
EAR user guide
EAS S.L.

Contents
1 EAR4.1 user guide 2

1.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Executing jobs with EAR 2

3 Use Cases 3
3.1 MPI applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Hybrid MPI +(OpenMP, CUDA, MKL) applications . . . . . . . 3
3.3 Python (not MPI) . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 MPI+PYTHON applications . . . . . . . . . . . . . . . . . . . . 3
3.5 OpenMP, CUDA, MKL (non-MPI) with EAR library . . . . . . . 3
3.6 Other application types or frameworks . . . . . . . . . . . . . . . 4

4 MPI + srun 4
4.1 EAR job submission flags . . . . . . . . . . . . . . . . . . . . . . 4
4.2 CPU frequency selection . . . . . . . . . . . . . . . . . . . . . . . 5

5 MPI + mpirun 5
5.1 Intel MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 OpenMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.3 MPI4PY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.4 Using additional MPI profiling libraries/tools . . . . . . . . . . . 6

1



2 EXECUTING JOBS WITH EAR

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.5.1 srun examples . . . . . . . . . . . . . . . . . . . . . . . . 6

5.6 sbatch + EAR library + srun . . . . . . . . . . . . . . . . . . . 7
5.7 EAR library + mpirun . . . . . . . . . . . . . . . . . . . . . . . . 7

5.7.1 Intel MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.7.2 OpenMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.8 erun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 EAR metrics 8

1 EAR4.1 user guide

Energy Aware Runtime (EAR) is a system software for energy management.
EAR offers energy and performance node monitoring, job accounting and en-
ergy optimization. EAR library is the component responsible for energy opti-
mization. EAR library is automatically loaded with MPI applications (Intel and
OpenMPI), OpenMP and CUDA applications. For OpenMP and CUDA appli-
cations, it is required the application uses dynamic symbols and are submitted
with srun.

Visit the complete EAR documentation from official Wiki for a complete de-
scription of EAR service including admin guide.

This user guide contains information on how to use the EAR library and how
to gather EAR collected metrics using EAR commands.

1.1 License

EAR is an open source software and it is licensed under both the BSD-3 license
for individual/non-commercial use and EPL-1.0 license for commercial use. Full
text of both licenses can be found in COPYING.BSD and COPYING.EPL files.

Contact: support@eas4dc.com

2 Executing jobs with EAR

EAR library is automatically loaded with some applications when EAR is en-
abled by default. Check with the ear-info application if EAR library is on/off
by default. If it’s off, use “–ear=on” to enable it or any other EAR flag. This
documentation applies to SLURM scheduler, for PBS contact with support@
eas4dc.com

www.eas4dc.com 2

https://gitlab.bsc.es/ear_team/ear/-/wikis/home
mailto:support@eas4dc.com
mailto:support@eas4dc.com
mailto:support@eas4dc.com


3 USE CASES

3 Use Cases

3.1 MPI applications

EAR library is automatically loaded with MPI applications when EAR is
enabled by defailt (check ear-info). EAR supports the utilization of both
mpirun/mpiexec and srun commands. See next sections for examples and more
details

3.2 Hybrid MPI +(OpenMP, CUDA, MKL) applications

EAR library automatically supports this use case. Check with the ear-info
application if EAR library is on/off by default. If it’s off, use “–ear=on” to
enable it. mpirun/mpiexec and srun are supported.

3.3 Python (not MPI)

EAR Version 4.1 automatically executes the EAR library with python applica-
tions, so no actions are needed. Check with the ear-info application if EAR
library is on/off by default. If it’s off, use “–ear=on” to enable it. Srun must
be used.

3.4 MPI+PYTHON applications

EAR library cannot detect automatically MPI symbols when python is used.
In that case, one environment variable to specify intel or “open mpi” must be
used.

export SLURM_EAR_LOAD_MPI_VERSION=intel or
export SLURM_EAR_LOAD_MPI_VERSION="open mpi"

Check with the ear-info application if EAR library is on/off by default. If it’s
off, use “–ear=on” to enable it. mpirun/mpiexec and srun are supported.

3.5 OpenMP, CUDA, MKL (non-MPI) with EAR library

To load the EAR library automatically with non MPI applications it is required
to execute the application with srun and to have compiled the application with
dynamic symbols. For example, for cuda application the --cudart=shared
option must be used.

The EAR library is automatically loaded for OpenMP, MKL and CUDA pro-
gramming models when symbols are dynamically detected.

www.eas4dc.com 3



3.6 Other application types or frameworks 4 MPI + SRUN

3.6 Other application types or frameworks

For other programming models or sequential applications not suported by de-
fault, EAR library can be forced to be loaded by setting the environment variable
SLURM_EAR_LOADER_APPLICATION defined with the application name.
Srun is required for a complete application monitoring.

export SLURM_EAR_LOADER_APPLICATION=myapp
srun myapp

4 MPI + srun

Running MPI applications with the EAR library is automatic for SLURM sys-
tems when using srun. All the jobs are monitored by EAR and the library is
loaded by default depending on the cluster configuration. To run a job with srun
and the EAR library there is no need to load the EAR module. Even though
it’s automatic, there are few ear flags than can be selected at job submission.
When using slurm commands for job submission both Intel and OpenMPI are
supported.

4.1 EAR job submission flags

The following EAR options can be specified when running srun and/or sbatch,
and are supported with srun/sbatch/salloc:

• --ear=on/off : Enables/disables EAR library loading with this job.
• --ear-user-db=file : Asks the EAR library to generate a set of CSV

files with EAR library metrics. One file per node is generated with the
average node metrics (node signature) and one file with multiple lines per
node is generated with runtime collected metrics (loops node signatures).

• --ear-verbose=value : Specifies the level of verbosity {value=[0…1]};
the default is 0. Verbose messages are placed by default in stderr. For
jobs with multiple nodes, this option can result in lots of messages
mixed in stderr. If the user wants to ask for EAR verbosity, the
SLURM_EARL_VERBOSE_PATH env var can be used. One file per
node will be generated with EAR messages. The env var must be set
with the path (folder name) where files will be generated. The folder is
automatically created.

For more information consult srun --help output or see configuration options
sections for more detailed description.

www.eas4dc.com 4



4.2 CPU frequency selection 5 MPI + MPIRUN

4.2 CPU frequency selection

The EAR configuration file supports the specification of EAR authorized users
who can ask for specific submission options. The more relevant are the possibil-
ity to ask for a speficic optimization policy and specific default CPU frequency.
To become an EAR priviled user contact with your sysdamin/helpdesk.

• The --ear-policy=monitoring flag asks for monitoring.
• The --ear-cpufreq=CPUfreq (in KHz)’ asks for a specific CPU frequency.

5 MPI + mpirun

To provide an automatic loading of the EAR library, the only requirement from
the MPI library is to be coordinated with the scheduler.

5.1 Intel MPI

Recent versions of Intel MPI offers two environment variables that can be used
to guarantee the correct scheduler integrations:

• I_MPI_HYDRA_BOOTSTRAP sets the bootstrap server. It must be
set to slurm.

• I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS sets addi-
tional arguments for the bootstrap server. These arguments are passed
to slurm.

Click here to read Intel env vars guide.

5.2 OpenMPI

• For OpenMPI and EAR it is highly recommened to use slurm. When
using mpirun, as OpenMPI is not fully coordinated with the scheduler,
the EAR library is not automatilly loaded on all the nodes. If mpirun is
used, the EAR library will be disabled and only basic energy metrics will
be reported.

5.3 MPI4PY

• To use MPI with python applications, the EAR loading cannot be autom-
catically done since the EAR loader cannot detect the symbols to classify
the application as Intel or OpenMPI. In order to specify it, the user has
to define the SLURM_LOAD_MPI_VERSION with the values intel or

www.eas4dc.com 5

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/hydra-environment-variables.html


5.4 Using additional MPI profiling libraries/tools 5 MPI + MPIRUN

ompi. It is recommented to add in python modules to make it easy for
final users.

5.4 Using additional MPI profiling libraries/tools

EAR uses the LD_PRELOAD mechanism to be loaded and the PMPI API for
a transparent loading. In order to be compatible with other profiling libraries
EAR is not replacing the MPI symbols, it just calls the next symbol in the list.
So it is compatible with other tools or profiling libraries. In case of conflict, the
EAR library can be disabled by selecting --ear=off at submission time.

5.5 Examples

5.5.1 srun examples

Having an MPI application asking for one node and 24 tasks, the following is a
simple case of job submission. If EAR library is on by default, no extra options
is needed to load the EAR library. To check if the EAR library is on by default
load the EAR module and execute the ear-info command. EAR verbose is set
to 0 by default (no messages).

srun -J test -N 1 -n 24 --tasks-per-node=24 application

• The following executes the application showing EAR messages, including
EAR configuration and node signature in stderr.

srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

EARL verbose messages are generated in the stderr. For jobs using more than
2 or 3 nodes messages can be overwritten. If the user wants to have EARL
messages in a file, the SLURM_EARL_VERBOSE_PATH environment variable must
be set with a folder name. One file per node, job and step will be generated
with EARL messages.

export SLURM_EARL_VERBOSE_PATH=logs
srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

• The following asks for EAR library metrics to be generated in csv file after
the application execution. Two files per node, job an step will be gener-
ated: one with the avg signatures and another with the loop signatures.
filename text is used as the root for generated files.

srun -J test -N 1 -n 24 --tasks-per-node=24 --ear-user-db=filename application

• For EAR authorized users only: the following executes the application
with CPU frequency 2.0GHz :

www.eas4dc.com 6



5.6 sbatch + EAR library + srun 5 MPI + MPIRUN

srun --ear-cpufreq=2000000 --ear-policy=monitoring -J test -N 1 -n 24
--tasks-per-node=24 application

5.6 sbatch + EAR library + srun

When using sbatch, EAR options can be specified in the same way. If more than
one srun call is included in the job submission, EAR options can be inherited
from sbatch to the different srun instances or they can be specifically modified
in each individual srun.

The following example will execute twice the application. Both instances
will have the verbosity set to 1. As the job is asking for 10 nodes, we have
set the SLURM_EARL_VERBOSE_PATH env var set to the ear_log folder.
Moreover, the second step will create a set of csv files placed in the ear_metrics
folder. The nodename, jobid and stepid texts are part of the filename for a better
identification.

#!/bin/bash
#SBATCH -N 10
#SBATCH -e test.%j.err
#SBATCH -o test.%j.out
#SBATCH --tasks-per-node=24
#SBATCH --cpus-per-task=1
#SBATCH --ear-verbose=1

export SLURM_EARL_VERBOSE_PATH=ear_logs
mkdir ear_metrics
srun application
srun --ear-user-db=ear_metrics/app_metrics application

5.7 EAR library + mpirun

5.7.1 Intel MPI

When running EAR with mpirun rather than srun, we have to specify the
utilisation of srun as bootstrap.

Version 2019 and newer offers two environment variables for bootstrap server
specification and arguments.

export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-user-db=ear_metrics/app_metrics"
mpiexec.hydra -n 10 application

www.eas4dc.com 7



5.8 erun 6 EAR METRICS

5.7.2 OpenMPI

Bootstrap is an Intel® MPI option but not an OpenMPI option. For OpenMPI
srun must be used for an automatic EAR support. In case OpenMPI with
mpirun is needed, EAR offers the erun comman explained below.

5.8 erun

erun is a program that simulates all the SLURM and EAR SLURM Plugin
pipeline. To use the erun load the ear module.

You can launch erun with the --program option to specify the application name
and arguments.

mpirun -n 4 erun --ear-verbose=1 --program="hostname --alias"

> erun --help

This is the list of ERUN parameters:
Usage: ./erun [OPTIONS]

Options:
--program=<arg> Sets the program to run.
--clean Removes the internal files.

SLURM options:
...

6 EAR metrics

When using the option –ear-user-db EAR reports application metrics in csv files.
Two type of files are generated, one with average metrics per jobid, stepid, and
nodename and a second type with runtime collected metrics, also identified by
jobid, stepid and nodename but in this case there are some extra columns at
the end with the runtime identifications used by EAR : loopid, and iteration
number. The columns generated in the csv files concerning mertics are:

• AVG.CPUFREQ: Average CPU frequency (includes all the cores of the
node). In KHz

• AVG.IMCFREQ: Average Memory frequency (include the two sockets).
In KHz

• DEF.FREQ: default CPU frequency used at the beginning of the applica-
tion

• TIME: Execution time (in seconds)
• CPI: Cycles per Instructions

www.eas4dc.com 8



6 EAR METRICS

• TPI: Main memory transactions per Instruction
• GBS: Main memory bandwith (GB/sec)
• IO_MBS: IO memory bandwith in the node (reads+writes, in MB/sec)
• P.MPI. Average percentage of MPI time vs computational time in the

node.
• DC-NODE-POWER: Average DC node power (in Watts)
• DRAM-POWER. Average DRAM power, including the 2 sockets (in

Watts)
• PCK-POWER. Average CPU power, including the 2 sockets (in Watts)
• CYCLES. Total Cycles consumed by application processes in the node.
• INSTRUCTIONS. Total instructions executed by application processes in

the node.
• GFLOPS: GFlops generated by application processes in the node.
• L1_MISSES: L1 cache misses generated by application processes in the

node.
• L2_MISSES: L2 cache misses generated by application processes in the

node.
• L3_MISSES: L3 cache misses generated by application processes in the

node.
• SP_SINGLE: Floating point operations Single precission 64 bits consumed

by application processes in the node.
• SP_128: Floating point operations Single precission 128 bits consumed

by application processes in the node.
• SP_256 Floating point operations Single precission 256 bits consumed by

application processes in the node.
• SP_512: Floating point operations Single precission 512 bits consumed

by application processes in the node.
• DP_SINGLE: Floating point operations Double precission 64 bits con-

sumed by application processes in the node.
• DP_128: Floating point operations Double precission 128 bits consumed

by application processes in the node.
• DP_256: Floating point operations Double precission 256 bits consumed

by application processes in the node.
• DP_512: Floating point operations Double precission 512 bits consumed

by application processes in the node.

www.eas4dc.com 9


	EAR4.1 user guide
	License

	Executing jobs with EAR
	Use Cases
	MPI applications
	Hybrid MPI +(OpenMP, CUDA, MKL) applications
	Python (not MPI)
	MPI+PYTHON applications
	OpenMP, CUDA, MKL (non-MPI) with EAR library
	Other application types or frameworks

	MPI + srun
	EAR job submission flags
	CPU frequency selection

	MPI + mpirun
	Intel MPI
	OpenMPI
	MPI4PY
	Using additional MPI profiling libraries/tools
	Examples
	srun examples

	sbatch + EAR library + srun
	EAR library + mpirun
	Intel MPI
	OpenMPI

	erun

	EAR metrics

