger
or smaller models can be trained with minimal additional compute. Right: Models larger than the compute-
efficient size require fewer steps to train, allowing for potentially faster training if sufficient additional paral-
lelism is possible. Note that this equation should not be trusted for very large models, as it is only valid in the
power-law region of the learning curve, after initial transient effects.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, o o
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. 77 e, | EARNG

THE SCALING LAWS

Larger models train faster

Common Train Small | Stop Training | Lightly

Practice Model When Converged Compress
: Train Large | Stop Training | | Heavily

Optimes Model Early Compress

https://bair.berkeley.edu/blog/2020/03/05/compress/ e .S%A ?NES’EET“GNTE

THE SCALING LAWS

“... more importantly, we find that the precise architectural
hyperparameters are unimportant compared to the overall
scale of the language model.”

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, DEEP

LEARNING

D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. nVIDIA INSTITUTE

THE SCALING LAWS

Next two years will bring much larger models

_.

TrE |
.=

Ll il
¢

D A'2 Lt ’ - 158

A'Z o e Trasciamee Y =g ° ~

o nidl 1 -~

SenAL REAT-Larqe LIS MT-DiN P RATS

" N) - ANy) . 13 1|
. . J4Dm - 110ve 1%5m S
~m D - “am
- - o . s E
— a

IIIIIIIIIIIIIIII

o d TOWARDS A TRILLION-
i R PARAMETER MODEL

TURINGNLG

17 billion parameters

TuringNLG 178 vs Megatron-LM 8.3B

16
|

1
—
&
$
-—
3
>

10

L'B* mv?; R — S — P — R — R—— —

Reration
Figure 1: Comparison of the validation perplexity of Megatron-38 parameter mocel [crange ling) vs T-NLG 178 model during training
(blue and green lines). The dashed line represents the lowest valication loss achiaved by the current public state of the art model. The
transition from biue to green in the figure indicates whese T-NLG outperforms pudlic state of the art.

102 <4

NVIDIA.

DEEP
LEARNING
INSTITUTE

THE FUTURE

Towards a trillion-parameter model

DeepSpeed + ZeRO

Scale

* 100B parameter
« 10X bigger

Memory usage without ZeRO With ZeRO

o . . o . - i Speed

« Up to 5X faster

.
Data, GPU, Data, GPU,
GPU

Usability

* Minimal code change

DEEP
103 @Z LEARNING
NVIDIA. INSTITUTE

EVEN MORE IMPORTANTLY

Large neural networks use data more efficiently

Zero-shot One-shot Feszhot

P 175B Params
=

60 Natural Language /_\/\
Prompt R O -

Accuracy (%)

138 Params

p——— —————— TP e == 1 .:;EB F’E!riif11fi

10
Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

DEEP
Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053 105 @Z LEARNING
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.. NVIDIA. | INSTITUTE

EVEN MORE IMPORTANTLY

Large neural networks use data more efficiently

Zero-shot One-shot Feszhot

P 175B Params
=

60 Natural Language /—\,/'\
Prompt P &

Accuracy (%)

—— 13B Params

— e 1.3B Params

Number of Examples in Context (K)

Figure 1.2: Larger models'make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

DEEP
Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053 106 @Z LEARNING
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.. NVIDIA. | INSTITUTE

WHAT DO WE MEAN BY BIG?

GPT-3 size comparison

Not a linear scale

|. 10000

1000

Total Compute Used During Training

100

10

| |

Training Petaflop/s-days

Q,Qf\' Q‘.Q Q_«d i & e 43'\’ <& " qs@ & OQ'\ <P) (3,\, o
¢ EF L & & & § & S
T

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH ' 20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

DEEP
107 @ LEARNING
NVIDIA. INSTITUTE

PERSPECTIVE

WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison

IIIIIIIIIIIIIIII

WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison

T-NLG GPT=3
‘7MegatronLM
® crr2
® BERT-Large
¢ BERT-Base
* GPT
ResNet-50
2 3 4 5 6 7 8 9 10

DEEP
110 @‘Z LEARNING
NVIDIA. INSTITUTE

WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison

T-NLG GPT=3
‘7MegatronLM
® crr2
® BERT-Large
¢ BERT-Base
* GPT
ResNet-50
1 2 3 4 5 6 7 8 9 10

DEEP
111 @‘Z LEARNING
NVIDIA. INSTITUTE

WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison

T-NLG GPT-3

‘7 MegatronLM

. ® crr2
® BERT-Large

¢ BERT-Base

+ GPT

N

ResNet-50
1 2 3 4 5 6 7 8 9 10

DEEP
112 @ LEARNING
NVIDIA. INSTITUTE

WHAT DO WE MEAN BY BIG?

GPT-3 size comparison: 538x Bigger than BERT-Large

355 years on a single V100
Not a linear scale

Total Compute Used During Training

N - /

1000

100

Training Petaflop/s-days

10

1

o N o 2 2 » o N NG 2 el
& S P . G S TS A

& - . .
& 2 § N & I N) v ® o
A e > . & o K3 . \}e P A i he) A)
¢ of

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH ' 20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

DEEP
113 @ LEARNING
NVIDIA. INSTITUTE

THE LAB

Part 2: Self-Supervision, BERT and Beyond

 Why DNNSs?
» Self-Supervision
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer

IN THE NEXT CLASS...

NEXT CLASS

Overview

Discuss how to desigh your model for efficient inference
Discuss how to optimise your model for efficient execution

Discuss how to efficiently host a largely Conversational Al application

DEEP
117 @2 LEARNING
NVIDIA. INSTITUTE

DEEP
LEARNING
INSTITUTE

NVIDIA

DEEP
LEARNING

LL]
e
)
e
[
p
Z

S

NVIDIA

PD. Dr. Juan J. Durillo

FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton

Part 3: Production Deployment

* Model Selection
* Post-Training Optimization
' * Product Quantization
:) * Knowledge Distillation
. : * Model Code Efficiency
L. * Model Serving
- » » Building the Application

: « Exporting the Model
’ * Hosting the Model
. - * Server Performance
. * Using the Model

YOUR NETWORK IS

TRAINED

YOUR NETWORK [S TRAINED

Now what?

TuringNLG 178 vs Megatron-LM 8.38

I |
a \
: \
& \
.
< b
O 1
® L\
> 'lr"
4
\‘"u
'\&-‘y
Y }"(\‘
AL
r’ * \‘.* (
"\‘“'\ﬁ"}rk. |
P .\f q\.*,* A v
4 '\H.g'“‘ ;' ;'.n. e
' ;’, ‘A“,'r\ AN
& - r’v'.'f‘\" Y y J r)""
"
50000 WOL0 156000 200200 250200 X000

teration

123 @2 EEEENING
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/ NVIDIA. | INSTITUTE

V-9 —
’ AN .
P -
A H

® .
< .
: . »
“'\“ \'. .
& ‘ “
T -
. »
s N— -~ .
y ’
. »
’ o ®
o -

MEETING REQUIREMENTS
OF YOUR BUSINESS

NLP MODELS ARE LARGE

The Inference cost is high

RoBERTa
o ROBERTa @ 500k steps ® XLNet
7 300k steps (fully trained)

=—a Replaced Token Detection Pre-training
e—o Masked Language Model Pre-training

90 ELECTRA-Large
_----l""'—%OB_EBIa_ I
:,.' 100k steps
85 WELECTRA-Base
" BERT-Large
@ BERT-Base
S "
v 80 iéLECTRA-SmaII
Lu —
= + GPT
— l
O n
© 75 @ BERT-Small
R 5 4 -Sma
® ELMo
70 4
® GloVe
I 1
0 1

I 1 I

2 3 4
Pre-train FLOPs le21

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

125 X

NVIDIA.

DEEP
LEARNING
INSTITUTE

THEY DO NOT LIVE IN ISOLATION

Example of a conversational Al application

ASR NLU

Lanpuage Model

Search Ranking

Visual Search

Autocorrect

Query Search

“What aate (s the
Chinese New Year?

Machine Translation

L J
4

Audio Feature Extraction Acoustic Model Decoder

ST TLabER?

TTS

*

Audio Voice | ncodet Specch Synthesis .

DEEP
126 @ LEARNING
NVIDIA. INSTITUTE

THEY DO NOT LIVE IN ISOLATION

Real Time Applications Need to Deliver Latency <300 ms

ASR l NLU
Lanpuagpe Model [

Search Ranking

Visual Search

Autocorrect

Query Search

“What aate is the

Chinese New Year?

Machine Translation

L J
4

Audio Feature Extraction Acoustic Model Decoder

ST M fTabin?

TTS

£

Audio Voice | ncodet Specch Synthesis L)

DEEP
127 @ LEARNING
NVIDIA. INSTITUTE

THEY DO NOT LIVE IN ISOLATION

Real Time Applications Need to Deliver Latency <300 ms

ASR l NLU
Lanpuagpe Model [

Search Ranking

Visual Search
~ Y
Atocorrect

Query Search

Machine Translation '

“What aate is the

Chinese New Year?

L J
4

Audio Feature Extraction Acoustic Model Decoder

ST M fTabin?

TTS

£

Audio Voice | ncodet Specch Synthesis L)

DEEP
128 @ LEARNING
NVIDIA. INSTITUTE

THEY DO NOT LIVE IN ISOLATION

Application bandwidth = Cost

Original 3-layer BERT

CPU
ONNX Model
Original 3-layer BERT
ONNX Model
GPU
ONNX Model

Batch size

54

Inference on

Azure Standard F16s_v2 (CPU)

Azure Standard F16s_v2 (CPU)
with ONNX Runtime

Azure NV6 GPU VM

Azure NV6 GPU VM
with ONNX Runtime

Azure NC65_v3 GPU VM

with ONNX Runtime + System Optimization
(Tensor Core with mixed precision, Same Accuracy)

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

Throughput

(Query per second) (milliseconds)

111

200

10667

Latency

157

20

129 <4

NVIDIA.

DEEP
LEARNING
INSTITUTE

AND THEY NEED TO EVOLVE OVER TIME

A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary process

60 40 20 0 20

100

Stationary Time Series

“' { f* vl \"/ A f‘a,,

ADF « 6 128 ' ” 1
200 400 600 800 100C
Non-stationary Time Series
™ "*'V \
v ‘A
\ J \ \ N
v __\V*’J-_ N .
\ 'I‘,o'"
l.l
ADF « - 20251 Wi
\ . A
\‘\,\. /W
\ o
W
I
200 400 600 400 1000

IIIIIIIIIIIIIIII

THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Configuration

Nonfunctional requirements

Data Collection

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure 1is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydoy, E., Phillips, T., Ebner, D., ...

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

& Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).

DEEP
131 @Z LEARNING
NVIDIA. INSTITUTE

THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Configuration

Nonfunctional requirements

Data Collection

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure 1is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydoy, E., Phillips, T., Ebner, D., ...

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

& Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).

DEEP
132 @Z LEARNING
NVIDIA. INSTITUTE

Part 3: Production Deployment

* Model Selection
_ * Post-Training Optimization
A} Product Quantization
’ . * Knowledge Distillation
. r * Model Code Efficiency
s * Model Serving
N _ » Building the Application

S « Exporting the Model
’ » Hosting the Model
] ’ * Server Performance
. * Using the Model

MODEL SELECTION

Not all models are created equally

o]
o
1

dev GLUE Score
~J
w
1

NLP Image Classification Object detection
ELECTRA-Large RoBERTa .)
— ¢ _oROBERTa @ 500k steps ® XLNet 4 HicentNet-B7 . EtficientDet-D7
oBE — : *1 AmaetiaNet-C D&
K 300k steps (fully trained) N) D5
100k steps AMOSDBNELS, o = ===~ al AmaetaNet + NAS-FPN 4+ AA
ELECTRA-Base . _e7 NASNetA ..--*" SENel '4'.
’ BERT-Large R e I,’ ’,4
el X os -
BERT-Base g g et 45 e @ = E NG + NAS FPN
f 5 L7 PesNeXe 101 - B
T N -
LECTRA-Small o ’/'_ =" Inceptiar RasNat v2 % ,” "
GPT < aat -
& 2~ Xeeption Sw A
- ' ’
RSN oRasNat 162 L 8 # ov -
BERT-Small § I Topl Acc. YPaans o Masi R-CNN
9“ ‘DenseNet-201 RoRCTE GRS | 3%
§ : FifcieniNel-B1 19.2% T.8M | AP FLOPS (ruio)
I ResNeRrTOT TR0e o< al_ J01 73| 305 724 -
5 ; . 49 EfficientDet-D0 R X
I . ° 5 '
® ELMo Ei : N RasNat-t0 %—H] YOLOW3[11] 330 TIB (13x)
[l .-' NASNet-A (Zoph et al, 215 | 5105 s " YOLOVE EfMicicstDet-D1 s 6lB
=—a Replaced Token Detection Pre-trainin I N~ EXclentNet- B4 0% ™ RetimaNet |21 370 97B (16x)
® GloVe P .. 9 o In“p:n" v2 Gilpe tHicag <al., 210 K) . M0 ST ! Maxk RCONN) 9 1498 125%x)
e—e Masked Language Model Pre-training Y NASNe-A - K4S aeM) 'l Ficieaaliei- 6 U3 B
T T T T T . Not plotied AmochaNets NAS-FPN 4 AA [12]' 507 3045B (134)
0 1 2 3 4 L —————————— | ’ ot plomsd.
Pre-traln FLOPS 1921 o il A o) 1)) LY 121 14 MR 150 | pes o {‘v‘ : r— o
Number of Parameters (Milicns) 0 a0 400 0 300 1000 1200
FLOPs (Billions)

DEEP
134 @ LEARNING
NVIDIA. INSTITUTE

MODEL SELECTION

Not all models respond in the same way to knowledge distillation, pruning and quantization

Common TrainSmall | | Stop Training _{ Lightly

Practice Model When Converged Compress
. TrainLarge | | Stop Training | Heavily
Optimal Model Early Compress
RoBERTa Pruning | RoBERTa Quantization
085 = - -
> >
S S
§ § 0.80
< <
S S Original Size
'g -.% 0.75 -»-3 Layers, 768H
S > -6 Layers, 768H
= = -=-12 Layers, 768H
= Original Size = 0.70 -+-18 Layers, 768H
— 075 -=-3 Layers - | 24 Layers, 768H
= YUY -+-6 Layers = 12 Layers, 256H
= 12 Layers = 12 Layers, 512H
- 18 Layers 0.65 -»-12 Layers, 1024H
-+ 24 Layers é 12 Layers, 1536H
0 50 100 150 200 0 500 1000 1500
Number of Parameters (Millions) Memory Usage (MB)
https://bair.berkeley.edu/blog/2020/03/05/compress/ 135 € CEarin

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794. NVIDIA. | INSTITUTE

https://bair.berkeley.edu/blog/2020/03/05/compress/

MODEL SELECTION

And very large models are and will continue to be prevalent in NLP

Zero-shot One-shot Few-shot

Natural Language
Prompt

60

Accuracy (%)

-~ 13B Params

e~ | 3B Params

0 10° 10'

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves™ for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

DEEP

136 @‘Z LEARNING
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165. NVIDIA. INSTITUTE

DIRECT IMPLICATIONS

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

E.g. Train Large then compress

Common Train Small Stop Training _ Lightly

Practice Model When Converged Compress
. Train Large Stop Trainin Heavil
Optimal J - P I |- y
Model Early Compress
https://bair.berkeley.edu/blog/2020/03/05/compress/ 138 A | DEakninG

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794. PVIDIA | INSTITUTE

https://bair.berkeley.edu/blog/2020/03/05/compress/

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

Hardware acceleration for reduced precision arithmetic and sparsity

—— 20X 310
g
é 155
€ 10X
O
(O]
=
T
&
20
8 16
A_Ji_ - — L
V100 A100 V100 A100 A100
FP64 FP64 FP32 TF32 S?/élgE

625
310
125

. I_

V100 A100 A100
FP16 FP16 SPARSE
FP16

1250

625

60

—

V100 A100 A100

INTS INT8 SPARSE
INT8

IIIIIIIIIIIIIIII

Part 3: Production Deployment

* Model Selection
| * Post-Training Optimization
N Product Quantization
* Knowledge Distillation
. f * Model Code Efficiency
- * Model Serving
- . » Building the Application

S « Exporting the Model
’ » Hosting the Model
! . * Server Performance
. * Using the Model

QUANTIZATION

The idea

w o u) 0w om

FP32 INT8 FP32
(pre-quantized) (quantized) (dequantized)

1.12 2.7 -0.9

IIIIIIIIIIIIIIII

QUANTIZATION

The rationale

Input Accumulation Math Bandwidth
Datatype Datatype Throughput Reduction
FP32 FP32 1x 1x
FP16 FP16 8x 2X
INT8 INT32 16x 4x

. INT4 INT32 32x 8
INT1 INT32 128x 32x

IIIIIIIIIIIIIIII

QUANTIZATION

The rationale

NVIDIA A100 Tensor Core TFAZ with Sparsity

NVICA V100 FPA2

S
-
.
]
:
2
pz
=
» ,

NVIDIA A100 Tensor Core INTS with Sparsity

RVIDIAYIOD INTE

SSTSTIIIIIIIIIIE

Rl

SISTIISIISIIINIS

e L L
MERAERRRRARARRARA.

ARARAN

»
»
»
a

THAO Y

RVIDIA A100 Tensor Cure FP16 wilth Sparsity

NVIDIAVT0D Tenser Core FP16

A1

SSsESSaN
TR RRE

Ly S
THDLGUY =

NVIDIA A100 Tensor Care FFAL

NYICIA VLD FP&4

b 3 3)
b %\)

E L Y\ \°
VRN

DEEP
LEARNING
INSTITUTE

143 <X
NVIDIA.

QUANTIZATION

The results (speedup and throughput)

B T T T A W S
i eh ek ek ek e e
[. S TS N . S W Y

2889 3762 2455 7430 13493 2718

1082 1618 2060 2267 5307 9016 2761 6431 12652
ResNet50 (v1.5 298 617 1051 500 2045 3625 580 2475 4609
153 403 415 197 816 1269 236 915 1889
VGG-19 124 358 384 158 673 1101 187 749 1552
Inception v3 156 371 616 350 1318 2228 385 1507 2560
76 226 335 173 768 1219 186 853 1339
84 208 297 200 716 1253 233 899 1724 Sy o

. INSTITUTE
TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299 rvibIA

QUANTIZATION

MLPERF 0.5 - RESNET-50 V. 1.5 OFFLINE SCENARIO

B INT8 B INT4

25,178

-
-
o
&
Q

7))

S~
)
Q
(@)
(44

E

NVIDIA T4 TITAN RTX

(Turing 70W] [Turing 280W|

INT4 quantization for resnet50 PERRNING
TTTTTTTTTTTTTTTT

IMPACT ON ACCURACY

In a wide range of cases minimal

COCO

MobileNet v1
SSD-300 MobileNet v1 26 25.8

SSD-300 MobileNet v2 27.4 26.8

Faster RCNN ResNet-101 33.7 33.4 0.89%
All results COCO mAP on COCO 2017 validation, higher is better

MobileNet v2

NASNet (large
NASNet (mobile
ResNet50 (v1.5

ResNet50 (v2

ResNet152 (v1.5) Pascal YOC
ResNet152 (v2
VGG-16

VGG-19 SSD-300 77.7

SSD-512 79.9 79.9 0.0%
Inception v4 . All results VOC mAP on VOC 07 test, higher is better

Inception v3

DEEP
146 @ LEARNING
NVIDIA. INSTITUTE

IMPACT OF MODEL DESIGN

Not all neural network mechanisms quantize well

0.855 0.823 3.74%
91.01 85.16 6.43%

IIIIIIIIIIIIIIII

IMPACT OF MODEL DESIGN

Model alterations required

0.855 0.823 3.74% . .
oy T Py GelLU produces highly asymmetric range
|_Bert large uncased __FP32 ____Int8 (GeLU10) RelErr % | Negative values between [-0.17,0]
0.855 0.843 0.70%
el HEAD Lok All negative values clipped to 0

Gell)

GeLU10 allows to maintain negative values

« P32 » Bl @50 = B, a-1C

X | .. X
f) =75 +erf(7) e e

LEARNING
NVIDIA. INSTITUTE

Y.

LOSS OF ACCURACY

Reasons

Outlier in the tensor:

Example: BERT, Inception V4

Solution: Clip. Tighten the range, use bits more efficiently
Not enough precision in quantized representation

Example: Int8 for MobileNet V1

Example: Int4 for Resnet50

Solution: Train/fine tune for quantization

DEEP
149 <& LEARNING
NVIDIA. INSTITUTE

LEARN MORE

GTC Talks

S9659: Inference at Reduced Precision on GPUs

521664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

DEEP
150 < LEARNING
NVIDIA. INSTITUTE

QUANTIZATION TOOLS

NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform

IIIIIIIIIIIIIIII

INT8 QUANTIZATION EXAMPLE

TF-TRT

Step 1 Obtain the TF frozen graph (trained in FP32)

Step 2 C(Create the calibration graph -> Execute it with calibration data -> Convert it to the INTS8
optimized graph
create a TRT inference graph, the output is a frozen graph ready for calibration
calib _graph = trt.create_inference_graph(input graph _def=frozen graph, outputs=outputs,
max_batch_size=1, max_workspace_size bytes=1<<30,
precision_mode="INT8", minimum_segment size=5)

Run calibration (inference) in FP32 on calibration data (no conversion)

f score, f_geo = tf.import_graph_def(calib_graph, input_map={"input_images":inputs},
return_elements=outputs, name="")

Loop img: score, geometry = sess.run([f_score, f_geo], feed_dict={inputs: [img]})

apply TRT optimizations to the calibration graph, replace each TF subgraph with a TRT node
optimized for INT8
trt_graph = trt.calib_graph_to_infer_graph(calib_graph)

Step 3 Import the TRT graph and run

A Erne
https://docs.nvidia.com/deeplearning/dax/ti-trt-user-quide/index.html 153 A Leamno

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

PRUNING

PRUNING

The idea

The opportunity:

] (a) ResNet-50 Weight Histogram (b) Inception-v3 Weight Histogram
Reduced memory bandwidth 105 Max Weight: 1.32 | 105 Max Weight: 1.27
. Min Weight: -0.78 Min Weight: -1.20
Reduced memory footprint 101 10/
>
. . . Q403 3
Acceleration (especially in presence of 501 10%
hardware acceleration) g 102 102
(N
107, 101
1
109, 10° i ' ' i ' i
-0 -5 0 5 10 15 20 -0 -5 0 5 10 15 20
weight value weight value
(c) DenseNet-201 Weight Histogram (d) Transformer Weight Histogram
=I-==l.==l.= 105))
HHREHHHHE 1 Max Weight: 1.33 | 107} Max Weight: 20.41
— 104 Min Weight: -0.92 | 4qs; - Min Weight: -12.46
EEEANENAEEN]
EEEAEEESEER
EENEESEEEEEE 105}
AR EERNEEENE 6*103‘1
EEENEEREEER 4
S 1 104
3102 103,
3
w 10t 102,
1 107,
. oy R I LA A o .
: : 0 5 0 5 10 15 20 0 -5 0 5 10 15 20
- weight value weight value
FHHEAT

155 @Z EEEQNING
Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271. MVIDIA. | INSTITUTE

' DIFFICULT TO GET TO
gy &+ WORK RELIABLY

STRUCTURED SPARSITY

SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores |
2:4 structured-sparse matrix

50% fine-grained sparsity
2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

Accuracy: maintains accuracy of the original, unpruned network

Medium sparsity level (50%), fine-grained

Training: a recipe shown to work across tasks and networks

|:| = zero value

Speedup:
Specialized Tensor Core support for sparse math

Structured: lends itself to efficient memory utilization

DEEP
158 @ LEARNING
NVIDIA. INSTITUTE

PRUNING

Structured sparsity

Dense Sparse
INPUT OPERANDS ACCUMULATOR TOPS vs. FFMA Vs. FFMA T
FP32 FP32 19.5 : - ¥
TF32 FP32 156 8X 16X g3
FP16 FP32 312 16X 32X E“
BF16 FP32 312 16X 32X 5%
FP16 FP16 312 16X 32X 3
INT8 INT32 624 32X 64X
INT4 INT32 1248 64X 128X
BINARY INT32 4992 256X -

DEEP
159 @ LEARNING
NVIDIA. INSTITUTE

RELIABLE APPROACH

PRUNING

Model performance

Accuracy

Network Dense FP16 FP16

ResNet-34 73.7 73.9 0.2 73.7
ResNet-50 76.6 76.8 0.2 76.8 0.2
ResNet-101 77.7 78.0 0.3 77.9
ResNeXt-50-32x4d 77.6 77.7 0.1 77.7
ResNeXt-101-32x16d 79.7 79.9 0.2 79.9 0.2
DenseNet-121 75.5 75.3 -0.2 75.3 -0.2
DenseNet-161 78.8 78.8 78.9 0.1
Wide ResNet-50 78.5 78.6 0.1 78.5

Wide ResNet-101 78.9 79.2 0.3 79.1 0.2
Inception v3 771 771 77.1

Xception 79.2 79.2 79.2

VGG-16 74.0 741 0.1 741 0.1
VGG-19 75.0 75.0 75.0

DEEP
161 @ LEARNING
NVIDIA. INSTITUTE

PRUNING

Model performance

Accuracy
Network Dense FP16 FP16
ResNet-50 (SWSL) 81.1 80.9 0.2 80.9 0.2
ResNeXt-101-32x8d (SWSL) 84.3 84.1 -0.2 83.9 -0.4
ResNeXt-101-32x16d (WSL) 84.2 84.0 -0.2 84.2
SUNet-7-128 76.4 76.5 0.1 76.3 -0.1
DRN-105 79.4 79.5 0.1 79.4

DEEP
162 @ LEARNING
NVIDIA. INSTITUTE

PRUNING

Model performance

Accuracy

Network Dense FP16 FP16

MaskRCNN-RN50 37.9 37.9 - 37.8 -0.1
SSD-RN50 24.8 24.8 - 24.9 0.1
FasterRCNN-RN50-FPN-1x 37.6 38.6 1.0 38.4 0.8
FasterRCNN-RN50-FPN-3x 39.8 39.9 -0.1 39.4 -0.4
FasterRCNN-RN101-FPN-3x 41.9 42.0 0.1 41.8 -0.1
MaskRCNN-RN50-FPN-1x 39.9 40.3 0.4 40.0 0.1
MaskRCNN-RN50-FPN-3x 40.6 40.7 0.1 40.4 0.2
MaskRCNN-RN101-FPN-3x 42.9 43.2 0.3 42.8 0.1
RetinaNet-RN50-FPN-1x 36.4 37.4 1.0 37.2 0.8
RPN-RN50-FPN-1x 45.8 45.6 -0.2 45.5 0.3

RN = ResNet Backbone
FPN = Feature Pyramid Network
RPN = Region Proposal Network

DEEP
163 @ LEARNING
NVIDIA. INSTITUTE

IMPACT ON NLP

NETWORK PERFORMANCE

BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:
Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, ...)
GEMMs without weights to be pruned - Attention Batched Matrix Multiplies

An encoder layer's composition in BERT network

To naxt layer

From previous layer

. Sparse GEMMs D Dense GEMMs D Non-GEMM layer

DEEP
165 @Z LEARNING
NVIDIA. INSTITUTE

TRAINING RECIPE

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

Dense weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

2:4 sparse weights

3) Repeat the original training procedure

Same hyper-parameters as in step-1

Initialize to weights from step-2
Retrained 2:4 sparse

Maintain the 0 pattern from step-2: no need to recompute the mask weights

IIIIIIIIIIIIIIII

EXAMPLE LEARNING RATE SCHEDULE

o 1 Dense Training i\ Sparse Retraining

4(_.03 1 \

o

o]0

C ,'

£

(O I’

S| - -
EE— B — |
— 1\ _/

Y Y
Step 1 Step 2 Step 3

IIIIIIIIIIIIIIII

Learning Rate

Phase 1:

Pretrain language model

L
]\

BERT SQUAD EXAMPLE

Phase2:
Finetune for SQUAD

Learning Rate

Phase 1:

Phase 1: Sparse

SQUAD Dataset and fine-tuning is too small to compensate for pruning on its own

Phase2: Sparse

Pretrain language model Pretrain language model Finetune for SQUAD
\ N
! \
III \\\ ’II \\\
1 \\ d \
1 \ 1 \
1 \ 1 \\
I S / .
] N 1 N
1 \\ ! \\
N 1 N
II \\\\ II \\\\ I’\\
SS 1 T~ RN
~ o ~—e_ p Tt~ III S - -
L | ,{
N T\ -
Y Y
Step 1 Step 2 Step 3

DEEP
169 @2 LEARNING
NVIDIA. INSTITUTE

. AUTOMATIC
SPARSITY

APEX

N

—

PyTorch sparse fine-tuning loop

TAKING ADVANTAGE OF STRUCTURED SPARSITY

APEX’s Automatic SParsity: ASP

4)

import torch Init mask buffers, tell optimizer
from apex.contrib.sparsity import ASP to mask weights and gradients,
device = torch.device('cuda’) compute sparse masks:

Universal Fine Tuning

1 T ' . y -~ . '
:H T ’ ¢ Y I ¢ g ‘ ’ \:‘, ’ ~ a’..'.:‘, J l : LM :‘-' r 14 1 N > ;] B ‘:‘ \ J

model.1oad_state_dict(tor¢h.load(‘dénse_model.pth’))

timizer = 1 C el .parameters(), lr= 1, - - # Define 1mlzer
ASP.prune trained model (model, optimizer)
’ Al) # i |
e (.)
| | 2

1 1 f Y ,

:!r

:!')"

1 { 1 (), ‘; rF i

DEEP
171 @Z LEARNING
NVIDIA. INSTITUTE

Part 3: Production Deployment

* Model Selection
; * Post-Training Optimization
\y * Product Quantization
’ 4 * Knowledge Distillation
. f * Model Code Efficiency
- * Model Serving
- . » Building the Application

S « Exporting the Model
’ » Hosting the Model
! ’ * Server Performance
. * Using the Model

Post-training quantization(PTQ)

Calibration data

Pre-trained
model

Gather layer
statistics

Compute
g-params

Quantize model

QUANTIZATION

Approaches

Usually fast

Quantization-aware training (QAT)

Slow

No re-training of the model

Model needs to be trained/finetuned

Plug and play of quantization
schemes

Plug and play of quantization
schemes (requires re-training)

Less control over final accuracy of
the model

More control over final accuracy

since g-params arc leamed during
training.

Pre-trained
model

Add QAT ops

Finetune with

QAT ops

Store g-params

Quantize model
for inference

DEEP
173 @ LEARNING
NVIDIA. INSTITUTE

EXTREME MODEL COMPRESSION

Training with quantization noise

26 = X wio Quant-Noise X Training without Quant-Noise O Training with Quant-Noise
Training Time Quantzation Teaineng Time Quantization
Weight Matrix Weight Mazrix Wesght Mamix Weight Matrix

THE T

w ~Nowse .

Ow/ Quuat N e P® Om 'U'l
Leq) Oiginal Model A o000 e

- BEE5 0000 §EE 0NN
1 1 1 [N EoN | . H =

Size (MH) 10 100 TN

o
s
1

=
T

+— Perplexity
"
"
|

Figure |: Quant-Noise trains models to be resilient to inference-time guantization by mimicking the
effect of the quantization method during training time. This allows for extreme compression rates
without much loss in accuracy on a variety ol tasks and benchmarks.

Quantization Scheme Language Modeling Image Classification
16 layer Transformer EMcientNet B3
Wikitext-103 ImugeNet-1k

Size Compression PPL Size Compression Top-1
Uncompressed model 012 x 1 18.3 16.7 % 1 81.5
intd quantization 118 x 8 39.4 2.8 x 8 45.3
- trained with QAT 118 x 8 341 5.8 X N 3941
- trained with Quant-Noise 118 x 8 21.8 2.8 x 8 67.8
int8 quantization 236 x 4 19.6 11.7 x 4 80.7
- trained with QAT 236 x A 21.0 11.7 x A 808
- trained with Quant-Noise 236 x 4 18.7 11.7 ®x 4 80.9
iPQ S8 x 25 25.2 3.3 x 14 790
- trained with QAT 38 x 25 41.2 3.3 x 14 50,7
- trained with Quant-Noise 38 x 25 20.7 3.3 x 141 50.0
iPQ & int8 + Quant-Noise 38 x 25 21.1 3.1 x 15 0.8

Table 1: Comparison of different quantization schemes with and without Quant-Noise on language mod-
ching and image classification. For language modeling, we train a Transformer on the Wikitext-103 benchmark
and report perplexity (PPL) on test. For image classification, we train a EfficientNet-B3 on the ImageNet- |k
benchmark and report top-1 accuracy on validation and use our re-implementation of EfficientNet-B3. The
original implementation of Tan er al. [4] achieves an uncompressed Top-1 accuracy of 81,9%., For both settings,
we report model size in megabyte (MB) and the compression ratio compared to the onginal model.

DEEP
174 @Z LEARNING

Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668. MVIDIA. | INSTITUTE

Ry, .
- 2 g LD . » _
o ° . . : O
. » _ _ R o 8
' $ p y - . ’
s © g » . .

o » -

“‘We used Quant-Noise to compress Facebook Al’s
., . State-of-the-art RoBERTa Base model from 480 MB
to 14 MB while achieving 82.5 percent on MNLI,

compared with 84.8 percent for the original model.”

Part 3: Production Deployment

* Model Selection
| * Post-Training Optimization
N Product Quantization
» Knowledge Distillation
. f * Model Code Efficiency
- * Model Serving
- . » Building the Application

S « Exporting the Model
’ » Hosting the Model
! . * Server Performance
. * Using the Model

KNOWLEDGE DISTILLATION

The idea

Distilling the Knowledge in a Neural Network

Geoffrey Hinton" Oriol Vinyals' Jeff Dean
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
geoffhinton@google.com vinyals@google.com jeff@google.com
Abstract

A very simple way to improve the performance of almost any machine learning
algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which 1s much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel. 177 €4 g

LEARNING
NVIDIA. INSTITUTE

KNOWLEDGE DISTILLATION

DistillBERT

Table I: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the
GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the

medians of 5 runs with different seeds.

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo 68.7 441 68.6 76.6
BERT-base 79.5 56.3 86.7 88.6
DistilBERT 77.0 51.3 82.2 87.5

7.1 86.2 534 OIS 70.4 56.3
918 896 693 927 89.0 535
89.2 885 599 0913 86.9 56.3

Table 2: DistilBERT yields to comparable
performance on downstream tasks. Com-
parison on downstream tasks: IMDDb (test ac-
curacy) and SQuAD 1.1 (EM/FI1 on dev set).
D: with a second step of distillation during
fine-tuning.

Model IMDb SQuAD

(acc.) (EM/F1)
BERT-base 93.46 81.2/88.5
DisulBERT 02,82 77.7/85.8
DisulBERT (D) - 79.1/86.9

Table 3: DistilBERT is significantly smaller
while being constantly faster. Inference
time of a full pass of GLUE task STS-B (sen-
timent analysis) on CPU with a batch size of
1.

Model # param. Inf. time
(Millions) (seconds)
ELLMo 180 895
BERT-base 110 668
DistlBERT 66 410

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

DEEP
178 @Z LEARNING
NVIDIA. INSTITUTE

Part 3: Production Deployment

* Model Selection
| * Post-Training Optimization
N Product Quantization
* Knowledge Distillation
. f * Model Code Efficiency
- * Model Serving
- . » Building the Application

S « Exporting the Model
’ » Hosting the Model
! . * Server Performance
. * Using the Model

V-9 —
’ AN .
YT o -
& H

o '
< .
‘ . »
“'\“ \'. .
’ ‘ ’a
T -
- A
. — s »
y ’
. »
L s "
" ’

NOT ALL MODELS HAVE
THE SAME CODE QUALITY

COMPUTE MATTERS

But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

MxNet PyTorch TensorFlow
12000 8000 9000
7000 8000
10000
7000
6000
8000 6000
5000
© e} kel
[y c c
S S g 5000
o) 3 3
<L 6000 < 4000 o <
(0] C c
& % % 4000
g - [
3000 —
4000 — 3000 —
2000 —_—
2000 —_—
2000 —
1000 N 1000 N
0 0 0
17,08 18,02 18,12 19,12 17,08 18,02 1812 1912 17,08 18,02 18,12 19,12

ResNet-50 v1.5 Training | 8x V100 | DGX-1

DEEP
181 @ LEARNING
NVIDIA. INSTITUTE

NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

Model Training Scripts
NLP, Image Classification,
Object Detection & more

Containers ° l Helm Charts

DL, ML, HPC Al applications, K8s cluster, Registry

Pre-trained Models Industry SDKs

NLP, Classification, Object Detection & more Medical Imaging, Intelligent Video Analytics

PRETRAINED MODELS & MODEL SCRIPTS

Build Al Solutions Faster

PRE-TRAINED MODELS

Deploy Al quickly with models for industry specific use cases
Covers everything from speech to object detection
Integrate into existing workflows with code samples

Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

Reference neural network architectures across all domains and popular
frameworks with latest SOTA

Jupyter notebook starter kits

Healthcare (~30 models)
Manufacturing (~25 Models)
Retail (~25 models)

70 TensorRT Plans

Natural Language Processing
Recommendation Engines
Speech

Translation

BioBERT (NLP), Clara (Computer Vision)
Object Detection, Image Classification

BERT, Transformer
Classification/Segmentation for v5, v6, v7

25 Bert Configurations
Neural Collaborative Filtering, VAE
Jasper, Tacotron, WaveGlow

GNMT

DEEP
183 @2 LEARNING
NVIDIA. INSTITUTE

-
» b .
. r4
‘/‘/
s © .

THIS APPLIES NOT ONLY
TO TRAINING BUT
INFERENCE AS WELL

CODE QUALITY IS KEY

Dramatic differences in model performance

3-layer BERT with 128 sequence length

Original 3-layer BERT

CPU
ONNX Model
Original 3-layer BERT
ONNX Model
GPU
ONNX Model

Batch size

54

Inference on

Azure Standard F16s_v2 (CPU)

Azure Standard F16s_v2 (CPU)
with ONNX Runtime

Azure NV6 GPU VM

Azure NV6 GPU VM
with ONNX Runtime

Azure NC65_v3 GPU VM

with ONNX Runtime + System Optimization

(Tensor Core with mixed precision, Same Accuracy)

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

Throughput

(Query per second) (milliseconds)

111

200

10667

Latency

157

20

185 <4

NVIDIA.

DEEP
LEARNING
INSTITUTE

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

P ° e OPTIMIZING INFERENCE
o O WITH TENSORRT

NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform

PPN
& o :
Yy > -t
e -‘.
»

+ TensorFlow
+
Cr
Caffe?

PYTHORCH

- -
JETSON Xavier

DRIVE AGX

NVIDIA DLA

TIT

IIIIIIIIIIIIIIII

TENSORRT

Optimizations

Layer & Tensor Fusion

A LI A
Precision Calibration / \ Kernel Auto-Tuning

. 2 i Teana AT Rusteve

® o o 1 o P 1

S T " e’ J o

e _a® ﬁ O f :

. ' >
Trained Neural 1HE L s | S Optimized

Network s el Inference

Dynamic Tensor Multi-Stream Engine

Memory Execution

.. 188 @Z EEEQNING
developer.nvidia.com/tensorrt NVIDIA. INSTITUTE

) ONNX

TensorRT ONNX PARSER

High-Performance Inference for ONNX
Models + L ..
S Caffe2 Fom Chainer JF) Sogpiive

MATLAB ¢
Apply TensorRT optimizations to any ONNX @Xne ' O P)/TO rCh

framework (Caffe 2, Microsoft Cognitive Toolkit, s o
MxNet & PyTorch) “ PaddlePaddle

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Optimize and deploy models from ONNX-supported
frameworks to production

Use with C++ and Python apps
20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

DEEP
189 <& LEARNING

developer.nvidia.com/tensorrt NVIDIA. INSTITUTE

https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md

TENSORRT

Tight integration with DL frameworks

ResNet50 Host Runtime Speed Up

AN V - Balch Size 3. put

FP32 FP16

B Jr B TensoRT [TRTorch

PyTorch 1.4.0 (CuDNN Benchmark mode enabled) CUDA 10.1 TensorRT 6.0.1.5, TITAN Y, i7-7800X

Images / sec

Throughput with TensorRT at < 7ms latency
(TensorFlow ResNet-50)

6000
5086

5000

4000

3000 2657

2000

1000 =

14 325
0 e — | g
CPU Only FP32 V100 FP32 V100 Tensor Cores V100 Tensor Cores
TensorFlow Tensorflow TensorFlow+TensorRT TensorRT 3 only

Updated 3/28/2018. * Min CPU latency measured was 70 ms. It Is not < 7ms.

CPU: Skylake Gold 6140, Ubuntu 16,04, 18 CPU threads. Volta V100 SXM; CUDA (384.111;V9.0.176);

Batch sizes: CPU~1;V100_FP32-2; V100_Tensorflow_TensorRT=16; V100_TensorRT=32; Latency~6ms. TensorRT 3.
Latest results at: https:/ /developer.nvidia.com/deep- learning- performance-training -inference

Pytorch -> TRTorch

TensorFlow -> TF-TRT

DEEP
190 @ LEARNING
NVIDIA. INSTITUTE

Alibaba Group
. PEREREH

S

faar)

verizon’

WIDELY ADOPTED

Accelerating most demanding applications

BaiEE &) BOSCH il FRRTN

T ¥ JD.COM KL/
M, ¥

sg%g;zc\;qs SK’%lecom Tencent i

e SRELEITT

YYInc.

&

criteol .

IIIIIIIIIIIIIIII

IMPACT ON NLP

TENSORRT

BERT Encoder optimizations

Output

/

-

Multi-Head
Self Attention

BERT Encoder Cell \

Fused and optimized
using TensorRT plugin

Optimized using
TensorRT plugin

Fused and optimized

using TensorRT plugin

/

Input

DEEP
193 @ LEARNING
NVIDIA. INSTITUTE

CUSTOM PLUGINS

Optimized GelLU as well as skip and layer-normalization operations

Naive implementation would require a large
number of TensorRT elementary layers

For k layers, the naive implementation would

require k-1 memory roundtrips
The skip and layer-normalization(LN) layers occur ;_..i+

twice per Transformer layer and are fused in a

single kernel

gelu(x) =a*x* (1 +tanh(b* (x+c*x"3)))

Result
Result

Result =

Result

Result =

Result

X" 3

c * Result
X + Result
b * Result
tanh (Result)
X * Result
a * Result

Multi-Head
Self Attantion

>

BERT Encoder Cell

...............

Input

! ‘

Fused and optimized
using TensorRT plugin

Optimized using
TensorRT plugin

...............

.........

Fused and optlmized
using TensorRT plugin

DEEP
194 @ LEARNING
NVIDIA. INSTITUTE

CUSTOM PLUGINS

Self-attention layer

Self-Attention Layer
(Before optimizations)

/

Element
KT Scaling
mPUt « Tran
(B xS x (NxH))

v v
\ 3 separate FC layers
/ Self-Attention Layer
(With optimizations through TensorRT)
Q'
(B x Lr;p(:tx H)) g Transpose Kv:

\ Single big matrix

DEEP
b) @ LEARNING

NVIDIA. INSTITUTE

IMPLICATIONS

Significant impact on latency and throughput (batch 1)

CPU Server 40 ms

T4 2.2ms |

10 milliseconds Target for
Many Conversational Al Apps

DEEP
Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQUAD with batch size =1 and sequence length = 128. 170 :S%A. INSTITUTE

IMPLICATIONS

Significant impact on latency and throughput

NVIDIA A100 with Sparsity
NVIDIA V100

3%7

a 1,000 20001 1,000 2,000 3,050 &,000 200

Sequences Per Lecend

DX ATO0 server wf Tx NVIDIA A100 with 7 MIG inslances of Tg.bqt | Balch Size = 94 | Precsion: INTE | Sequence Lenglh = 1208

DGX-1 server wf Tx NVIDIAVIOD | TensarRT 7.7 | Balch Size < 254 | Precision: Mixed | Sequence | ength < 128

DEEP
197 @ LEARNING
NVIDIA. INSTITUTE

BEYOND BERT

FASTER TRANSFORMER

Designed for training and inference speed

Encoder:
1.5x compare to TensorFlow with XLA on FP16

Decoder on NVIDIA Tesla T4

2.5x speedup for batch size 1 (online translating scheme)
2x speedup for large batch size in FP16

Decoding on NVIDIA Tesla T4

/x speedup for batch size 1 and beam width 4 (online translating scheme)
2x speedup for large batch size in FP16.

Decoding on NVIDIA Tesla V100

6x speedup for batch size 1 and beam width 4 (online translating scheme)
3x speedup for large batch size in FP16.

https://github.com/NVIDIA/Deepl earningExamples/tree/master/FasterTransformer#feature-support-matrix . DA - | INSTITUTE

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

CONSIDER USING
TENSORRT

Part 3: Production Deployment

* Model Selection
_ * Post-Training Optimization
A} Product Quantization
’ . * Knowledge Distillation
. r * Model Code Efficiency
s * Model Serving
N _ » Building the Application

S « Exporting the Model
’ » Hosting the Model
] ’ * Server Performance
. * Using the Model

INEFFICIENCY LIMITS INNOVATION

Difficulties with deploying data center inference

Single Model Only Single Framework Only

@ Q
Rec- Q Q
ASR NLP ommender theano Q

Some systems are overused while Solutions can only support
others are underutilized models from one framework

Custom Development

Developers need to reinvent the
plumbing for every application

IIIIIIIIIIIIIIII

NVIDIA TRITON INFERENCE SERVER

Production data center inference server

Maximize real-time inference

: VoA performance of GPUs
@< §52 ™
=~ E£5 S Quickly deploy and manage multiple
|: models per GPU per node

Easily scale to heterogeneous GPUs
and multi GPU nodes

Inference
Server

C
O
i
Fa
I—

D Integrates with orchestration

@
c 2% .
S8 ¢ systems and auto-scalers via latency
4 .
£ TesiaPs and health metrics

Now open source for thorough
customization and integration

IIIIIIIIIIIIIIII

Concurrent Model Execution
Multiple models (or multiple instances of same
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend

Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library

Model Ensemble
Pipeline of one or more models and the
connection of input and output tensors between

those models (can be used with custom
backend)

FEATURES

Dynamic Batching

Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)

TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef

ONNX graph (ONNX Runtime)

TensorRT Plans

Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making it

more portable to multiple OSes and removing
the build dependency on Docker

Streaming API

Built-in support for audio streaming input e.g.

for speech recognition

+

v, , l..‘

Caffe? Tensor

TensorRT
PYTORCH

€ ONNX

{} B Microsoft
chainer CNTK

‘xnet PYTHRCH

DEEP
204 @2 LEARNING
NVIDIA. INSTITUTE

DYNAMIC BATCHING SCHEDULER

Batch-1 Request
Batch-4 Request

\

Triton Inference Server

Framework Backend

Runtime

Context

| Dynamic
Batcher

Context

IIIIIIIIIIIIIIII

DYNAMIC BATCHING SCHEDULER

Grouping requests into a
single “batch” increases
overall GPU throughput

Preferred batch size and wait
time are configuration options.

Assume 4 gives best utilization in
this example.

Triton Inference Server

Dynamic
Batcher

ModelY Backend

Runtime

.

-~

IIIIIIIIIIIIIIII

DYNAMIC BATCHING

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

Triton Inference Server groups
inference requests based on
customer defined metrics for
optimal performance

Customer defines 1) batch size
(required) and 2) latency
requirements (optional)

Example: No dynamic batching
(batch size 1 & 8) vs dynamic
batching

Static vs Dynamic Batching (T4 TRT Resnet50 FP16 Instance 1)

1000

Inferences/Second

4 6 8 10 12 14 16
Concurrent Client Requests

== Static BS1 with Dynamic BS8 == Static BS8 no Dynamic Batching Static BS1 no Dynamic Batching

IIIIIIIIIIIIIIII

CONCURRENT MODEL EXECUTION - RESNET 50

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Inference
Requests

10
concurrent
requests

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.

10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

ResNet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1

CUDA Stream

RN50 Instance 2

CUDA Stream

RN50 Instance 3

CUDA Stream

RN50 Instance 4

CUDA Stream

RN50 Instance 5

CUDA Stream

RN50 Instance 6

CUDA Stream

RN50 Instance 7

CUDA Stream

RN50 Instance 8

CUDA Stream

208 @2_’ EEEQNING

NVIDIA. INSTITUTE

CONCURRENT MODEL EXECUTION - RESNET 50

Common Scenario 1 TRT FP16 Inf/s vs. Concurrency BS 8 Instance 8 on T4

One API using multiple copies of the = |nf/s == Latency (ms)
same model on a GPU

3000 200

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.

10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server 5 4 X q 10 19
instance is achieved.

150
2000

100

Inf/s

1000
50

Concurrency

DEEP
LEARNING
NVIDIA. INSTITUTE

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

Many APls using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

5 concurrent
requests

Inference
Requests

5 concurrent
requests

Resnet
50

Request
Queue

Deep
Rec

Request
Queue

T4 16GB GPU

RN50 Instance 1

CUDA Stream

RN50 Instance 2

CUDA Stream

RN50 Instance 3

CUDA Stream

RN50 Instance 4

CUDA Stream

DeepRec Instance 1

CUDA Stream

DeepRec Instance 2

CUDA Stream

DeepRec Instance 3

CUDA Stream

DeepRec Instance 4

CUDA Stream

210 X

NVIDIA.

DEEP
LEARNING
INSTITUTE

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

TRT FP16 Resnet 50 Inferences/Second vs Total Latency BS8
Instance 4 on T4

== Resnet 50 Inferences/Second == Total Latency (ms)

2000 80

60

40

20

Concurrency

TRT FP16 Deep Rec Inferences/Second vs Total Latency BS8
Instance 4 on T4

== Deep Rec Inferences/Second == Total Latency (ms)

5000 25

4000 20

3000 15

Inf/s

2000 10

1000 7 5

Concurrency

DEEP
LEARNING
NVIDIA. INSTITUTE

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

Before Trlton Inference Server 800 FPS Before Triton Inference Server - 5 OOO FPS

™ oSss

A ’ Ne --‘- ~
: 'h’ '\'.‘" : '102 | oo ;‘lll

« One model per GPU
« Requests are steady across all models
. Utilization is low on all GPUs

Spike in requests for blue model
GPUs running blue model are being fully utilized
Other GPUs remain underutilized

DEEP
212 @2 LEARNING
NVIDIA. INSTITUTE

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

5 OOO FPS After Triton Inference Server 15 OOO FPS

% it N ll)"
av{v"u

LA
» ‘l
¢« Mu <5

; »

'S Pl 16k Uiy -
'y ’

/1 mh

. -,

After Trlton Inference Server

IrNe -
,«..;

.

31
e i

. Load multiple models on every GPU . Spike in requests for blue model
. Load is evenly distributed between all GPUs . Each GPU can run the blue model concurrently

. Metrics to indicate time to scale up
0 GPU utilization
o Power usage

o Inference count
o Queue time
o Number of requests/sec 213 €3 CEaruin

NVIDIA. INSTITUTE

STREAMING INFERENCE REQUESTS

New Streaming API

Based on the correlation ID, the
audio requests are sent to the
appropriate batch slot in the
sequence batcher®

*Correct order of requests is
assumed at entry into the endpoint
Note: Corr = Correlation ID

Corr1 Corr1 Corr1 Corr1 Corr2 Corr2 Corr3 Corr3
Inference Request

NEW
DeepSpeech2 Sequence Batcher
Per Model Request Queues

DeepSpeech?2 Corr 2 Corr 2

Corr 3 Corr 3 Corr2 Corr2 Corr 3 Corr 3

Wavel2letter

NEW
l I . l Wav2Letter Sequence Batcher
Corr 1 Corr 1 Corr 1 Corr 1

Corr 1Corr 1Corr 1Corr 1

Framework

Inference
Backend

DEEP
214 @2 LEARNING
NVIDIA. INSTITUTE

MODEL ENSEMBLING

Pipeline of one or more models and the
connection of input and output tensors between
those models

Use for model stitching or data flow of multiple
models such as data preprocessing — inference
— data post-processing

Collects the output tensors in each step,
provides them as input tensors for other steps
according to the specification

Ensemble models will inherit the characteristics
of the models involved, so the meta-data in the
request header must comply with the models
within the ensemble

IMAGE

'

!

RAW_IMAGE

Y

image_preprocess _model

'

PREPROCESSED_OUTPUT

$

preprocessed_image

1

2l

FORMATTED_IMAGE

FORMATTED_IMAGE

classification_model segmentation_model
CLASSIFICATION_OUTPUT SEGMENTATION_OUTPUT
CLASSIFICATION SEGMENTATION

215

DEEP
LEARNING
IIIII A. INSTITUTE

perf client TOOL

po= Datch Latency Imkcrozeconcs)
Chanmt '.:'cndlrdm.-a:rhb‘m\:r'..-'cn:i‘-x'cc- Sarver :.:ue;'a'c'\':rL-:mpm:ll.‘lcmﬁcc. lota m _ ‘ ' - o » i
o= ~ = R
25 104 706 7 3518
22 126 756 2140 7 3530 8
17 154 909 538 2158 7 3778 o
. b7 194 o0y co1 2241 e e
Measures throughput (inf/s) and 0w e 2o : s | E I I
latency under varying client loads ss : I I I I I
3 225 1352 987 2751 7 416 -
pext_clienc Modes R R R | T
1. Specify how many concurrent % : ’ » ;
o o 5 3’4 17E 451 =5 (
outstanding requests and it s

will find a stable latency and
throughput for that level

2. Generate throughput vs . d

latency curve by increasing h
the request concurrency until . e
a specific latency or) .
concurrency limit is reached

Generates a file containing CSV

output of the results e oo

Easy steps to help visualize the

throughput vs latency tradeoffs

NVIDIA. INSTITUTE

ALL CPU WORKLOADS SUPPORTED

Triton relies on framework backends (Tensorflow, Caffe2,
PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel

MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and

cores

Benefit from features:
Multiple Model Framework Support
Dynamic batching
Custom backend
Model Ensembling
Audio Streaming API

Pyton/C++ Clent library

Clhwvdpalatavor

C AP

NYIUIA Inten

Infurmnis Surver

StntusdFealth Metrits Fxpost

DELP
LEARNING
NVIDIA. INSTITUTE

TRITON INFERENCE SERVER COLLABORATION
WITH KUBEFLOW

What is Kubeflow?

Open-source project to make ML workflows on Kubernetes simple, portable, and
scalable

Customizable scripts and configuration files to deploy containers on their chosen
environment

<

Easily set up an ML stack/pipeline that can fit into the majority of enterprise KUbeﬂOW
datacenter and multi-cloud environments

Problems it solves

How it helps Triton Inference Server

Triton Inference Server is deployed as a component inside of a production workflow 1 = — .
to J— —_—
Optimize GPU performance L .

Enable auto-scaling, traffic load balancing, and redundancy/failover via
metrics

DEEP

For a more detailed explanation and step-by-step guidance for this collaboration, refer to this : LEARNING

NVIDIA. INSTITUTE

https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server

TRITON INFERENCE SERVER HELM CHART

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

Helm: Most used “package manager” for Kubernetes

Usage percentage vs. Project

B Usage percentage

We built a simple chart (“package”) for the Triton
Inference Server.

Project

You can use it to easily deploy an instance of the server.

It can also be easily configured to point to a different
image, model store, ...

OpenShift templates

https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7¢c0273672c5e92893/deploy/single server 40%

Usage percentage

DEEP
219 @2 LEARNING
NVIDIA. INSTITUTE

https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Part 3: Production Deployment

* Model Selection
| * Post-Training Optimization
N Product Quantization
* Knowledge Distillation
. f * Model Code Efficiency
- * Model Serving
- . + Building the Application

S « Exporting the Model
’ » Hosting the Model
! . * Server Performance
. * Using the Model

APPLICATION != SINGLE

THE APPLICATION

Typically composed of many components

ASR NLU

Language Model ‘

Search Ranking

Visual Search

‘ Autocorrect

Query Search
“What date is the

Chinese New Year?”

Machine Translation

Audio Feature Extraction Acoustic Model

ENRH L&

TTS

<
<

Audio Voice Encoder Speech Synthesis

DEEP
222 @ LEARNING
NVIDIA. INSTITUTE

NVIDIA RIVA

Fully Accelerated Framework for Multimodal Conversational Al Services

Riva

video

A

audio

A

Multi-Speaker — “ESSCA Wit wil you e eyl Wednesda?
Transcription DOUGLAS: | expect tohave exrly designs of e packagng

»
>

NVIDIA GPU CLOUD NVIDIA Al TOOLKIT

JESSICA Grom.

End-to-End Multimodal Conversational Al Services ﬁ

Pre-trained SOTA models-100,000 Hours of DGX

Retrain with NeMo

Interactive Response - 150ms on A100 versus 25sec on CPU

Deploy Services with One Line of Code

DEEP
224 @ LEARNING
NVIDIA. INSTITUTE

PRETRAINED MODELS AND Al TOOLKIT

Train SOTA Models on Your Data to Understand your Domain and Jargon

E’:

........................

100+ pretrained models in NGC ,
SOTA models trained over 100,000 hours on NVIDIA DGX™ Pretrained «.f;;;
models > 4 » R ‘:"5‘«: » ¢
Retrain for your domain using NeMo & TAO Toolkit
|
Deploy trained models to real-time services using Helm charts Model Training Model Ready to Deploy
Fine Tuning Validation in NVIDIA Riva

Lustomer Data

DEEP
225 @Z LEARNING
NVIDIA. INSTITUTE

MULTIMODAL SKILLS

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

Multi-speaker transcription
Chatbot
Look-to-talk

Dialog manager manages multi-user and multi-context scenarios

Shirley : Hou 15 the weather 1n San Francisco.

Multimodal application with multiple users
and contexts

DEEP
226 LEARNING
NVIDIA. INSTITUTE

BUILD CONVERSATIONAL Al SERVICES

Optimized Services for Real Time Applications

Build applications easily by connecting
performance tuned services

Task specific services include:

* ASR

* Intent Classification
+ Slot Filling

* Pose Estimation

» Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper for trtis

Intent

Riva

Dialog Manager

Riva Client
Applications

n

[]

Riva Al services

DEEP
227 @ LEARNING
NVIDIA. INSTITUTE

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

DEPLOY MODELS AS REAL-TIME SERVICES

One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data
center, and at the edge

Single command to set up and run the entire Riva application
through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

One click deployment
—>

TensorRT
Triton Inference Server
Riva API Server

Riva SERVICES
NLU

Vision

Speech

h] \l' \',','.I.-":..‘-.

P = :
i & EEE e 28 «

'

SE .

Language Decoder Acoustic Feature
Model Model Extraction

v

._H .='.ﬁ"-' -

— ™ et

NLU &
Recommenders Synthesis Encoder

Helm command to deploy models to production

228

DEEP
LEARNING

NVIDIA. INSTITUTE

JESSICA: Whatt will you harve rescdy for Wednesday?

DOUGLAS: | epexct 0 have axrly designs of $e pacdkagng.

Visual Diarization

Transcribe multi-user multi-context conversations

RIVA SAMPLES

Look To Talk

Wait for gaze before triggering Al assistant

NVIDIA

M owekoome W JANS weslher serece Haw ces | he p pod?

How s U saalret Lodey?

ot Sen M arciece

ks Parlly Coudy in S Foecocn ol te momes] The lersgersdine & e gl dagees tw

Pramid ty 13 sewerly 0ne pescent and the mind specd B 2000 mikes gef hou

15 FGoing % ol tome now n Sana Claa?

0 Sa0va Cono 120omoa 15 not capactad niin

Virtual Assistant

End-to-end conversational Al system

229

NVIDIA.

DEEP
LEARNING
INSTITUTE

Part 3: Production Deployment

* Model Selection

* Post-Training Optimization
* Product Quantization

* Knowledge Distillation

* Model Code Efficiency

* Model Serving

» Building the Application

* Exporting the Model
* Hosting the Model

* Server Performance
* Using the Model

DEEP
LEARNING
INSTITUTE

NVIDIA

