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9:00 am    Welcome

9:15 am    Introduction to FPGAs

9:45 am    FPGA Programming models: RTL

10:15 am  FPGA Programming models: HLS

11:00 am  Lab 1 HLS Flow

11:45 am  Lunch 

12:30 pm FPGA Programming models: OpenCL

1:00 pm   High Performance Data Flow Concepts

1:30 pm  Lab 2 OpenCL Flow

2:15 pm  Introduction to DSP Builder

3:00 pm  Introduction to Acceleration Stack

4:00 pm  Lab 3 Acceleration Stack 

4:30 pm  Curriculum & University Program 
Coordination

Agenda
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The average internet user will generate

~1.5 GB of traffic per day
Smart hospitals will be generating over

3 TB per day
Self driving cars will be generating over

4,000 GB per day… each

All numbers are approximated
http://www.cisco.com/c/en/us/solutions/service-provider/vni-network-traffic-forecast/infographic.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
https://datafloq.com/read/self-driving-cars-create-2-petabytes-data-annually/172
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html

Self driving cars will be generating over

4 TB per day… each
A connected plane will be generating over

40 TB per day
A connected factory will be generating over

1 PB per day

radar ~10-100 KB per second

sonar ~10-100 KB per second

gps ~50 KB per second

lidar ~10-70 MB per second

cameras ~20-40 MB per second

1 car 5 exaflops per hour

The Problem: Flood of Data
By 2020
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5

Typical HPC Workloads

Astrophysics Molecular Dynamics*

Big Data Analytics Cyber SecurityFinancial

Artificial Intelligence

Weather & CLimate
* Source: https://comp-physics-lincoln.org/2013/01/17/molecular-dynamics-simulations-of-amphiphilic-macromolecules-at-interfaces/

Genomics / Bio-Informatics
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Bigger Data Better Hardware Smarter Algorithms
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Fast Evolution of Technology

We now have the compute to solve these problems today in near real-time

Image: 50 MB / picture

Audio: 5 MB  / song

Video: 47 GB / movie

Transistor density doubles 
every 18 months

Cost / GB in 1995: $1000.00

Cost / GB in 2015: $0.03

Advances in neural 
networks leading to better 
accuracy in training modelsInt
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50+ Years of Moore’s Law
Computing has Changed…

7
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The Urgency of Parallel Computing

Source: http://www.cnn.com/2001/tech/ptech/02/07/hot.chips.idg/

If engineers keep building processors the 
way we do now, CPUs will get even faster but 
they’ll require so much power that they won’t 
be usable.

—Patrick Gelsinger, 
former Intel Chief Technology Officer,

February 7, 2001

8
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Implications to High Performance Computing
50 GFLOPS/W

~100MW

2022
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I/O I/O

Challenges Scaling Systems to Higher Performance

10

Memory

Result:
Slow
Performance
(high latency)

CPU Intensive

System

Result:
Excessive power 

requirements

IO Intensive 

Bottleneck

BottleneckBottleneck

Need to think about Compute Offload as well as Ingress/Egress Processing

Memory Intensive 

Result: Slow Performance
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Diverse Application Demands

11
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The Intel Vision

Heterogeneous Systems:

▪ Span from CPU to GPU to FPGA to dedicated devices with 
consistent programming models, languages, and tools

CPUs GPUs                  FPGAs ASSPInt
el 
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Heterogeneous Computing Systems

Modern systems contain more than one kind of processor

▪ Applications exhibit different behaviors:

– Control intensive (Searching, parsing, etc…)

– Data intensive (Image processing, data mining, etc…)

– Compute intensive (Iterative methods, financial modeling, etc…)

▪ Gain performance by using specialized capabilities of different types 
of processors Int

el 
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Separation of Concerns

Two groups of developers:

▪ Domain experts concerned with getting a result

– Host application developers leverage optimized libraries

▪ Tuning experts concerned with performance

– Typical FPGA developers that create optimized libraries

Intel® Math Kernel Library a simple example of raising the level of abstraction to 
the math operations

▪ Domain experts focus on formulating their problems

▪ Tuning experts focus on vectorization and parallelization
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FPGA Enabled Performance and Agility

z

Workload N
Workload 2

Workload 1

Efficient Performance: 
improve performance/watt

Workload Optimization: 
ensure Xeon cores serve their 
highest value processing

Real-Time: high bandwidth 
connectivity and low-latency 
parallel processing

Milliseconds

FPGAs enhance CPU-based processing by accelerating algorithms and minimizing bottlenecks

Developer Advantage: code 
re-use across Intel FPGA data 
center productsInt
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FPGAs Provide Flexibility to Control the Data path

Storage Acceleration

▪ Machine learning

▪ Cryptography

▪ Compression

▪ Indexing

Inline Data Flow Processing

▪ Machine learning

▪ Object detection and recognition

▪ Advanced driver assistance system (ADAS)

▪ Gesture recognition

▪ Face detection

Compute Acceleration/Offload
▪ Workload agnostic compute
▪ FPGAaaS
▪ Virtualization

17

Intel®
Xeon®

Processor
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FPGA Architecture

Field Programmable Gate Array (FPGA)

▪ Millions of logic elements

▪ Thousands of embedded memory blocks

▪ Thousands of DSP blocks

▪ Programmable interconnect

▪ High speed transceivers

▪ Various built-in hardened IP

Used to create Custom Hardware!

DSP Block

Memory Block

Programmable 

Routing Switch

Logic 

Modules
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FPGA Architecture: Basic Elements

19

1-bit configurable 
operation

Configured to perform any 
1-bit operation:

AND, OR, NOT, ADD, SUB

Basic Element

1-bit register
(store result)
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FPGA Architecture: Flexible Interconnect

20

Basic Elements are 
surrounded with a 

flexible interconnect

…
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FPGA Architecture: Flexible Interconnect

21

Wider custom operations are 
implemented by configuring and 
interconnecting Basic Elements

……
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FPGA Architecture: Custom Operations Using Basic Elements

22

Wider custom operations are 
implemented by configuring and 
interconnecting Basic Elements

16-bit add

Your custom 64-bit 
bit-shuffle and encode

32-bit sqrt

…
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FPGA Architecture: Memory Blocks

23

Memory
Block
20 Kb

addr

data_in
data_out

Can be configured and grouped 
using the interconnect to create 

various cache architectures
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FPGA Architecture: Memory Blocks

24

Memory
Block
20 Kb

addr

data_in
data_out

Can be configured and grouped 
using the interconnect to create 

various cache architectures

Lots of smaller 
caches

Few larger 
caches
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FPGA Architecture: Floating Point Multiplier/Adder Blocks

25

data_in

Dedicated floating point 
multiply and add blocks

data_out
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DSP Blocks

Thousands DSP Blocks in Modern 
FPGAs

▪ Configurable to support multiple features

– Variable precision fixed-point multipliers

– Adders with accumulation register

– Internal coefficient register bank

– Rounding

– Pre-adder to form tap-delay line for filters

– Single precision floating point 
multiplication, addition, accumulationInt
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FPGA Architecture: Configurable Routing

27

Blocks are connected into 
a custom data-path that 
matches your application.
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FPGA Architecture: Configurable IO

28

The Custom data-path can 
be connected directly to 
custom or standard IO 

interfaces
for inline data processing
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FPGA I/Os and Interfaces

FPGAs have flexible IO features to support many IO and interface standards

▪ Hardened Memory Controllers

– Available interfaces to off-chip memory such as HBM, HMC, DDR SDRAM, 
QDR SRAM, etc.

▪ High-Speed Transceivers

▪ PCIe* Hard IP

▪ Phase Lock Loops

*Other names and brands may be claimed as the property of others
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Intel® FPGA Product Portfolio

Wide range of FPGA products for a wide range of applications

▪ Products features differs across families

– Logic density, embedded memory, DSP blocks, transceiver speeds, IP 
features, process technology, etc.

Non-volatile, low-cost, 
single chip small form

Low-power, cost-
sensitive performance 

Midrange, cost, power, 
performance balance

High-performance, 
state-of-the-art
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Mapping a Simple Program to an FPGA

31

R0  Load Mem[100]
R1  Load Mem[101]
R2  Load #42
R2  Mul R1, R2
R0  Add R2, R0
Store R0 Mem[100]

High-level code

Mem[100] += 42 * Mem[101]

CPU instructions
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First let’s take a look at execution on a simple CPU

32

B

A
A ALU

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Fixed and general
architecture:

- General “cover-all-cases” data-paths
- Fixed data-widths
- Fixed operations
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Looking at a Single Instruction

33

Very inefficient use of hardware!

B

A
A ALU

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData
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Sequential Architecture vs. Dataflow Architecture

Sequential CPU Architecture FPGA Dataflow Architecture

A

AA

AA

A

load load

store

42
R
e
s
o
u
r
c
e
s

Time

34
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Custom Data-Path on the FPGA Matches Your Algorithm!

35

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

load load

store

42

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path
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Advantages of Custom Hardware with FPGAs

▪ Custom hardware!

▪ Efficient processing

▪ Fine-grained parallelism

▪ Low power

▪ Flexible silicon

▪ Ability to reconfigure

▪ Fast time-to-market

▪ Many available I/O standards

DSP 
Blocks

M20K 
Blocks

I/O PLLs

Memory 
Controllers 

and IOs

Transceiver 
Channels

Transceiver 
PCS

PLLs

PCIe* IP

Core 
Logic

*Other names and brands may be claimed as the property of others
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RTL

37
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FPGA Development and Programming Tools

Algorithm
Designer

DSP Builder 
for Intel® 
FPGAs

IP Library
Developer

HDL
Designer

Intel® HLS 
Compiler

Software Developer

Intel® SoC 
FPGA 

Embedded 
Design Suite

(EDS)

Intel® FPGA 
SDK for 
OpenCL

Intel® Quartus Prime Design Software

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Hardware DeveloperSoftware Developer

Verilog 
VHDL

Verilog, VHDL and the Intel® FPGA SDK for OpenCL are currently supported by the Acceleration Stack.  High Level Synthesis can be used manually by following app note
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Traditional FPGA Design Entry

Circuits described using Hardware Description Languages (HDL) such as VHDL or Verilog

A designer must describe the behavior of the algorithm to create a low-level digital circuit

▪ Logic, Registers, Memories, State Machines, etc.

Design times range from several months to even years!
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Traditional FPGA Design Flow

Time-Consuming Effort

Place & Route / Timing Analysis / Timing Closure

Synthesis
HDL

Behavioral Simulation

Board Simulation & Test
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Project Navigator

Tasks window

41

Intel® Quartus® Prime Design Software

Messages 
window

Tool View window

IP Catalog

Default Operating Environment
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Intel® Quartus® Prime Design Software Projects

Description

▪ Collection of related design files & libraries

▪ Must have a designated top-level entity

▪ Target a single device 

▪ Store settings in the software settings file (.qsf)

▪ Compiled netlist information stored in qdb folder in project directory

Create new projects with New Project Wizard

▪ Can be created using Tcl scriptsInt
el 
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Download complete example design 
templates for specific development 
kits

Design examples include design files, 
device programming files, and 
software code as required

Install .par files and select as template 
in New Project Wizard 

Intel® FPGA Design Store

https://cloud.altera.com/devstore/platform/
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Device Selection

Tcl:  set_global_assignment –name FAMILY “device family name”

Tcl:  set_global_assignment –name DEVICE <part_number>

Filter device list

Choose device family 
& family category

(transceiver options, 
SoC options, etc.)

Choose specific part from list
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Chip Planner

Graphical view of 

▪ Layout of device resources

▪ Routing channels between device resources

▪ Global clock regions

Uses

▪ View placement of design logic

▪ View connectivity between resources used in design

▪ Make placement assignments

▪ Debugging placement-related issues
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Chip Planner

Tasks 
window

Device floorplan 
aka Chip View

Tools menu or toolbar

Layers 
Settings

Selected Node 
Properties

Report 
window

Unused 
LAB

Memory 
block in use
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Floorplan Views

47

Overall device resource usage

Lower level block usage 

Lowest level routing detail 

Zoom in for detailed logic 
implementation & routing usageInt
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Pin Planner

Interactive graphical tool for assigning pins

▪ Drag & drop pin assignments

▪ Set pin I/O standards

▪ Reserve future I/O locations

Default window panes

▪ Package View

▪ All Pins list

▪ Groups list

▪ Tasks window

▪ Report window

Assignments menu → Pin Planner, 
toolbar, or Tasks window
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Pin Planner Window

Package 
View

All Pins list

Groups list
Toolbar

Tasks pane
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The Programmer

Tools menu → Programmer 
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State Machine Editor

51

Create state machines in GUI

▪ Manually by adding individual states, 
transitions, and output actions

▪ Automatically with State Machine Wizard 
(Tools menu & toolbar)

Generate state machine HDL code 
(required)

▪ VHDL

▪ Verilog

▪ SystemVerilog

File menu → New or Tasks window
Select State Machine File (.smf)

Double-click states & transitions to 
edit properties: name, equations, 

actionsInt
el 
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Components in system use different 
interfaces to communicate (some 
standard, some non-standard)

Typical system requires significant 
engineering work to design custom 
interface logic 

Integrating design blocks and 
intellectual property (IP) is tedious and 
error-prone

Platform Designer

A
d

d
re

ss

D
a

ta

D
a

ta

Processor 
(32-bit Master)

Slave 1

8-Bit

Slave 2

32-Bit

Slave 3

16-Bit

Slave 4

32-Bit

Slave 5

64-Bit

A
d

d
re

ss
Width Adapter Width Adapter Width Adapter Width Adapter Width Adapter

Arbiter

Address
Decoder

Bus Interface

PCI Express* 
(64-bit Master)

Bus Interface

Bus Interface Bus Interface Bus Interface Bus Interface Bus Interface

Interrupt 
Controller
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Avoids error-prone integration 

Saves development time with 
automatic logic & HDL generation

Enables you to focus on value-add 
blocks

Platform Designer improves 
productivity by automatically 
generating the system interconnect 
logic

Automatic Interconnect Generation

A
d

d
re

ss

D
a

ta

D
a

ta

Processor 
(32-bit Master)

Slave 1

8-Bit

Slave 2

32-Bit

Slave 3

16-Bit

Slave 4

32-Bit

Slave 5

64-Bit

A
d

d
re

ss
Width Adapter Width Adapter Width Adapter Width Adapter Width Adapter

Arbiter

Address
Decoder

Bus Interface

PCI Express *
(64-bit Master)

Bus Interface

Bus Interface Bus Interface Bus Interface Bus Interface Bus Interface

Interrupt 
Controller

Platform Designer automatically 
generates interconnect
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The Platform Designer GUI

54

Draggable, 

detachable tabs

System Contents

Hierarchy

IP 

Catalog

Messages

Access in Tools menu, toolbar, or Tasks window
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Lab 1
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High Level Synthesis
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C++ 
IP

C++ 
IP

C IP

57

Can Also Be Wrapped With Higher Level Flows

RTL

Intel© HLS 

Compiler

Platform Designer

Functions
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main(…)

{

for( … )

{

}

The Software Programmer’s View

Programmers develop in mature software environments

– Ideas can easily be expressed in languages such as ‘C’

– Typically start with simple sequential program

– Use parallel APIs / language extensions to exploit multi core for additional performance

– Compilation times are almost instantaneous

– Immediate feedback

– Rich debugging tools

58

main(…)

{

for( … )

{

}

C
o

m
p

il
e

rmain(…)

{

for( … )

{

}

Int
el 

Prop
rie

tar
y

for
 LR

Z



High Level Design is the Bridge Between HW & SW

59

100x More Software Engineers than Hardware Engineers

Key to wide-spread adoption of FPGA in Datacenter

Debugging software is much faster than hardware

Many functions are easier to specify in software than RTL

Simulation of RTL takes thousands times longer than software

Design Exploration is much easier and faster in software 

We Need to Raise the Level of Abstraction

▪ Similar to what assembly programmers did with C over 30 years ago

– (Today) Abstract away FPGA Design with Higher Level Languages

– (Today) Abstract away FPGA Hardware behind Platforms

– (Tomorrow) Leverage Pre-Compiled Libraries as Software Services

A
b

st
ra

ct
io

n
 a

n
d

 P
ro

d
u

ct
iv

it
y

Transistors

RTL

Softwar
e
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HDL IP

60

HLS Use Model

Standard

gcc/g++ 
Compiler

EXE

main

f f

t1

f11

f

t2

f

f21

f22 f23

f12 f13

C/C++ Code

HLS 

Compiler

FPGA

IP

IP

Directives

Intel® Quartus® 
Ecosystem

100% Makefile
compatible

src.c

lib.h

g++ <options> a.exei++ <options>
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Intel® HLS Compiler

Targets Intel® FPGAs

Command-line executable: i++

Builds an IP block

▪ To be integrated into a traditional FPGA design using FPGA tools

Leverages standard C/C++ development environment

Goal: Same performance as hand-coded RTL with 10-15% more resources

IP
HLS 

Compiler
C/C++ 

Source

Platform
Designer
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HLS Procedure

Intel® HLS 
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Quartus® Prime Compilation on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system
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Intel® HLS Compiler Usage and Output

src.c

lib.h

i++ -march=x86-64 src.c a.exe|out

Develop with C/C++:

Run Compiler for HLS:

a.prj/components/func/

src.c

lib.h

i++ -march=<fpga fam> -–component 
func src.c

a.exe|out

a.prj/reports/

a.prj/verification/

a.prj/quartus/

GDB-Compatible Executable

Executable which will run calls to 
func in simulation of synthesized IP

All the files necessary to 
include IP in a Quartus project. 
i.e. .qsys, .ip, .v etc

Component hardware 
implementation reports

Simulation testbench 

Quartus project to compile all IP

a is the default output name, -o option can be used to specify a non-default output name

Int
el 

Prop
rie

tar
y

for
 LR

Z



64

HLS Procedure: x86 Emulation

Intel® HLS 
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Quartus® Prime Compilation on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system
Int

el 
Prop

rie
tar

y

for
 LR

Z



$ g++ test.cpp 

$ ./a.out

Hello world

$

// test.cpp

#include <stdio.h>

int main() {

printf("Hello world\n");

return 0;

}

Example Program

Terminal Commands and Outputs

Simple Example Program: i++ and g++ flow

$ i++ test.cpp 

$ ./a.out

Hello world

$

Using the default –march=x86-64

65
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g++ Compatibility

Intel HLS Compiler is command line compatible with g++

▪ Similar command-line flags, x86 behavior, and compilation flow

▪ Changing “g++” to “i++” should just work

– g++ <flags> <src>

– i++ <flags> <src>

▪ x86 behavior should match g++

– Except for integer promotion (discussed later)

▪ No source modifications required (for x86 mode)

▪ Support for GNU Makefiles

66
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i++ Options : g++ Compatible Options 

Option Description

-h Display help information

-o <name> Specify a non-default output name

-c Instructs compiler generate the object files and not the executable

-march=<arch> Compile for architecture x86-64 (Default) or <FPGA Family>

-v Verbose mode

-g Generate debug information (default)

-g0 Do not generate debug information

-I<dir> Add to include path

-D<macro>[=<val>] Define <macro> with <val> or 1

-L<dir> -l<library> Library search directory and library name when linking

Example: i++ -march=x86-64 myfile.cpp –o myexe
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i++ Options: FPGA Related Options

Option Description

--component <components> Specify a comma-separated list of function names to be synthesizes to RTL

--clock <clock_spec> Optimizes the RTL for the specified clock frequency or period

-ghdl
Enable full debug visibility and logging of all signals when verification executable is 
run

--quartus-compile Compiles the resulting HDL files using the Intel® Quartus® Prime software

--simulator <simulator> Specify the simulator used for verification, “none” to skip testbench generation

--x86-only Only create the executable for testbench, no RTL or cosim support

--fpga-only Create FPGA component project, RTL and cosim support, no testbench binary

Example: i++ -march=<fpga fam> --component mycomp --clock 400Mhz myfile.cpp

There are many other optimization options available please see the Intel HLS Compiler Reference Manual 
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The Default Interfaces
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component int add(int a, int b) {

return a+b;

}

add

start

busy

a[31:0]

b[31:0]

done

stall

returndata[31:0]

clock Note: more on interfaces later

C++ Construct HDL Interface

Scalar arguments
Conduits associated with the 
default start/busy interface

Pointer arguments Avalon memory master interface

Global scalars and 
arrays

Avalon memory master interface
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Example Makefile

FILE := myapp

DEVICE := Arria10

all:

gpp: $(FILE).cpp

g++ $(GCFLAGS) $(FILE).cpp -o $(FILE).out

emu: $(FILE).cpp

i++ $(GCFLAGS) $(FILE).cpp -o $(FILE)_emu.out

fpga: $(FILE).cpp

i++ $(GCFLAGS) $(FILE).cpp -o $(FILE)_fpga.out -march=$(DEVICE)Int
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x86 Debugging Tools

printf/cout
gdb
Valgrind

src.c

lib.h

i++ -march=x86-64 src.c a.exe|out

Develop with C/C++:
GDB-Compatible Executable
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Using printf()

Requires “HLS/stdio.h”

▪ Maps to <stdio.h> when appropriate

Can be included in the testbench or the component

▪ Used with no limitations in the x86 emulation flow

printf statements inside the component ignored for HDL generation

▪ Ignored in the cosimulation flow with an HDL simulator
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$ i++ test.cpp 

$ ./a.out

Hello from the testbench

Hello from the component

$

// test.cpp

#include "HLS/stdio.h"

void say_hello() {

printf("Hello from the component\n");

}

int main() {

printf("Hello from the testbench\n");

say_hello();

return 0;

}

Example Program Terminal Commands and output

Using printf(): Example

$ i++ test.cpp –march=Arria10 \

--component say_hello

$ ./a.out

Hello from the testbench

$

73

Int
el 

Prop
rie

tar
y

for
 LR

Z



Debugging Using gdb

i++ integrates well with GNU gdb

▪ Debug data is generated by default

– Unlike g++, -g enabled by default, use -g0 to turn off debug data

-march=x86-64 flow: 

▪ Can step through any part of the code (including the component)

-march=<fpga family> flow:

▪ Can step through testbench code

▪ gdb does not see the component side execution (that runs in an HDL 
simulator)
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$ i++ test.cpp –march=x86-64 –o test-x86

$ gdb ./test-x86 

………………………………………………………………

<GDB Command Prompt>

(gdb)

// test.cpp

#include "HLS/hls.h"

#include "HLS/stdio.h"

component void say_hello() {

printf("Hello from the component\n");

}

int main() {

printf("Hello from the testbench\n");

say_hello();

return 0;

}

Example Program Terminal Commands and output

gdb Example

$ i++ test.cpp –march=Arria10 –o test-fpga

$ gdb ./test-fpga

………………………………………………………………

<GDB Command Prompt>

(gdb)
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Debugging with Valgrind

“Valgrind is an instrumentation framework for building dynamic analysis tools.” 

▪ Valgrind tools can detect:

– Memory leaks

– Invalid pointer uses

– Use of uninitialized values 

– Mismatched use of malloc/new vs free/delete

– Doubly freed memory

▪ Use to debug component and testbench in the x86 emulation flow
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$ i++ test.cpp

$ ./a.out

Segmentation Fault

$ valgrind --leak-check=full --show-reachable=yes ./a.out

……………………………………………………………………………………………………

==9744== Invalid read of size 4

==9744==    at 0x4006B3: bin_count(int*, int) (test.cpp:5)

==9744==    by 0x400723: main (test.cpp:13)

==9744==  Address 0x1b31075dc is not stack'd, malloc'd or 

(recently) free'd

==9744== Process terminating with default action of signal 

11 (SIGSEGV)

==9744==  Access not within mapped region at address 

0x1B31075DC

==9744==    at 0x4006B3: bin_count(int*, int) (test.cpp:5)

==9744==    by 0x400723: main (test.cpp:13)

……………………………………………………………………………………………………

==9744== 64 bytes in 1 blocks are still reachable in loss 

record 1 of 1

==9744==    at 0x4A06A2E: malloc (vg_replace_malloc.c:270)

==9744==    by 0x4006ED: main (test.cpp:9)

……………………………………………………………………………………………………

Segmentation fault

// test.cpp

#include “hls/stdio.h”

#include <stdlib.h>

int bin_count (int *bins, int a) {

return ++bins[a];

}

int main() {

int *bins = (int *) malloc(16 * sizeof(int));

srand(0);

for (int i = 0; i < 256; i++) {

int x = rand();

int res = bin_count(bins, x);

printf("Count val: %d\n", res);

}

return 0;

}

Example Program: Terminal Commands and output:

Simple Valgrind Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 Int
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Valgrind: Segmentation Fault Fixed

int bin_count (int *bins, int a) {

return ++bins[a % 16];

}

int main() {

int *bins = (int *) malloc(16 * sizeof(int));

srand(0);

for (int i = 0; i < 256; i++) {

int x = rand();

int res = bin_count(bins, x);

printf("Count val: %d\n", res);

}

free (bins);

return 0;

}
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HLS Procedure: Cosimulation

Intel® HLS 
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Quartus® Prime Compilation on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system
Int

el 
Prop

rie
tar

y

for
 LR

Z



#include "HLS/hls.h"
#include "assert.h"
#include "HLS/stdio.h"
#include "stdlib.h"

component int accelerate(int a, int b) {
return a+b;

}

int main() {
srand(0);
for (int i=0; i<10; ++i) {

int x=rand() % 10;
int y=rand() % 10;
int z=accelerate(x, y);
printf("%d + %d = %d\n", x, y, z);
assert(z == x + y);

}
return 0;

}

Example Component/Testbench Source

main() becomes testbench for 
component accelerate()

i++ -march=<fpga family> --component accelerate mysource.cpp

accelerate() becomes an FPGA 

component

– Use --component i++ argument or 
component attribute in source
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Translation from C function API to HDL module

All component functions are synthesized to HDL

▪ Each synthesized component is an independent HDL module

Component functions can be declared:

▪ Using component keyword in source

▪ Specifying “--component <component_name>” in the command-line
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Cosimulation

Combines x86 testbench with RTL simulation

HDL code for the component runs in an RTL Simulator

▪ Verilog

▪ RTL testbench automatically created from software

main() and everything else called from main runs on x86 as the testbench

Communication using SystemVerilog Direct Programming Interface (DPI)

▪ Allows C/C++ to interface SystemVerilog

▪ Inter-process communication (IPC) library used to pass testbench input data 
to RTL simulator, and returns the data back to the x86 testbench
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Cosimulation Verifying HLS IP

The Intel® HLS compiler automatically compiles and links C++ testbench with an 
instance of the component running in an RTL simulator

▪ To verify RTL behavior of IP, just run the executable generated by the HLS 
compiler targeting the FPGA architecture

– Any calls to the component function becomes calls the simulator through 
DPI

src.c

lib.h

i++ -march=<fpga family> src.c

a.exe|out

a.prj/verification/

Data

IP Function Call
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Default Simulation Behavior

Function calls to the simulator are sequential by default

#include "HLS/hls.h"
#include "stdio.h"

component int acc (int a, int b)
{

return a+b;
}

int main() {
int x1, x2, x3;
x1=acc(1, 2);
x2=acc(3, 4);
x3=acc(5, 6);
…
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Streaming Simulation Behavior

Use enqueue function calls to stream data into the component

#include "HLS/hls.h"
#include "stdio.h"

component int acc(int a, int b)

{
return a+b;

}

int main() {
int x1, x2, x3;

altera_hls_enqueue(&x1, &acc, 1, 2);
altera_hls_enqueue(&x2, &acc, 3, 4);

altera_hls_enqueue(&x3, &acc, 5, 6);
altera_hls_component_run_all(“acc”);

…
} Int
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Viewing Component Waveforms

▪ Compile design with i++ -ghdl flag

– Enable full visibility and logging of all HDL signals in simulation

▪ After cosimulation execution, waveform available at 
a.prj/verification/vsim.wlf

▪ Examine with the ModelSim GUI:

– vsim a.prj/verification/vsim.wlf
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Viewing Waveforms in Modelsim

Locate 
Component

Add Signals 
to Waveform
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Cosimulation Design Process

Compile and verify on 
x86

Iterate on the algorithm

Functional verification

Debugging using 
gdb/valgrind

Compile for FPGA

Examine the FPGA reports

Iterate on the architecture 
of the design

Use the reports as feedback 
on what the bottlenecks are

Simulate using 
Modelsim

Test functionality

Test latency and 
performance (through 

verification stats)
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Main HTML Report

The Intel® HLS Compiler automatically generates HTML report that analyzes 
various aspects of your function including area, loop structure, memory usage, 
and system data flow

▪ Located at a.prj/reports/report.html

Many Types of Reports
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HTML Report: Summary

Overall compile statics

▪ FPGA Resource Utilization

▪ Compile Warnings

▪ Quartus® fitter results

– Available after Quartus compilation

▪ etc.
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HTML Report: Loops

Serial loop execution hinders function dataflow circuit performance

▪ Use Loop Analysis report to see if and how each loop is optimized

– Helps identify component pipeline bottlenecks
Loop

Unrolled?

Pipelined?

Automatically unrolled?
Fully unrolled?

Partially unrolled?
#pragma unroll implemented?

What’s the Initiation Interval (launch 
frequency of new iteration)?

Are there dependency preventing optimal II?

Yes

Yes

No

No

Reason for serial execution?
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Loop Unrolling

Loop unrolling: Replicate hardware to execute multiple loop iterations at once

▪ Simple loops unrolled by the compiler automatically

▪ User may use #pragma unroll to control loop unrolling

▪ Loop must not have dependency from iteration to iteration

For Begin

For End

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Iteration 1              2               3             4               5         …

…

…

Loop 
UnrollInt
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Loop Pipelining

Loop pipelining: Launch loop iterations as soon as dependency is resolved

▪ Initiation interval(II): launch frequency (in cycles) of a new loop iteration

– II=1 is optimally pipelined 

– No dependency or dependencies can be resolved in 1 cycle

For Begin

For End

Op 2

Op 3

Op 1

Op 2

Op 3

Op 1

i0

i1

i2

i2i2i3

S
e

ri
al

 E
xe

cu
ti

o
n

 o
f 

Lo
o

p
 I

te
ra

ti
o

n
s

P
ip

e
lin

e
d

 E
xe

cu
tio

n
 o

f 
Lo

o
p

 Ite
ratio

n
s
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HTML Report: Loop Analysis

Loop analysis shows how loops are implemented

– Ability to correlate with source code

Compiler-added loop, not in the code, 
implicit infinitely loop allowing the 
component to run continuously in 
pipelined fashion

Pipelined loop, II=1

Pipelined loop, II=2 due to memory dependency

Fully unrolled loop, due to user #pragma 
unrollInt
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HTML Report: Area Analysis

View detailed estimated resource consumption by system or source line

▪ Analyze data control overhead

▪ View memory implementation

▪ Shows resource usage

– ALUTs

– FFs

– RAMs

– DSPs

▪ Identifies inefficient uses
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HTML Report: Component Viewer

Displays abstracted netlist of the HW implementation

▪ View data flow pipeline

– See loads and stores

– Interfaces including stream reads and writes

– Memory structure

– Loop structure

– Possible performance bottlenecks

– Unpipelined loops are colored light red

– Stallable points are red
Mouse over node to see tooltip and 
details.
Correlates with source code.
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HTML Report: Memory Viewer

Displays local memory 
implementation and accesses

▪ Visualize memory architecture

– Banks, widths, replication, 
etc

▪ Visualize load-store units (LSUs)

– Stall-free?

– Arbitration

– Red indicates stallable
Mouse over node to see tooltip and 
details.
Correlates with source code.
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HTML Report: Verification Statistics

Reports execution statics from testbench execution, available after component 
is simulated (testbench executable ran)

▪ Number and type of component invocation

▪ Latency of component

▪ Dynamic Initiation interval of Component

▪ Data rates of streams

Measurements based on 
latest execution of 
testbench
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HLS Procedure: Integration

Intel® HLS 
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Quartus® Prime Compilation on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system
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Quartus® Generated QoR Metrics for IP

Use Intel® Quartus® Prime software to generate quality-of-result reports

▪ i++ creates the Quartus project in a.prj/quartus

▪ To generate QoR data (final resource utilization, fmax)

– Run quartus_sh --flow compile quartus_compile

– Or use i++ --quartus-compile option

▪ Report part of the HTML report

– a.prj/reports/report.html

– Summary pageInt
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Intel® Quartus® Software Integration

a.prj/components directory contains all the files to integrate

▪ One subdirectory for each component

– Portable, can be moved to a different location if desire

2 use scenarios

1. Instantiate in HDL

2. Adding IP to a Platform Designer system
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HDL Instantiation

Add Components to Intel® Quartus Project

▪ <component>.qsys to Standard Edition

▪ <component>.ip to Pro Edition

Instantiate component module in your design

▪ Use template

a.prj/components/<component>/<component>_inst.vInt
el 
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Platform Designer System Integration Tool
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Accelerate 
development

HDL

IP 1
Custom 1

IP 2
IP 3
Custom 2

Connect custom IP 
and systems

Simplify integration

Catalog of
available IP

 Interface protocols
 Memory
 DSP
 Embedded
 Bridges
 PLL
 Custom Components
 Custom Systems

Automate integration tasksInt
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Platform Designer Integration

Platform Designer component generated for each component: 

▪ For PD Standard – a.prj/components/<component>/<component>.qsys

▪ For Platform Designer – a.prj/components/<component>/<component>.ip

In Platform Designer, instantiate component from the IP Catalog in the HLSproject 
directory

▪ Add IP directory to IP Catalog Search Locations

– May use a.prj/components/**/*

▪ Can be stitched with other user IP or Intel® Quartus® IP with compatible interfaces

See tutorials under tutorials/usability
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Platform Designer HLS Component Example

Example

▪ Cascaded low-pass filter 
and high-pass filter

HLS Components
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HLS-Backed Components

▪ Generic component can be used in place of actual IP core

▪ Choose Implementation Type: HLS

• Specify HLS source files
• Compile Component
• Run Cosim
• Display HTML reportInt
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Lab 2
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OpenCL
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Intel FPGA SDK for OpenCL™ Flow
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A system level view:

Kernel compiler:

▪ Optimized pipelines from C/C++

Board support package: (created by hardware developer)

▪ Timing closure, pinouts, periphery planning – we’ve got it covered

System integrator: (Quartus runs behind the scenes)

▪ Optimized I/O interconnects

foo.cl

Compiler

Board Support Package

HDL IP Core

System 

Integrator

FPGA in a System

OpenCL 
Host 

Program
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OpenCL
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Hardware Agnostic Compute Language

Invented by Apple

▪ 2008 Specification donated to Khronos Group

▪ Now managed by Intel

OpenCL C and C++

What does OpenCL™ give us?

▪ Industry standard programming model

▪ Functional portability across platforms

▪ Well thought out specification

Host Accelerator

C/C++ API
OpenCL C
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OpenCL

Platform
Model

111

Heterogeneous Platform Model

Host

Example

Platform
x86

PCIe

Device Device
Host Memory

Global Memory
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OpenCL Use Model: Abstracting the FPGA away

112

Host Code

main() {
read_data( … );

manipulate( … );
clEnqueueWriteBuffer( … );

clEnqueueNDRange(…,sum,…);
clEnqueueReadBuffer( … );

display_result( … );
}

Standard

gcc Compiler

EXE

Host
Accelerator

Altera Offline

Compiler

AOCX

__kernel void sum
(__global float *a,

__global float *b,
__global float *y)

{
int gid = get_global_id(0);

y[gid] = a[gid] + b[gid];
}

Verilog

Quartus  Prime

OpenCL Accelerator Code
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OpenCL Host Program
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Pure software written in standard C/C++ languages

Communicates with the accelerator devices via an API which abstracts the 
communication between the host processor and the kernels

main()
{

read_data_from_file( … );
manipulate_data( … );

clEnqueueWriteBuffer( … );
clEnqueueNDRange(…, sum, …);
clEnqueueReadBuffer( … );

display_result ( … );
}

Copy data from Host to 
FPGA

Tell the FPGA to run a 
particular kernel

Copy data from FPGA to 
Host Int
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Kernel: Data-parallel function

▪ Defines many parallel threads

▪ Each thread has an identifier specified by 
“get_global_id”

▪ Contains keyword extensions to specify 
parallelism and memory hierarchy

Executed by an OpenCL device

▪ CPU, GPU, FPGA

Code portable NOT performance 
portable

▪ Between FPGAs it is!
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OpenCL Kernels
__kernel void sum(

__global float *a,
__global float *b,
__global float *answer)

{
int xid = get_global_id(0);
result[xid] = a[xid] + b[xid];

}

float *a =

float *b =

float *result =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum( … );
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Software Engineer’s View of an OpenCL System

115

Device contains compute engines that run the kernel

Host talks to global memory through OpenCL routines

Global memory is large, fast, and likes to burst

Local memory is small, fast, and supports random access

Dataflow Processor

Global Memory (deep, fast, bursting)

Compute Engines

Local memory (shallow, fast, random)

Host
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FPGA

FPGA OpenCL Architecture

Modest external memory bandwidth

Extremely high internal memory bandwidth

Highly customizable compute cores
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Kernel 
Pipeline

Kernel 
Pipeline

Kernel 
Pipeline

PCIe

D
D

R
*

Intel® Xeon® 
Processor /

Host Processor

External
Memory Controller

& PHY

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

Global Memory Interconnect

Local Memory Interconnect

External
Memory Controller

& PHY
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Network Enabled High Performance Computing (HPC)

Requirement
Low Latency Compute Power/

Memory Bandwidth

Architecture

Global Memory DDR and QDRII+ Large amount of DDR

IO Channels 2x10GbE (MAC/UOE) None (Minimize IP overhead)

Start with a Reference Platform (1/2)

OpenCL API

HAL

UMD

KMD

DDR3 DDR3

DMA

PCIe

(OpenCL Kernels)

OpenCL API

HAL

UMD

KMD
(OpenCL Kernels)

DDR3 DDR3

DMA

PCIe

CPLD 
Bridge

1
0
G

 

U
D

P

1
0
G

 

U
D

P

Stratix V FPGA
Stratix V FPGACPLD FLASH
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Start with a Reference Platform (2/2)
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Host and accelerator in same package: SoC

FPGA

P
ro

c
e

s
s
o

r

OpenCL 
Kernels

Global

DDR

FPGA 
Memory

Scratch

DDR

DVI

DVO

Camera

Monitor

$99 $175 $250 >$1000
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Development Flow using SDK
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Modify kernel.cl

x86 Emulator (sec)

Optimization Report (sec)

Profiler (hours)

Functional Bugs?

Memory Dependencies?

Hardware 
performance Not 

met?

DONE!Int
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Compiling Kernel

120

Run the Altera Offline Compiler in command prompt

▪ aoc --board <board> <Kernel.cl>

▪ Run aoc --list-boards to see all available boards

AOC performs system integration to generate the kernel hardware system and the 
Quartus Prime software to compile the design

/mydesigns/matrixMult$ aoc matrixMul.cl
aoc: Selected target board bittware_s5pciehq

+--------------------------------------------------------------------+
; Estimated Resource Usage Summary                                   ;

+----------------------------------------+---------------------------+
; Resource                               + Usage                     ;
+----------------------------------------+---------------------------+

; Logic utilization                      ;   52%                     ;
; Dedicated logic registers              ;   23%                     ;
; Memory blocks                          ;   31%                     ;

; DSP blocks                             ;   54%                     ;
+----------------------------------------+---------------------------;
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Executing the kernel: clCreateProgramWithBinary

host.c

const char**
const char**
const char**

fp = fopen(“file.aocx","rb");
fseek(fp,0,SEEK_END);
lengths[0] = ftell(fp);

binaries[0] = (unsigned char*)malloc(sizeof(unsigned char)*lengths[0]);
rewind(fp);
fread(binaries[0],lengths[0],1,fp);
fclose(fp);

clCreateProgramWithBinary

cl_program

clBuildProgram

Program (exe)

Program (exe)

cl_program
Kernel (src)

Kernel (src)

exe

exe

clCreateKernel

cl_kernel

clEnqueueNDRangeKernel

clGetPlatforms

clGetDevices

OpenCL.h

API

cl_context

clCreateContext

cl_platform

cl_device

cl_command
_queue

clCreateCommandQueue

exe

Offline Compiler

.cl

kernel

.aocx

CL File

 OpenCL “Program”
 BitstreamInt
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Development Flow using SDK
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Modify kernel.cl

x86 Emulator (sec)

Optimization Report (sec)

Profiler (hours)

Functional Bugs?

Memory Dependencies?

Hardware 
performance Not 

met?
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Emulator – The Flow

123

Generate emulation aocx

Run host program with emulator aocx

▪ Host compile does not change

▪ set CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<number_of_boards> 

kernel void convolution(

global int * filter_coef,
global int * input_image,

global int * output_image
) {

int grid = get_group_id(0);
…

}

conv.cl aoc -march=emulator conv.cl

aocx

conv.aocx

c:\opencl>aoc –march=emulator conv.cl

c:\opencl>dir

host.exe  conv.cl conv.aocx

c:\opencl>host.exe

running…

done!

aoc

Int
el 

Prop
rie

tar
y

for
 LR

Z



Printf
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Can use printf within kernel on FPGA

▪ Adds some memory traffic overhead

In the emulator, printf runs on IA

▪ Useful for fast debug iterations
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Development Flow using SDK
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Modify kernel.cl

x86 Emulator (sec)

Optimization Report (sec)

Profiler (hours)

Functional Bugs?

Memory Dependencies?

Hardware 
performance Not 

met?

DONE!Int
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Optimization Report

126

Intel FPGA SDK for OpenCL provides a static report to identify performance 
bottlenecks when writing single-threaded kernels

Use –c to stop after generating the reports

▪ aoc -c <kernel.cl>

▪ Report is in: <kernel>/reports/report.html
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Optimization Report Example
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Development Flow using SDK
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Modify kernel.cl

x86 Emulator (sec)

Optimization Report (sec)

Profiler (hours)

Functional Bugs?

Memory Dependencies?

Hardware 
performance Not 

met?
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Profiler – the flow
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1. Generate program bitstream with profiling enabled

2. Run host program with instrumented aocx

3. Run the profiler GUI: 
aocl report <aocx> <profile.mon>

kernel void convolution(
global int * filter_coef,
global int * input_image,

global int * output_image
) {

int grid = get_group_id(0);
}

conv.cl aoc --profile conv.cl

aocx

conv.aocx

c:\opencl>dir

host.exe  conv.aocx

c:\opencl>host.exe

running…

done!

c:\opencl>dir

host.exe  conv.aocx profile.mon

aoc
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Dynamic Profiler
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Intel FPGA SDK for OpenCL enables users to get runtime information about their 
kernel performance 

Bottlenecks, bandwidth, saturation, pipeline occupancy

Execution TimesPerformance Stats
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Execution of Threads on FPGA – Naïve Approach

132

Thread execution can be executed on replicated pipelines in the FPGA

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}
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Execution of Threads on FPGA – Naïve Approach

133

Thread execution can be executed on replicated pipelines in the FPGA

t0 t1

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}

t2
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Execution of Threads on FPGA – Naïve Approach

134

Thread execution can be executed on replicated pipelines in the FPGA

– Throughput = 1 thread per cycle

– Area inefficient

t0 t1 t2

Parallel Threads

t3 t4 t5

C
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y
cl

e
s
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Execution of Threads on FPGA

135

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined implementation of kernel

– On each clock cycle, we attempt to send in new thread

t0t1t2

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}
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Execution of Threads on FPGA

136

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined implementation of kernel

– On each clock cycle, we attempt to send in new thread

t1t2

t0
kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}
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Execution of Threads on FPGA

137

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined implementation of kernel

– On each clock cycle, we attempt to send in new thread

t2

t1

t0

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}
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Execution of Threads on FPGA

138

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined implementation of kernel

– On each clock cycle, we attempt to send in new thread

t2

t1

t0

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}
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Execution of Threads on FPGA

139

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined implementation of kernel

– On each clock cycle, we attempt to send in new thread

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}

t2

t1

t0
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Execution of Threads on FPGA

140

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined implementation of kernel

– On each clock cycle, we attempt to send in new thread

kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}

t2

t1
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Execution of Threads on FPGA

141

Better method involves taking advantage of pipeline parallelism

– Throughput = 1 thread per cycle

t0

t1
t2

t3

t4

t5

C
lo
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kernel void

add( global int* Mem ) { 

...

Mem[100] += 42*Mem[101];

}

t2
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OpenCL on Intel FPGAs

143

Main assumptions made in previous OpenCL programming model

– Data level parallelism exists in the kernel program

Not all applications well suited for this assumption

– Some applications do not map well to data-parallel paradigms

These are the only workloads that GPUs support
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Data-Parallel Execution

144

On the FPGA, we use the idea of pipeline parallelism to achieve acceleration

Threads can execute in an embarrassingly parallel manner

kernel void
sum(global const float *a,

global const float *b,
global float *c)

{
int xid = get_global_id(0);
c[xid] = a[xid] + b[xid];

}

Load Load

Store

+
t0

t1

t2
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Data-Parallel Execution - Drawbacks

145

Difficult to express programs which have partial dependencies during execution

Would require complicated hardware and new language semantics to describe the 
desired behavior

Load Load

Store

+

kernel void
sum(global const float *a,

global const float *b,
global float *c)

{
int xid = get_global_id(0);
c[xid] = c[xid-1] + b[xid];

}

t0

t1

t2
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Solution: Tasks and Loop-Pipelining

146

Allow users to express programs as a single-thread

Pipeline parallelism still leveraged to efficiently execute loops in Intel’s FPGA 
OpenCL

▪ Parallel execution inferred
by compiler

▪ Loop Pipelining

Load

Store

+

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

}

i=0

i=1

i=2
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Loop Carried Dependencies

147

Loop-carried dependencies are dependencies where one iteration of the loop 
depends upon the results of another iteration of the loop

The variable state in iteration 1 depends on the value from iteration 0.  Similarly, 
iteration 2 depends on the value from iteration 1, etc.

kernel void state_machine(ulong n)
{
t_state_vector state = initial_state();
for (ulong i=0; i<n; i++) {
state = next_state( state );
unit y = process( state );
write_channel_altera(OUTPUT, y);

}
}
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Loop Carried Dependencies

148

To achieve acceleration, we can pipeline each iteration of a loop containing loop 
carried dependencies

– Analyze any dependencies between iterations

– Schedule these operations

– Launch the next iteration as soon as possible

At this point, we can launch 
the next iteration

kernel void state_machine(ulong n)
{
t_state_vector state = initial_state();
for (ulong i=0; i<n; i++) {
state = next_state( state );
unit y = process( state );
write_channel_altera(OUTPUT, y);

}
}
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Loop Pipelining Example
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No Loop Pipelining

i=0

i=1

i=2

With Loop Pipelining

C
lo

ck
 C

y
cl

e
s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

i=0

i=1
i=2

i=3

i=4

i=5

C
lo

ck
 C

y
cl

e
s

Looks almost like 
multi-threaded
execution!
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Parallel Threads vs. Loop Pipelining

150

So what’s the difference?

Loop Pipelining enables Pipeline Parallelism *AND* the communication of state 
information between iterations.

Parallel threads launch 1 
thread per clock cycle in 
pipelined fashion

Loop 
dependencies may 
not be resolved in 
1 clock cycle

Parallel Threads Loop Pipelining

t0

t1
t2

t3

t4

t5

i=0

i=1
i=2

i=3

i=4

i=5
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Image Filter 

151

Memory

F[3][3]

MemoryInt
el 
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Harnessing Dataflow to Reduce Memory Bandwidth
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Data Movement in GPUs

153

Data is moved from host over PCIexpress

Instructions and data is constantly sent back and forth between host cache and 
memory and GPU memory

▪ Requires buffering larger data sets before passing to GPU to be processed

▪ Significant latency penalty

▪ Requires high memory and host bandwidth 

▪ Requires sequential execution of kernels

Uncompress Image Filter Compress

Global

Memory

JPG RGB RGB* JPG*

Int
el 

Prop
rie

tar
y

for
 LR

Z



Altera_Channels Extension

154

An FPGA has programmable routing

Can’t we just send data across wires between kernels?

Advantages:

– Reduce memory bandwidth

– Lower latency through fine-grained synchronization between kernels

– Reduce complexity (wires are trivial compared to memory access)
o Lower cost, lower area, higher performances

– Enable modular dataflow design through small kernels exchanging data

– Different workgroup sizes and degrees of parallelism in connected modules

Uncompress Image Filter Compress

Global

Memory

JPG RGB RGB* JPG*
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Data Movement in FPGAs

FPGA allows for result reuse between instructions

Ingress/Egress to custom functions 100% flexible

Multiple memory banks of various types directly off FPGA

– Algorithms can be architected to minimize buffering to external memory or host memory

– Multiple optional memory banks can be used to allow simultaneous access

Kernel 2

Optional 

Memory

Kernel 1 Kernel3

FPGA
100G, 

PCIe,

SRIO, 

USB, 

etc…

100G, 

PCIe,

SRIO, 

USB, 

etc…

Optional

Memory
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Example: Multi-Stage Pipeline

156

An algorithm may be divided into multiple kernels:

– Modular design patterns

– Partition the algorithm into kernels 
with different sizes and dimensions

– Algorithm may naturally split into both 
single-threaded and NDRange kernels

Generating random data for 
a Monte Carlo simulation:

kernel void rng(int seed) {
int r = seed;
while(true) {
r = rand(r);
write_channel_altera(

RAND, r);
}

}

kernel void sim(...) {
int gid = get_global_id(0);
int rnd = read_channel_altera(

RAND);
out[gid] = do_sim(data, rnd);

}

Single-Threaded
NDRangeInt
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FPGA

Kernel

157

Traditional Data Movement Without Channels

PCIe

DMA DMA

Memory

Controller

HOST

DDR

Kernel

System
Memory
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Data Movement Using Channels

FPGA

Kernel

PCIe

DMA DMA

Memory

Controller

HOST

DDR

KernelFIFO

FIFO FIFO

Data In Data Out

System
Memory
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FPGA

159

Data Movement Using Host Channels

PCIe

DMA DMA

DDR

Memory

Controller

HOST
System
Memory

Kernel
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An Even Closer Look: FPGA Custom Architectures

160

Kernel Replication with num_compute_units using OpenCL

▪ Step #1: Design an efficient kernel

▪ Step #2: How can we scale it up?

PEkernel void PE() {

…
} Processing element 

(task-based kernel)
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Kernel Replication With Intel® FPGA SDK for OpenCL

161

Attribute to specify 1-dim or 2-dim array of 
kernels

Add API to identify kernel in the array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

__attribute__((num_compute_units(4,4)))
kernel void PE() {

row = get_compute_id(0);
col = get_compute_id(1);

…
}

Compile-time constants
allows compiler to specialize each PE

0 1 2 3

0

1

2

3

Processing elements 
(task-based kernels)
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Kernel Replication With Intel® FPGA SDK for OpenCL

162

Topology can be expressed with software constructs

▪ Channel connections specified through compute IDs

Channel/Pipe

PE

Kernel

channel float4 ch_PE_row[4][4];
channel float4 ch_PE_col[4][4];
channel float4 ch_PE_row_side[4];
channel float4 ch_PE_col_side[4];

__attribute__((num_compute_units(4,4)))
kernel void PE() {

row = get_compute_id(0);
col = get_compute_id(1);

float4 a,b;

if (row==0)
a = read_channel(ch_PE_col_side[col]);

else
a = read_channel(ch_PE_col[row-1][col]);

if (col==0)

…
}

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

0 1 2 3

0

1

2

3
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Matrix Multiply in OpenCL

163

Every PE / feeder is a kernel

Communication via OpenCL channels

Data-flow network model

Software control:

– Compute unit granularity

– Spatial Locality

– Interconnect topology

– Data movement

– Caching

– Banking

Performance: ~1 TFLOPs

PELoad B

PE

Drain interconnect

PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

feeder

feeder

feeder

feeder

Load A
feeder feeder feeder feeder

Drain C 

DDR4

feeder

Channels/Pipes

PE

Kernels
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Traditional CNN

164

Inew 𝑥 𝑦 = ෍

𝑥′=−1

1

෍

𝑦′=−1

1

Iold 𝑥 + 𝑥′ 𝑦 +𝑦′ × F 𝑥′ 𝑦′

Input Feature Map

(Set of 2D Images)

Filter

(3D Space)

Output Feature Map

Repeat for Multiple Filters to Create 

Multiple “Layers” of Output Feature Map
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CNN On FPGA

165

Want to minimize accessing external memory 

Want to keep resulting data between layers on the device and between 
computations

Want to leverage reuse of the hardware between computations 

Parallelism in the depth of the kernel 

window and across output features. 

Defer complex spatial math to random 

access memory.

Re-use hardware to compute multiple 

layers. Int
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Programmable Solutions Group Intel Confidential

Efficient Parallel Execution of Convolutions

▪ Parallel Convolutions
– Different filters of the same 

convolution layer processed in 
parallel in different processing 
elements (PEs)

▪ Vectored Operations
– Across the depth of feature 

map

▪ PE Array geometry can be 
customized to 
hyperparameters of given 
topology

FPGA

Double-Buffer

On-Chip RAM

Filters
(on-chip RAM)

F
ilt

e
r 

P
a
ra

lle
lis

m

(O
u
tp

u
t 

D
e
p
th

)

External DDR
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Programmable Solutions Group Intel Confidential 167

Design Exploration with Reduced Precision

Tradeoff between performance and accuracy

▪ Reduced precision allows more processing to be done in parallel

▪ Using smaller Floating Point format does not require retraining of network

▪ FP11 benefit over using INT8/9

– No need to retrain, better performance, less accuracy loss

FP11
FP10

FP9
FP8

Sign, 5-bit exponent, 10-bit mantissaFP16
Sign, 5-bit exponent, 5-bit mantissa

Sign, 5-bit exponent, 4-bit mantissa

Sign, 5-bit exponent, 3-bit mantissa

Sign, 5-bit exponent, 2-bit mantissa
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Programmable Solutions Group Intel Confidential

Lab 3
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DSP Builder Advanced Blockset

169
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▪ Matlab*

– High-level technical computing language
– Simple C like language

– Efficient with vectors and matrices

– Built-in mathematical functions

– Interactive environment for algorithm development
– 2D/3D graphing tool for data visualization

▪ Simulink*

– Hierarchical block diagram design & simulation tool

– Digital, analog/mixed signal & event driven

– Visualize signals 

– Integrated with MATLAB*

The Mathworks* Design Environment

Third Party Tools

Validated

Design

DSP/embedded

software tools
EDA tools

Hardware DSP, Control

Software

MATLAB*
Algorithm Development

and Analysis

170

SIMULINK*
Model-Based Design
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DSP Builder for Intel® FPGAs

Enables MathWorks* Simulink for Intel 
FPGA design

Device optimized Simulink* DSP 
Blockset

▪ Key Features:

– High-Level Design Exploration

– HW-in-the-Loop verification 

– IP Generation for Intel® Quartus 
SW / Platform DesignerInt

el 
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FPGA Design Flow - Traditional 

System Level Design
System Level Simulation

MATLAB*/Simulink* tools

Development 

HDL Coding
DSP IP

Precision*, Synplify* SW
Intel® Quartus® Prime SW

Implementation 

RTL Simulation
Hardware Verification

ModelSim* tools
Development Kits

Verification

System Engineer Hardware Engineer Verification Engineer

172
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FPGA Design Flow – DSP Builder for Intel® FPGAs

System Level Design
System Level Simulation

MATLAB*/Simulink* tools

Development 

HDL Coding
DSP IP

Precision*, Synplify* SW
Intel® Quartus® Prime SW

Implementation 

RTL Simulation
Hardware Verification

ModelSim* tools
Development Kits

Verification

Single Simulink* 

Representation

System-level

Verification
Synthesis, RTL Simulation

Algorithm-

level

Modeling

DSP Builder for Intel® FPGAs
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▪ IP (ready made) library

– Multi-rate, multi-channel filters

– Waveform synthesis (NCO/DDS/Mixers)

▪ Custom IP creation using primitive library

– Vectorization

– Zero latency

– Scheduled

– Aligned RTL generation

▪ System integration

– Platform Designer

– Processor Integration

▪ Automatic pipelining

▪ Automatic folding and resource sharing

▪ Multichannel designs with automatic 
vectorization

▪ Avalon® Memory-Mapped and Streaming 
Interfaces

▪ Design exploration across device families

▪ High-performance floating-point designs

▪ System-in-the-Loop accelerated 
simulation

Core Technologies

174
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Advanced Blockset - High Performance DSP IP

Over 150 device optimized DSP building blocks for Intel® FPGAs

▪ DSP building blocks

▪ Interfaces

▪ IP library blocks

▪ Primitives library blocks

– Math and Basic blocks

▪ Vector and Complex data typesInt
el 
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Build Custom FFTs from FFT Element Library

▪ Quickly build DSP designs using Complete FFT IP Functions from the FFT Library

▪ Build custom radix-22 FFTs using blocks from the FFT Element Library

FFT Element Library

Pruning and Twiddle

Bit vector combine

Butterfly Unit

Choose Bits

Dual Twiddle Memory

Edge Detect

Floating-Point Twiddle Gen

Crossover Switch

FFT IP Library

FFT

FFT_float

VFFT

VFFT_float

BitReverseCoreC

VariableBitReverse
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Filter and Waveform Synthesis Library

DSP Builder includes a comprehensive 
waveform IP library 

▪ Automatic resource sharing based on 
sample rate

▪ Support for super sample rate 
architectures

IP Implementations

FIR • Half-band
• L-Band
• Symmetric
• Decimating
• Fractional Rate
• Interpolation
• Single-Rate
• Super Sample Rate

CIC • Decimating
• Interpolating
• Super Sample Rate

Mixer • Complex
• Real
• Super Sample Rate

NCO • Super Sample Rate
• Multi-bank
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Library is Technology Independent

▪ Target device using a Device block

▪ Same model generates optimized RTL for each FPGA and speed grade

178
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Datapath Optimization for Performance

Automatic Timing Driven Synthesis of Model

– Based on specified device and clock frequency

A B C A B C

Before After

Optimization Description

Pipelining Inserts registers to improve Fmax

Algorithmic Retiming Moves registers to balance pipelining

Bit Growth Management Manages bit growth for fixed-point designs

Multi-rate 
Optimizations

Optimizes hardware based on sample rate

Retiming
Bit Growth
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Custom IP Generation

z-1

+

z-1

z-1

+

+

…

…

b0

b1

b6

b7

Textbook based 

design entry

180

Model Primitive Features

• Vector support

• Parameterizable

• Zero latency block

• ALU folding

What to do not when to do it
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ALU Design Folding Improves Area Efficiency

Optimizes hardware usage for low-
throughput designs

▪ Arranges one of each resources in a 
central arithmetic logic unit (ALU) 
fashion

▪ Folding factor = clock rate / data rate

▪ Performed when Folding factor > 500

TDMTDM

X

FSM

Clk

A

B

C

Multiply

Multiply

Multiply

C

A

B

C

A

B
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TDM Resource Sharing

+ F(.)

+
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TDM_CLK

Clock Rate = Sample Rate

Clock Rate = 2*Sample Rate
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TDM Design: Trade-Off Example

183

49-tap Symmetric Single Rate FIR Filter

Stratix 10

Resources

LUT4s Mults Memory bits TDM Factor

Clock Rate = 72 MHz

Sample Rate = 72 MSPS
898 26 0 1

Clock Rate = 144 MHz

Sample Rate = 72 MSPS
1082 14 0 2

Clock Rate = 288 MHz

Sample Rate = 72 MSPS
741 8 0 4

Clock Rate = 72 MHz

Sample Rate = 36 MSPS
1082 14 0 2Int
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2 Antenna DUC Reference Design

ChannelFIR:

ChanCount = 4 

Output Sample Rate = 11.2 MSPS

Output Period = 16 

Output Seq.=I1,I2,Q1,Q2,zeros(1,16-4)

Interpolate4FIR: 

ChanCount = 4 

Output Sample Rate = 89.6 MSPS

Output Period = 2

ChanWireCount = ceil(4/2) = 2

ChanCycleCount= ceil(4/2) = 2

Output Seq.= I1,  I2

Q1, Q2

NCO: 

ChanCount = 2 (complex channel) 

Sample Rate = 89.6 MSPS

Period = 2

Sine Seq.     = sinA1, sinA2

Cosine Seq. = cosA1,cosA2

ComplexMixer: 

ChanCount = 2 (complex channel) 

Sample Rate = 89.6 MSPS

Period = 2

I’ = I*cos – Q*sin

Q’ = I*sin + Q*cos

Output i Seq. = I1, I2

Output q Seq. = Q1,Q2 (Terminated)

data data

valid valid

channel channel

FIR

sin

valid valid

channel channel

NCO

cos

i

valid valid

channel channel
Complex

Mixer

i

q
data

valid

channel

FIR

Data(2)

valid

channel

FIR

sin

cos

Sync

De

interleaver

i1

i2

2 4
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Clock Rate = 179.2MHz

Interpolate2FIR:

Clock Rate = 179.2 MHz 

ChanCount = 4 

Output Sample Rate = 22.4 MSPS

Output Period = 8 

Output Seq.=I1,I2,Q1,Q2,zeros(1,8-4)

Reference Design Included with DSP Builder

Deinterleaver: 

Sample Rate = 89.6 MSPS

Period = 2

Input I Seq. = I1,I2

Antenna 1 Seq. = I1,-

Antenna 2 Seq. = I2,-

Demux
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data data

valid valid

channel channel

FIR

sin

valid valid

channel channel

NCO

cos

i

valid valid

channel channel
Complex

Mixer

i

q
data

valid

channel

FIR

Data(4)

valid

channel

FIR

sin

cos

Sync

De

interleaver

i1

i2

2 4
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Changing the Design without DSP Builder

▪ Tedious and time consuming

▪ Channel Count = 8, 16, 32

▪ Clock Rate = 2x, 4x

Specification: 

SampleRate = 11.2

ChanCount = 8 Int
el 
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Changing the Design with DSP Builder

▪ Modifications done in minutes

▪ Design still looks the same

Specification: 

SampleRate = 11.2

ChanCount = 8

data data

valid valid

channel channel

FIR

sin

valid valid

channel channel

NCO

cos

i

valid valid

channel channel
Complex

Mixer

i

q
data

valid

channel

FIR

Data(4)

valid

channel

FIR

sin

cos

Sync

De

interleaver

i1

i2

2 4

splitter
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Five Designs Iterations < 1 Hour

187

Arria® 10

6 channel 

Arria 10 

6 channel

Arria 10 

12 channel

Stratix® 10 

6 channel

Stratix 10

12 channel

Requested Clock 

(MHz) 250 450 450 450 450

Actual Fmax

(slow model, 85C) 351 458 458 524 484.5

Multiplier Count 

(18x18) 10 6 10 6 10

Logic Resources 

(registers) 686 465 818 1267 1863

Block Memory 

Resources (kbits) 0 0 0 0 25.8Int
el 
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Platform 

Designer

Project A

Generates Reusable IP for Platform Designer

▪ Platform Designer is the System Integration 
Environment for Intel® FPGAs

▪ DSP Builder designs fully compatible with 
Platform Designer

▪ Integrate with other FPGA IPs

– Processors

– State machines

– Streaming interfaces

▪ Design reuse fully supported

DSP Builder

IP Catalog

Project B

188
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Typical Design Flow

Identify system architecture, design filters and choose desired Fmax and device

Set the top level system parameters in the MATLAB® software using the ‘params’ 
file - number of channels, performance, etc.

Build the system using the Advanced Blockset tool

Simulate the design using Simulink® and ModelSim® tools

Target the right FPGA family and compile

As system design specs changes, edit the ‘params’ file and repeat
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Design Flow -Create Model

Create a new blank model 

Select New Model Wizard from DSP Builder menu

190
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Top Level Testbench

Top-level of a DSPB-AB design is a testbench

Must include Control and Signals blocks

Control Signals

191
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Design Flow - Synthesizable Model

Enter the design in the subsystem

Device block marks the top level of the FPGA
Int
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Design Flow – ModelIP Blocks

Filters Library
- Single rate, multi-rate, and 
fractional rate FIR filters
- Decimating and interpolating 
cascaded integrator comb (CIC) 
filters

Note: Supports super-sample rate (data 

rate > system clock freq) interpolation by 2 
filters.

Waveform Synthesis Library
- Real and complex mixer 
- Numerically controlled 
oscillator (NCO)

Note: The NCO block supports frequency 

hopping (each channel can hop to different 
frequency from a pool of frequencies) 
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Design Flow – ModelPrim Blocks

ChannelIn and ChannelOut
blocks to delineate the 
boundary of a synthesizable 
primitive subsystem

Add SynthesisInfo Block to 
control pipelining and 
latency and to view resource 
usage of the subsystem
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Design Flow – Parameterize the Design

C structure like template

Runs when model is opened or simulation is runInt
el 
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Design Flow – Processor Interface

Drop memory and 
registers in the design

ModelIPs have built in 
memory mapped 
interface to control 
registers, coefficient 
registers
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Design Flow - Running Simulink Simulation

Creates files in location specified by Control block

▪ VHDL Code

▪ Timing constraints file (.sdc)

▪ DSPB-AB subsystem Quartus® IP file
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Design Flow - Documentation Generation
Get accurate resource utilization of all modules right after 
simulation, without place & route
DSP Builder > Resource Usage

DSP Builder > View Address Map
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Design Verification

RTL Simulation

Run ModelSim block loads 
the design into the ModelSim
simulator
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Design Flow – System Integration

Add <subsystem>_hw.tcl directory 
to Qsys IP Search Path

Qsys-> Tools -> Options -> IP Search Path

Add subsystem from 
the Component pick 
list
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Gap: Creating Full-Stack Accelerated 
Applications on FPGA is 

Difficult and Time Consuming

Provides standard C API  to 
standardized FPGA interface mangaer

FPGA IO Interfaces

FPGA Interface Manager 
(Standard I/O Interfaces)

Using FPGAs Just Got Easier

202

OS Driver

Low-Level FPGA Management

Open Programmable 
Acceleration Engine (OPAE)

Prebuilt and provided 
for specific board

Libraries

Software Frameworks

SW Application
Application FPGA Accelerator

(Loadable Workload)

Increase 
Abstraction

Increase
Ease of Use

Orchestration / 
Rack Management 

Intel® FPGA Programmable 
Accelerator Card (PAC)

* Other names and brands may be claimed as the property of others.

Pre-built 
Accelerator 
Solutions

(ecosystem)

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Accelerator Functions
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Programmable Solutions Group

Intel® Hardware

Acceleration Environment
(Intel Acceleration Engine with OPAE Technology, FPGA Interface Manager (FIM)

Acceleration Libraries

User Applications

Industry Standard Software Frameworks

Rack-Level Solutions

Intel Developer Tools
(Intel Parallel Studio XE, Intel FPGA SDK for OpenCL™, Intel Quartus® Prime)

OS & Virtualization Environment

* Demonstrated at VMWorld Las Vegas - August 28-30, 2018

203

Acceleration Stack for Intel® Xeon® CPU with FPGAs
Comprehensive Architecture for Data Center Deployments

Faster Time to Revenue

▪ Fully validated Intel® board

▪ Standardized frameworks and high-level compilers

▪ Partner-developed workload accelerators

Simplified Management
▪ Supported in VMware vSphere* 6.7 Update 1*

▪ Rack management and orchestration framework integration

Broad Ecosystem Support
▪ Upstreaming FPGA drivers to Linux* kernel

▪ Qualified by industry-leading server OEMs

▪ Partnering with IP partners, OSVs, ISVs, 
SIs, and VARs

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
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End User
Developed  IP 

Acceleration Stack Provides FPGA Orchestration in Cloud/Data Center

Static/dynamic 

FPGA programming

Place

workload

FPGA

Storage Network

Orchestration Software (FPGA Enabled)

Intel 
Developed  IP 

3rd party
Developed  IP 

Compute

Resource Pool

Software

Defined

Infrastructure

Secure

Public and Private 

Cloud/Datacenter Users

IP Store

Launch workload

Workload

accelerators

Xeon VM 

IP

Virtualized

Workload N
Workload 2

Workload 1

Int
el 
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Server Virtualization for the Acceleration Stack 
with VMware

Arria 10 PAC

Accelerator

IP

Server

Intel 
Xeon

Application

Compute Solution Stack

Out-of-the-box support 
from VMWare for 

Intel Arria 10 PAC and 
Acceleration Stack in

upcoming vSphere 6.7 U1

Server virtualization enables 
customers to deploy 

FPGA workload acceleration 
with lower total 

cost of ownership

Intel Arria 10 Programmable
Acceleration Card

with Acceleration Stack Int
el 
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Migrating FPGA-Accelerated Workload with vMotion*

206

Server 1

CPU +  FPGA

Image inference 

workload

1. Run Application on 

Bare Metal

Server 1

VMware 

ESXi*

Virtual 

Machine

Image inference 

workload

2. Implement on 

ESXi* Hypervisor 

Server composition 

with Lenovo xClarity

Pod Manager* and 

VMware vSphere*

Server 1

VMware 

ESXi*

Virtual

Machine

Work

Load

Server 2

VMware 

ESXi*

3. PVRDMA# connects 

application to remote Intel® 

FPGA PAC / FPGA device

Server 1

VMware 

ESXi*

Server 2

VMware 

ESXi*

Virtual

Machine

Work

Load
vMotion

4. Use vMotion* to move 

application from one server 

to another

Continuous application 

acceleration during

vMotion – industry first 

demonstration

* Other names and brands may be claimed as the property of others.

# – Unoptimized, proof-of-concept 

code. Not part of a shipping product. 

See supplementary slide for system 

configuration details.
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Components of Acceleration Stack: Overview
Intel®

Xeon®

CPU
Application

Drivers

User, Intel, or 3rd-Party IP
Plugs into AFU Slot

(Tuning Expert)

PCIe* Drivers
Provided by Intel

Open Programmable 
Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

Qualified and Validated for 
volume deployment
Provided by OEMs

Intel FPGA

FPGA Interface Manager
Provided by Intel

Acceleration 

Functional Unit 

(AFU)

Signaling and 

Management

PCIe

FPGA

Programmable 
Acceleration

Card
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PAC with Intel® Arria® 10 FPGA
• Low-profile (half-length, half height) PCIe* slot card 
• 168 mm × 56 mm
• Maximum component height: 14.47 mm 

• PCIe × 16 mechanical

• Powered from PCIe+12V rail
• 70 W total board power
• 45 W FPGA power

• 2 – Banks of DDR4-2133 SDRAM, 4 GB each
• 64 bit data, 8 bit ECC
• Total 8 GB

• USB 2.0 port for 
board firmware 
update and FIM 

image recovery

• Board Management Controller (BMC)
• Server class monitor system
• Accessed via USB or PCIe

• 128 MB Flash
• For storage of FPGA 

configuration

• QSFP+ slot 
accepts 
pluggable 

optical modules

PCIe x8 Gen3 
connectivity to 
Intel® Xeon® host

208
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PAC with Intel® Stratix® 10 FPGA

¾, length, full height, dual slot PCIe* slot card 

• Powered from PCIe+12V rail
• 225 W total board power

• 4 – Banks of DDR4-2400 SDRAM, 8 GB each
• 64 bit data, 8 bit ECC
• Total 32 GB

USB 2.0 port for 
board firmware 
update and FIM 

image recovery

• Board Management Controller (BMC)
• Server class monitor system
• Accessed via USB or PCIe

• 128 MB Flash
• For storage of FPGA configuration
• For BMC firmware

• 2x QSFP+ slot accept 
pluggable optical 
modules

• Up to 100GbE each

PCIe Gen3 x16 connectivity to 
Intel® Xeon® host

209
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Object model

210

Nearly Transparent Software Application Use Model

Discover / 
search resource

Acquire 
ownership of 

resource

Map AFU 
registers to user 

space

Allocate / define 
shared memory 

space

Start / stop 
computation on 
AFU and wait 

for result

Deallocate 
shared memory

Relinquish 
ownershipReconfigure 

AFU

Properties  
Object

Token
Object

Handle
Object

Unmap MMIOInt
el 
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<empty>
objtype: FPGA_ACCELERATOR

guid: 0xabcdef

211

Enumeration and Discovery

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_properties prop;

fpga_token token;

fpga_guid myguid;   /* 0xabcdef */

fpgaGetProperties(NULL, &prop);

fpgaPropertiesSetObjectType(prop, FPGA_ACCELERATOR);

fpgaPropertiesSetGUID(prop, myguid);

fpgaEnumerate(&prop, 1, &token, 1, &n);

fpgaDestroyProperties(&prop);

link
fpga_properties prop fpga_token token

<internal reference to accelerator 

resource>

fpgaEnumerate()
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fpga_handle handle

<internal reference to accelerator 

resource>

fpgaOpen()

212

Acquire and Release Accelerator Resource

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_token token;

// ... enumeration ...

fpga_handle handle;

fpgaOpen(token, &handle, 0);

.

.

.

fpgaClose(handle);

link
fpga_token token

<internal reference to accelerator 

resource>
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SW application process
address space

(virtual)

213

Memory-Mapped I/O

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

control register

control register

control register

TEXT

DATA

BSS

SW application

fpgaMapMMIO(…, &mmio_ptr)

control registercontrol register

control register

control register
fpgaReadMMIO()

fpgaWriteMMIO()

mmio_ptr

libopae-c
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Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

Storage

GBS file
xyz.gbs

SW application
(with admin privilege)

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5

fpgaReconfigureSlot(…, buf, 

len, 0)

load

GBS metadata
interface_id

afu_id

…

libopae-c

Partial configuration
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Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

fpga_handle  handle;          /* handle to device */

FILE        *gbs_file;

void        *gbs_ptr;

size_t       gbs_size;

/* Read bitstream file */

gbs_ptr = malloc(gbs_size);

fread(gbs_ptr, 1, gbs_len, gbs_file);

/* Program GBS to FPGA */

fpgaReconfigureSlot(handle, 0, gbs_ptr, gbs_size, 0);

/* ... */

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5
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Where to Get AFU’s for the FPGA

Accelerator
Functional
Unit (AFU)

Self-Developed Externally-Sourced

VHDL or Verilog
C/C++ Programming 

Language Ecosystem Partner

Performance OptimizedHigher Productivity Contracted EngagementIntel® Reference Designs

Intel® HLS Compiler

Intel® FPGA SDK for 

OpenCL™

Int
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IP and solutions Developer Community Universities
Portfolio of Accelerator 
Solutions developed by Intel 
and third-party technologists 
to expedite application 
development and deployment

Enabling software developers access 
via:
• Intel Builder programs
• AI Academy
• Intel Developer Zone (IDZ)
• Rocketboards.org

Reaching over 200,000 
students per year with 
FPGA publications, 
workshops and hands-on 
research labs

Committed to Open 
Source vision

ISV Partners
Expanding the reach for 
system vendors with 
platforms and ready-to-
use application workloads. 

Growing the Xeon+FPGA Ecosystem
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Growing List of Accelerator Solution Partners

Easing Development and Data Center Deployment of Intel FPGAs  For Workload 
Optimization 

Data Analytics

Finance

Genomics

AI

Media Transcoding

Cyber Security

Int
el 
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Intel PAC Top Solutions for Data Center Acceleration

Cassandra

96% latency 
reduction

PostgreSQL

½ TCO

Genomics
GATK

2.5X 
performance

JPEG2Lepton
JPEG2Webp

3-4X 
performance

Big Data 
Streaming 
Analytics

5X 
performance

Financial 
Black Scholes

8X 
performance

Network 
Security/

Monitoring

3x 
performance
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Customer Application: Big Data Applications running on 
Spark/Kafka Platforms

Current solution: Run Spark/SQL on a cluster of CPUs

Challenge: For many applications in the 
FinServ/Genomics/Intelligence Agencies/etc. Spark 
performance does not meet customers SLA 
requirements, especially for delay sensitive streaming 
workloads

Solution 
Value 

Proposition
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Customer Application: Risk Management 
acceleration framework (financial back-testing)

Current solution: Deploy a cluster of CPUs or 
GPUs with complex data access

Challenge: Traditional risk management 
methods are compute intensive, time 
consuming applications - > 10+ hours for 
financial back-testing

Solution 
Value 

Proposition
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Intel® HLS 
Compiler

222

Leverage FPGA Developers and Build Your Own

HDL Programming
OpenCL 

Programming

HDL

SW
Compiler

exe AFU
Image

Syn. 
PAR

OPAE
Software FIM

CPU FPGA

AFUApplicationAFU 
Simulation 

Environment 
(ASE)

C

ASE 

from Intel

OPAE 

from Intel
Intel® Quartus 

Prime Pro

Kernels

exe
AFU

Image

SW
Compiler

OpenCL 
Compiler

OpenCL 
Emulator

OPAE 
Software FIM

CPU FPGA

AFUApplication

Host
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Hardware System

223

AFU Overview Flow

AF Simulation Environment (ASE) enables seamless portability to real HW

▪ Allows fast verification of OPAE software together with AF RTL without HW

– SW Application loads ASE library and connects to RTL simulation

▪ For execution on HW, application loads Runtime library and RTL is compiled by Intel® 

Quartus into FPGA bitstream

AFU Simulation 

Environment

Xeon® FPGA

Simulation 

Compilation

AFU RTL

OPAE SW 

Application

Quartus® 

Compilation

Software 

Compilation

Test & 

Validate AFU

Generate the 

AF
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FPGA Components of Acceleration Stack

FPGA

Accelerator
Functional Unit (AFU)

DDR4**

PCIe*

Partial 

Reconfiguration 
(PR) Region

FPGA
Interface

Unit
(FIU)

Core Cache

Interface

(CCI)

*  Could be other interfaces in the future (e.g. UPI)

** Stratix 10 PAC Card

QSFP+
10Gb/40Gb

100Gb**

High Speed 

Serial 

Interface

(HSSI)

DDR4

Local 
Memory 

Interfaces

EMIF

EMIF

DDR4**

DDR4

EMIF**

EMIF**Int
el 
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AFU Development Flow Using OPAE SDK

AFU requests the ccip_std_afu top level interface classes

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/hello_afu.json

AFU RTL files implementing accelerated function

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/afu.sv

List all source files and platform configuration file

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/filelist.txt

In terminal window, enter these commands:

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

▪ afu_sim_setup--source hw/rtl/filelist.txt build_sim

Specify the Platform 

Configuration

Design the AFU

Specify Build 

Configuration

Generate the ASE 

Build Environment
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AFU Development Flow Using OPAE SDK

Compile AFU and platform simulation models and start simulation server process

▪ cd build_sim

▪ make

▪ make sim

In 2nd terminal window compile the host application and start the client process

▪ Export ASE_WORKDIR= $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/ 

build_sim/work

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/sw

▪ make clean

▪ make USE_ASE=1

▪ ./hello_afu

Specify the Platform 

Configuration

Design the AFU

Specify Build 

Configuration

Generate the ASE 

Build Environment

Verify AFU with ASE
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AFU Simulation Environment (ASE)

Hardware software co-simulation environment for the Intel Xeon FPGA development

Uses simulator Direct Programming Interface (DPI) for HW/SW connectivity

▪ Not cycle accurate (used for functional correctness)

▪ Converts SW API to CCI transactions

Provides transactional model for the Core Cache Interface (CCI-P) protocol and memory model for 

the FPGA-attached local memory

Validates compliance to 

▪ CCI-P protocol specification 

▪ Avalon® Memory Mapped (Avalon-MM) Interface Specification 

▪ Open Programmable Acceleration Engine 
Int
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Simulation Complete

AFU Simulator Window (server) Application SW Window (client)
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AFU Development Flow Using OPAE SDK

Generate the AF build environment:

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

▪ afu_synth_setup --source hw/rtl/filelist.txt build_synth

Generate the AF

▪ cd build_synth

▪ $OPAE_PLATFORM_ROOT/bin/run.sh

Specify the Platform 

Configuration

Design the AFU

Specify Build 

Configuration

Generate the ASE 

Build Environment

Verify AFU with ASE

Generate the AF 

Build Environment

Generate the AF

Int
el 

Prop
rie

tar
y

for
 LR

Z



Programmable Solutions Group 230

Using the Quartus GUI

Compiling the AFU uses a command line-driven PR compilation flow

▪ Builds PR region AF as a .gbs file to be loaded into OPAE hardware platform

Can use the Quartus GUI for the following types of work:

▪ Viewing compilation reports

▪ Interactive Timing Analysis

▪ Adding SignalTap instances and nodes
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Lab 3
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Getting Started with Acceleration

Buy Server 

w/ PAC

Download & Install 

Deployment Package 

of Acceleration Stack

Intel Website

Deployment 

Flow

Development 

Flow

Download & Install 

Developer Package 

of Acceleration Stack

Install 

Server OS

Server OEM 

(e.g. Dell)

OS Vendor Website

(e.g. CentOS, RHEL)

Download & 

Install Workload

Download & 

Install Simulator

Download &Install 

HLS or OpenCL
(Optional)

Write Host 

Application

Vendor Website

Create & 

Simulate 

WorkloadInt
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Getting Qualified Hardware is Step 1

Now:

PRIMERGY* 
RX2540 M4 And more coming …..

Now:  
Dell PowerEdge* 

R640, R740,

R740xd, R840,
R940xa

Available soon:

HPE ProLiant* 
DL360, DL380 Int
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Intel® Arria® 10 
Accelerator Card

Intel Stratix® 10  
Accelerator Card

Broadest Deployment at Lowest Power Highest Performance and Throughput

40G, PCIe* Gen3 x8 2x 100G, PCIe Gen3 x16

½ length, ½ height, single-slot PCIe card ¾ length, full height, dual-slot PCIe card

Lowest power 66W TDP Up to 225 W maximum

234

Programmable Acceleration Cards (PAC)
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* 01.org is an open source community site

• Acceleration Stack for Intel® Xeon® with FPGAs

• FPGA Acceleration Platforms
• Acceleration Solutions & Ecosystem
• Knowledge Center
• FPGA as a Service
• 01.org *

Intel® portal for all things related
to FPGA acceleration

25
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Follow-On Courses

Introduction to Cloud Computing

Introduction to High Performance Computing (HPC)

Introduction to Apache™ Hadoop

Introduction to Apache Spark™

Introduction to Kafka™

Introduction to Intel® FPGAs for Software Developers

Introduction to the Acceleration Stack for Intel® Xeon® CPU with FPGA

Application Development on the Acceleration Stack for Intel® Xeon® CPU with FPGAs

Building RTL Workloads for the Acceleration Stack for Intel® Xeon® CPU with FPGAs

OpenCL™ Development with the Acceleration Stack for Intel® Xeon® CPU with FPGA

Intel FPGA OpenCL Trainings and HLS Trainings

https://www.intel.com/content/www/us/en/programmable/

support/training/overview.html
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https://www.intel.com/content/www/us/en/programmable/support/training/course/ointrocloud.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/ointrohpc.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/ointroaphadp.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/ointroapspk.html
https://intel-my.sharepoint.com/personal/bill_jenkins_intel_com/Documents/Training/OLT/IntroSpark/Introduction to Kafka™
https://www.intel.com/content/www/us/en/programmable/support/training/course/oaccelintrofpga.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/oaccelintro.html
https://www.altera.com/support/training/course/oaccelsw.html
https://www.altera.com/support/training/course/oaccelrtl.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/oaccelopncl.html
https://www.altera.com/support/training/catalog.html?keywords=opencl
https://www.intel.com/content/www/us/en/programmable/support/training/catalog.html?keywords=HLS
https://marketing.altera.com/ts/training/Schedule/Forms/AllItems.aspx?InitialTabId=Ribbon.Document&VisibilityContext=WSSTabPersistencehttps://www.intel.com/content/www/us/en/programmable/support/training/overview.html
https://www.intel.com/content/www/us/en/programmable/support/training/overview.html
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Teaching Resources

University-focused content & curriculum

▪ Semester-long laboratory exercises for hands-on learning with solutions

▪ Tutorials and online workshops for self-study on key use cases

▪ Free library of IP common for student projects

▪ Example designs and sample projects

Easy-to-use, powerful software tools

▪ Quartus Prime CAD Environment

▪ ModelSim

▪ Intel FPGA Monitor Program for assembly & C development

▪ Intel® SDK for OpenCL™ Applications

▪ Intel OpenVINO™ toolkit (Visual Inference & Neural Network Optimization) 
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Teaching Resources (cont.)

Hardware designed for education

▪ 4 different FPGA kits with a variety of peripherals to match project needs

▪ Compact designs with robust shielding to provide longevity

▪ Reduced academic prices (range: $55-$275)

▪ Donations available in some circumstances

Support

▪ Total access to all developer resources

– Documentation

– Design examples

– Support forum

– Virtual or on-demand trainings
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DE-Series Development Boards

DE10-Standard
Cyclone V FPGA + SoC
$259

DE1-SOC
Cyclone V FPGA + SoC
$175

DE10-Nano
Cyclone V FPGA + SoC
$99

DE10-Lite
Max 10 FPGA
$55

Visit our website for full specs on these boards
See the full catalog of Intel FPGA boards & kits at www.terasic.com
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Beginner FPGA Dev Kit FPGA+SoC Academic Dev Kit
Full-Featured 

Academic Dev Kit

Dev Kit Intel DE10-Lite Intel DE10-Nano Intel DE1-SoC Intel DE10-Standard
Academic Price $55 $99 $175 $259

FPGA Max® 10 Cyclone® V Cyclone® V Cyclone® V
Logic Elements 50,000 110,000 85,000 110,000

ARM Cortex-A9 Dual-Core
System-on-Chip (SoC)  800 MHz 925 MHz 925 MHz

Memory 64 MB SDRAM 1 GB DDR3 SDRAM (HPS)
1 GB DDR3 SDRAM (HPS), 64 MB 

SDRAM (FPGA)
1 GB DDR3 SDRAM (HPS), 

64 MB SDRAM (FPGA)
PLLs 4 9 9 9

GPIO Count 500 469 469 469

7 Segment Displays 6  6 6

Switches 10 4 10 10
Buttons 2 2 4 4

LEDs 10 8 10 10
Clocks (2x) 50 MHz (3x) 50 MHz (4x) 50 MHz (4x) 50 MHz

GPIO Count 40-pin header (2x) 40-pin header (2x) 40-pin header 40-pin header
Video Out VGA 12-bit DAC HDMI VGA 24-bit DAC VGA 24-bit DAC

ADC Channels  8 8 + programmable voltage range 8 + programmable voltage range

Video In   NTSC, PAL, Multi-format NTSC, PAL, Multi-format

Audio In/Out  
Line In/Out, Microphone In (24 bit 

Audio CODEC)
Line In/Out, Microphone In 

(24 bit Audio CODEC)

Ethernet  Gigabit 10/100/1000 Ethernet (x1) 10/100/1000 Ethernet (x1)

USB OTG  1x USB OTG 2x USB 2.0 (Type A) 2x USB 2.0 (Type A)

LCD    128x64 backlit

Micro SD Card Support  ✓ ✓ ✓

Accelerometer ✓ ✓ ✓ ✓

PS/2 Mouse/Keyboard Port   ✓ ✓

Infrared   ✓ ✓

HSMC Header    ✓

Arduino Header ✓ ✓  
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Undergrad Lab Exercise Suites: Digital Logic

First digital hardware course in EE, CompEng or CS curriculum

Traditionally introduced sophomore year

Offered in VHDL or Verilog

Lab 1 - Switches, Lights, and Multiplexers Lab 7 - Finite State Machines

Lab 2 - Numbers and Displays Lab 8 - Memory Blocks

Lab 3 - Latches, Flip-flops, and Registers Lab 9 - A Simple Processor

Lab 4 - Counters Lab 10 - An Enhanced Processor

Lab 5 - Timers and Real-Time Clock Lab 11 - Implementing Algorithms in Hardware

Lab 6 - Adders, Subtractors, and Multipliers Lab 12 - Basic Digital Signal Processing
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Undergrad Lab Exercise Suites: Comp Organization

Typically second hardware course in EE, CompEng or CS curriculum

Introduction to microprocessors & assembly language program

Use ARM processor (on SOC kits) or NIOS II soft processor

Intel FPGA Monitor Program for compiling & debugging assembly & C code

Lab 1 - Using an ARM Cortex-A9 System or NIOS 
II System

Lab 5 - Using Interrupts with Assembly Code

Lab 2 - Using Logic Instructions with the ARM 
Processor

Lab 6 - Using C code with the ARM Processor

Lab 3 - Subroutines and Stacks Lab 7 - Using Interrupts with C code

Lab 4 - Input/Output in an Embedded System Lab 8 - Introduction to Graphics and Animation
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Intel FPGA MONITOR PROGRAM

Design environment used to compile, assemble, download & debug programs for ARM* 
Cortex* A9 processor in Intel’s Cyclone® V SoC FPGA devices

▪ Compile programs, specified in assembly language or C, and download the resulting machine code into 
the hardware system 

▪ Display the machine code stored in memory

▪ Run the ARM processor, either continuously or by single-stepping instructions

▪ Modify the contents of processor registers

▪ Modify the contents of memory, as well as memory-mapped registers in I/O devices

▪ Set breakpoints that stop the execution of a program at a specified address, or when certain conditions 
are met

Clean and simple UX

Tutorials at fpgauniversity.intel.com

Download independently or as part of University Program Installer (always free!)
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Undergrad Lab Exercise Suites: Embedded Systems

Typically third hardware course in EE, CompEng or CS curriculum

Combines hardware and software

Introduction to embedded Linux

Lab 1 - Getting Started with Linux Lab 5 - Using ASCII Graphics for Animation

Lab 2 - Developing Linux Programs that 
Communicate with the FPGA

Lab 6 - Introduction to Graphics and Animation

Lab 3 - Character Device Drivers Lab 7 - Using the ADXL345 Accelerometer

Lab 4 - Using Character Device Drivers
Lab 8 - Audio and an Introduction to Multithreaded 
Applications
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Lab Exercise Suites: Machine Learning Basics

Machine Learning on FPGAs

Senior or grad-level course in EE, CompEng, CS or data science curriculum

Teaches how to use the Intel® SDK for OpenCL™ Applications with FPGAs

Basic understanding of AI fundamentals recommended*

Lab 1 – Introduction to OpenCL Lab 5 – Neural Networks

Lab 2 – Image Processing Lab 6 – Using the Deep Learning Accelerator Library

Lab 3 – Lane Detection for Autonomous 
Driving

Lab 7 – Integration OpenCL Accelerators into 
Existing Software

Lab 4 – Linear Classifier for Handwritten Digits

*For foundational AI & Machine Learning curriculums, visit our partner program Intel AI Academy
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AI Academy Course Outline

Runs in Cloud on Arria 10 PAC card

Contains Slides, Lab exercises, and recordings for each class

https://software.intel.com/en-us/ai-academy/students/kits/dl-inference-fpga

Class 1 - Introduction to FPGAs for deep learning inferencing

Class 2 - Building a deep learning computer vision 
application w/ Acceleration

Lab 1 - Deploy an application on an Intel CPU 
using DL framework

Class 3 - Introduction to the OpenVINO™ toolkit
Lab 2 - Deploy an application on an Intel CPU 
using the OpenVINO toolkit

Class 4 - Introduction to the Deep Learning 
Accelerator Suite for Intel FPGAs

Lab 3 - Accelerate the application on an Intel FPGA

Class 5 - Introduction to the Acceleration Stack for Intel Xeon CPU with FPGAs
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In-Person Workshops

Throughout the year our technical outreach team visits universities and industry 
conferences around the world to conduct hands-on workshops that train professors and 
students on how to use Intel FPGAs for education and research.

Topics:

Intro to FPGAs and Quartus (4 hrs.) Embedded Design using Nios II (4 hrs.) 

High-Speed IO (4 hrs.) High-level Synthesis (4 hrs.)

Static Timing Analysis of Digital Circuits (4 hrs.) Machine Learning Acceleration (4 hrs.)

Simulation & Debug (4 hrs.) Modern Applications of FPGAs (1 hr.)

Embedded Linux (4 hrs.) How to Get Hired in the Tech Industry (1 hr.)

Contact us at FPGAUniversity@intel.com to inquire about scheduling a workshop
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Find Materials:      FPGAUniversity.INTEL.com
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Membership:            FPGAUniversity.INTEL.com
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Contact the University Team

Rebecca Nevin
Outreach Manager

Intel FPGA University Program
rebecca.l.nevin@intel.com

Larry Landis
Senior Manager

New User Experience Group
lawrence.landis@intel.comInt
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How do GPUs Deal With Fine Grained Data Sharing?

253

Some GPU techniques involve implicit SIMT synchronization

FPGA threads aren’t warp-locked, so implicit sync doesn’t make sense

▪ FPGAs do exactly what you ask them to do the way you code it
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An Even Closer Look: CUDA Execution Model

FERMI
GF100

SM

FERMI
GF104

SM

KEPLER
GK104
SMX

KEPLER
GK110
SMX

MAXWELL
GM107
SMM

Compute Capability 2.0 2.1 3.0 3.5 5.0

Shared Memory/SM 48KB 48KB 48KB 48KB 64KB

32-bit Registers/SM 32768 32768 64K 64K 64K

Max Threads/Thread Block 1024 1024 1024 1024 1024

Max Thread Blocks/SM 8 8 16 16 32

Max Threads/SM 1536 1536 2048 2048 2048

Threads/Warp 32 32 32 32 32

Max Warps/SM 48 48 64 64 64

Max Registers/Thread 63 63 63 255 255

Thread Block

Grid

Thread

CUDA

Scheduler

NDRange Data

An Even Closer Look: CUDA Execution Model

Warp
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FPGA Execution Model

Custom 

Instructions

Custom Instructions

Custom Instructions

Custom Instructions

Custom Instructions

Custom Instructions

Custom Instructions

Single Block of Data

Multiple Blocks of Data, with Multiple Instructions

All execute in parallel
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Divergent Control Flow on GPU

256

Single instruction

– Thread-locked work items running through different 
branches

– Serialized

– Major performance factor

GPU uses SIMT pipeline to save area on control logic

CPUs offer branch prediction

Branch

Path A

Path B

Branch

Path A

Path B

mask = (x[i]<y[i])
if mask foo()
mask = ~mask
if mask bar();

for (i=0;i<N;i++)
if (x[i]<y[i])
foo() else bar();
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Divergent Control Flow: Just Fine for FPGA

257

FPGA data path already has all operations in silicon

▪ Speculatively execute

Branch

Path A

Path B

Branch

Path A

Path B

Branch

Path A

Branch

Path APath B

Compress the 
schedule

Branch Path APath B
Overlap branch 

condition 
computation

Branch.  Path B.  Path A
Absorb into 
one block

No longer any control flow
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Memory Hierarchy

1. Register data: 
Registers in FPGA 
fabric

3. Local memory: 
On-chip RAMs

4. Global memory: 
Off-chip external 
memory

2. Private data: 
Registers in FPGA 
fabric
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External Memory Dynamic Coalescing

259

For CPU/GPU the cache and memory controller handle

For FPGA, we create dynamic coalescing hardware matched to specific memory characteristics connected to

– Re-order memory accesses at runtime to exploit data locality

– DDR is extremely inefficient at random access

– Access with row bursts whenever possible
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On-chip FPGA Memory

“Local” memory uses on-chip block RAM resources

– Very high bandwidth, 8TB/s,

– Random access in 2 cycles

– Limited capacity

The memory system is customized to your application

– Huge value proposition over fixed-architecture accelerators

Banking configuration (number of banks, width), and interconnect all customized for your kernel

– Automatically optimized to eliminate or minimize access contention

Key idea: Let the compiler minimize bank contention

– If your code is optimized for another architecture (e.g. array[tid + 1] to avoid bank collisions),  undo the 
fixed-architecture workarounds

– Can prevent optimal structure from being inferred
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FPGA Local Memory

261

Split memory into logical banks

▪ An N-bank configuration can handle N-requests per clock cycle as long as each request 
addresses a different bank

▪ Manipulate memory addresses so that parallel threads likely to access different banks –
reduce collisions

M20K M20K M20K M20K M20K M20K M20K M20K

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7

Arbitration Network

Load/Stor

e

Load/Stor

e

Load/Stor

e

Load/Stor

e

Int
el 

Prop
rie

tar
y

for
 LR

Z



Local Memory Attributes

262

Annotations added to local memory variables to improve throughput or reduce 
area

Banking control:

– numbanks

– bankwidth

Port control:

– numreadports/numwriteports

– singlepump/doublepump
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numbanks(N) and bankwidth(N) memory attribute

263

What does it do?

Specifies the banking geometry for your local memory system

A bank = single independent memory system

What is it for?

Can be used to optimize LSU-to-memory connectivity in an effort to boost 
performance

Banking should be set up to maximize “stall-free” accessesInt
el 
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numbanks(N) and bankwidth(N) memory attribute

264

local int lmem[8][4];

#pragma unroll

for(int i = 0; i<4; i+=2)

{

lmem[i][x] = …; 

}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

5,0 5,1 5,2 5,3

6,0 6,1 6,2 6,3

7,0 7,1 7,2 7,3

local int lmem[8][4]

Not stall-free

LSU1

LSU2

arbitration
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numbanks(N) and bankwidth(N) memory attribute

265

local int lmem[8][4]

Stall-free

LSU1

LSU2

local int

__attribute__((numbanks(8),

bankwidth(16))) 

lmem[8][4];

#pragma unroll

for(int i = 0; i<4; i+=2)

{

lmem[i][x & 0x3] = …; 

}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

5,0 5,1 5,2 5,3

6,0 6,1 6,2 6,3

7,0 7,1 7,2 7,3

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7
Mask access to tell compiler 
no out-of-bounds accesses
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numreadports/numwriteports and
singlepump/doublepump memory attribute

266

What does it do?

num<read/write>ports: specifies the number of read/write ports in the local 
memory system

<single/double>pump: specifies the pumping of the local memory system (1x/2x 
clock)

What is it for?

Controls the number of memory blocks used to implement the local memory 
system Int
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numreadports/numwriteports and
singlepump/doublepump memory attribute

267

local int

__attribute__((singlepump,

numreadports(3),

numwriteports(1))))

lmem[16];

M20k

M20k

lmem

read_0

read_1

write

M20k

read_2

local int

__attribute__((doublepump,

numreadports(3),

numwriteports(1))))

lmem[16];
M20k

lmem

read_0

read_1

write

read_2Int
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