
Python primer

Ferdinand.Jamitzky@LRZ.de

Python Intro

More generally, the principle means that a
component of a system should behave in a way that
most users will expect it to behave; the behavior
should not astonish or surprise users.

Principle of least surprise

Start up a browser and enter the following URL:

http://138.246.232.54:8000

Then use the following credentials:
User: user1 ...user99

Login to Jupyter

http://138.246.232.54:8000/

for x in range(10):
y=2*x
if x==0:

print("x is zero")
elif x>5 and x<10:

print("x is between 5 and 10")
else:

print(f"twice {x} = {y}")

“Python is executable pseudocode. Perl is
executable line noise.” (– Old Klingon Proverb)

Executable Pseudo-Code

● Beautiful is better than ugly
● Explicit is better than implicit
● Simple is better than complex
● Complex is better than complicated
● Readability counts

“There should be one (and only one) obvious way to do it“

"We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil. Yet we should
not pass up our opportunities in that critical 3%“ (Donald Knuth)

Zen of python (20.2.1991-?)

Python in a nutshell

python as seen from the orbit

Python

Basic Language
and Syntax

Builtin
Libraries

External
Libraries

Python
2 Python

3 Cython

Strings,
IO

NumPy

SciPy
Pandas

Extensions

Spark
Blender

Web,
XML

os,
zip

Tensor
Flow

Dask

Jupyter

● basic syntax
- import, for, if, while, list comprehensions

● advanced syntax
● builtin data types

- lists, tuples, arrays, sets
- dicts
- strings

Python Syntax

● python in the browser:
https://alpha.iodide.io/

How to try out python

https://www.jetbrains.com/pycharm/

A web-service where you can run any code through a
browser interface.

jupyter

● indentation matters!
● # denotes comments
● lists start from 0

● file type matters (*.py)!
● directory hierarchy matters!

basic rules of the game

for x in range(10):
y = 2*x+1

here comes the output:
print(f"y= {y}")

print("finished loop")

Modules can be defined either by
filename or by folder name.

$ python
module by filename
>>> import myfile
module by folder name
>>> import mymod

call:
>>> myfile.myfunc()
hello
>>> mymod.myfunc()
world

basic rules of the game

$ ls
myfile.py
mymod/
mymod/__init__.py

myfile.py:
def myfunc():

print(“hello”)

mymod/__init__.py:
def myfunc():

print(“world”)

● Variable names can consist
of:
- Alphabetic (also Greek or

Umlauts)
- Numbers
- Underscore _

● Variables have to start with
Alphabetic or Underscore

e.g. this is valid:
_sumOfAll_µラ0

● Try to stick to ASCII for
readability, but YMMV

Variable names

Länge = [10,20,30,40,50]
#Berechne Mittelwert
ΣLänge = 0
for L in Länge:

ΣLänge = ΣLänge + L
µ = ΣLänge / len(Länge)
print(f"Mittelwert = {µ}")
#this is valid:
ラーメン = "delicious"
π = 3.14159
jalapeño = "a hot pepper"

● Python has the following number types:
- int, long, float, complex

● Strings
- ”this”, ’this’, ”””this”””, ’’’this’’’, u’this’,

b’this’
● Lists and tuples

- a=[1,2,3] is a list,
- b=(1,2,3) is a tuple (immutable)

● Dictionaries aka Associative Arrays
- a={ ’one’: 1, ’two’: ”zwei”} is a dict

types, lists, tuples and dicts

import lib as name
from lib import n as n

if condition:
elif condition:
else:

for iterator in list:
pass
break
continue

Keywords (more than 90% of python code)

[expr for it in list if cond]

while condition:

def function:
”””doc string”””
return value

class name:
def __init__(self):
def method(self):

raise name

try:
except name:
finally:

with expression as var:

global variable
nonlocal variable

Keywords (less than 10% of python code)

lambda var: expression

@decorator

async def fun -> ann:
assert condition
yield value
yield from generator
await expression

Syntax

The import statement, which is used to import modules
whose functions or variables can be used in the current
program. There are four ways of using import:

>>> import numpy
>>> from numpy import *
>>> import numpy as np
>>> from numpy import pi as Pie

import

x=0.1
n=0
while x>0 and x<10:

x*=2
n+=1
if n>1000:

break

run the loop until the "while" condition is false or the "if"
condition is true.

while

for i in list:
do_something_with(i)
print result(i)
if cond(i):

break
loops over a list, prints the result and stops either when
the list is consumed or the break condition is fulfilled

for

● text files
dd=open(”data.txt”).readlines()
● print lines
[x[:-1] for x in open(”data.txt”,”r”).readlines()]
● pretty print
from pprint import pprint
pprint(dd)
● binary files
xx=open(”data.txt”,”rb”).read()
xx.__class__

file i/o

make script executable:
$ chmod u+x myscript.py

myscript.py:
#!/usr/bin/python
#!/usr/bin/env python2.7
import sys
print "The name of the script: ", sys.argv[0]
print "Number of arguments: ", len(sys.argv)
print "The arguments are: " , str(sys.argv)

in larger scripts use the argparse library

interaction with the shell

Data Structures

● Python has the following number types:
- int, long, float, complex
- del var

>>> x=0
>>> x=1234567890123456789012345
>>> x**2
152415787532388367504953347995733866912056239
9025

basic types

>>> x=1234567890123456789012345
>>> float(x)**12
1.2536598767934103e+289
>>> float(x**12)
1.2536598767934098e+289
>>> x**12
125365987679340988385155987957344620719772763
435558412643918634708860008684622476289189408
122904124025079348898207042504644463778641104
140990841878266383680568044115362044043884095
444413842891790950870476081757908423384415448
872287884941281209197912958987211967647326426
09051396426025390625

basic types

Imaginary and complex numbers are built in:
>>> 1j**2 #imaginary unit
(-1+0j)
>>>(1+1j)**4 #4th root of -4
(-4+0j)
>>> 1j**1j # i to the i
(0.20787957635076193+0j)
>>> import cmath
>>> cmath.log(-1)
3.141592653589793j # pi

basic types

python2 has byte strings, python3 has Unicode strings
- ”this”, ’this’, ”””this”””, ’’’this’’’, u’this’,

b’this’
- string interpolation (masks)
>>> ”one plus %i = %s” % (1,”two”)
- indexing strings: a=”1234”
>>> print a[0] -> 1
>>> print a[0:] -> 1234
>>> print a[0:-1] -> 123
>>> print a[0::2] -> 13
>>> print a[::-1] -> 4321
>>> print a[-1::-2]-> 42

Strings

● split strings
>>> dd="a b c d"
>>> dd.split()
['a', 'b', 'c', 'd']
● join strings
>>> " ".join(['a', 'b', 'c', 'd'])
● combine both
>>> " ".join(["<"+x"/>" for x in dd.split()])
'<a/> <c/> <d/>'

strings

● Lists are what they seem - a list of values. Each one
of them is numbered, starting from zero. You can
remove values from the list, and add new values to
the end. Example: Your many cats' names.

● Tuples are just like lists, but you can't change their
values. The values that you give it first up, are the
values that you are stuck with for the rest of the
program.

● Dictionaries are similar to what their name suggests
- a dictionary, or aka associative array or key-value
store

lists, tuples, dictionaries

Simple list:
>>> x=[1,2,3]
>>> x.append(“one”)
>>> y=x
>>> y[0]=2
>>> x[0]
2
>>> x.append(x)
>>> x
[2, 2, 3, 'one', [...]]

lists

tuples are immutable lists
>>> a=(1,2,3)
>>> a[1]=3
-> error

reason for tuples: faster access

lists and tuples

● a list is defined by square brackets
● a list comprehension uses square brackets and for
>>> x=[1,2,3,4,5]
>>> y=[i for i in x]

>>> “
”.join([s.split(“\n”) for s in open(“file.txt”).readlines()])

>>> import random.uniform as r
>>> np=1000000
>>> sum([(r(0,1)**2+r(0,1)**2 < 1) for i in range(np)])/np*4.
3.141244

list comprehensions

dictionaries aka associative arrays aka key/value stores

>>> a={‘one’:1, ‘two’:2.0, ‘three’:[3,3,3]}

dictionary comprehensions:
>>> {i:i**2 for i in range(4)}
{0: 0, 1: 1, 2: 4, 3: 9}
>>> a.keys()
>>> a.values()

dicts

you can loop over a dict by:
>>> knights = {'gallahad': 'the pure',
'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)

or

>>> {k+” ”+v for k,v in knights.items()}
>>> [k+” ”+v for k,v in knights.items()]

for loops with dicts

arrays are lists with the same type of elements
there exists a special library for numeric arrays (numpy)
which never made it into the official distribution.

they serve as an interface to c-code. If you need
numerical arrays use the numpy library (see below)

arrays

sets are unordered lists. They provide all the methods
from set theory like intersection and union. Elements are
unique.

>>> x=set((1,2,3,4,1,2,3,4))
>>> x
{1, 2, 3, 4}
>>> x & y
>>> x | y
>>> x-y
>>> x ^ y

sets

● why python3?
- you need Unicode?
- you want to use generators (yield) extensively

● why python2?
- many lists are iterators in py3 (range, filter, zip, map,...)
- many old packages do not (yet) have a python3 version

● use 2to3 converter (or 3to2 for backwards)
$ 2to3 myprog.py

08.10.19 Leibniz-Rechenzentrum 39

python2 vs python3

Functions

● keywords
● doc strings
● specials:

- lambda
- yield, yield from
- annotations
- async, await, ...

08.10.19 Leibniz-Rechenzentrum 41

functions

def myfun(a, b=1, c=[1,2], *args):
“decription goes here”
return a,b,c,args

>>> myfun(0)
(0,1,[1,2],())
>>> myfun(0,c=2)
(0,1,2,())
>>> myfun(0,1,2,3,4)
(0,1,2,(3,4))

functions: keywords

f1 = lambda x: x+1

def f2(x):
return x+1

f = lambda *x:x
>>> f(”one”,2,[])
(”one”,2,[])

functions: lambda functions

Compute prime numbers up to 30

def isprime(n):
return n not in \

[x*y for x in range(n) for y in range(n)]

print([n for n in range(2,30) if isprime(n)])

Putting it all together

Classes

● Everything in python is an Object (numbers too)
● Objects: instances of classes
● Classes: blueprints for objects
● Methods: functions attached to objects
● Classes can inherit "blueprints" from other classes
>>> a=[]
>>> type(a)
>>> print a.__class__
>>> print dir(a)
>>> a.__doc__

Object oriented programming in a nutshell

class point2d:
def __init__(self,x=0,y=0):

self.x=x
self.y=y

def move(self,dx=0,dy=0):
self.x+=dx
self.y+=dy
return self

def __str__(self)
return f"Point at {self.x}, {self.y}”

08.10.19 Leibniz-Rechenzentrum 47

class definition

>>> p0=point2d()
>>> p1=point2d(x=1)
>>> p2=point2d(3,4)

>>> p0.move(1,2)
>>> p3 = p1.move(dx=2).move(dy=3)
>>> print(p3)

08.10.19 Leibniz-Rechenzentrum 48

class usage

● function names with leading and trailing underscores
are special in python ("magic methods")

>>> str(a)
is translated to:
>>> a.__str__()
and
>>> a+b
>>> a.__add__(b)
>>> f(x)
>>> f.__call__(x)

magic methods

Advanced Topics

● try-except
● decorators
● with
● yield
● aspect oriented programming

Advanced topics

using try you can catch an exception that would normally
stop the program

x=range(10)
y=[0]*10
for i in range(10):

try:
y[i]=1./x[i]

except:
y[i]=0.

try except

decorators are syntactic sugar for applying a function
and overwriting it.

@mydecorator
def myfunc():

pass
is the same as:

def myfunc():
pass

myfunc = mydecorator(myfunc)

@decorators

@mymacro
def ff(y):

return y*2

def mymacro(f):
return lambda *x: ”Hey! ”+str(f(*x))

def mymacro(somefunc)
def tempfunc(*x):

return ”Hey! ”+str(somefunc(*x))
return tempfunc

decorators aka macros

You need a context manager (has enter and exit methods)
Examples:
● opening and automatically closing a file
with open("/etc/passwd") as f:

df=f.readlines()
● database transactions
● temporary option settings
● ThreadPoolExecutor
● log file on/off
● cd to a different folder and back
● set debug verbose level
● change the output format or output destination
with redirect_stdout(sys.stderr):

help(pow)

with statement examples

The with statement allows for different contexts
with EXPR as VAR:

BLOCK

roughly translates into this:

VAR = EXPR
VAR.__enter__()
try:

BLOCK
finally:

VAR.__exit__()

with statement motivation

● range(10000) would generate a list of 10000 number although
they would later on not be needed.

● generators to the rescue!!
● only generate what you really need
● new keyword: yield (instead of return)
>>> def createGenerator():
... yield “one“
... yield 2
... yield [3,4]
...
>>> a=createGenerator()
>>> next(a)
“one“

generators

● like list comprehensions, but computed only when
needed

>>> a=(i**4 for i in range(8))
>>> next(a)
0
>>> next(a)
1
>>> list(a)
[16, 81]

generator comprehensions

● AOP is about separating out Aspects
● You can switch contexts (like log-file on/off)
print("foo")
with tag("h1"):

print("foo")

foo
<h1>foo</h1>

from contextlib import contextmanager
@contextmanager
def tag(name):

print("<%s>" % name)
yield
print("</%s>" % name)

Aspect Oriented Programming in python

Package Managers

● conda is a package manager in user space.
● tool to create isolated python installations
● it allows you to use multiple versions of python
● substitutes virtualenv (dead since 2016)
● commercial tool: anaconda
● 2 versions miniconda (free), anaconda (commercial)
● works on linux, MS-win, macOS
● packages are provided by channels (anaconda,

conda-forge, bioconda, intel

conda

python has a plentitude of package managers and
package formats (contradicts zen of python), so don’t get
confused

● easy_install, virtualenv (dead)
● pip (alive, default package manager for python)
● conda (state of the art)
● Data formats:

- wheel (official package format PEP427)
- egg (old package format)

package managers

● simple packages management tool for python
● comes preinstalled with python
● complementary to conda
● packages are called *.whl (wheel)
● easy_install is dead

$ pip install SomePackage # latest version
$ pip install SomePackage==1.0.4 # specific version
$ pip install 'SomePackage>=1.0.4' # minimum version
$ pip install --upgrade SomePackage # upgrade

pip

$ conda create –n my_env python=3.6
$ conda install –c conda-forge scipy=0.15.0
$ conda list
$ conda search numpy
$ conda update –all
$ conda info numpy

conda

● On each node there is a system python installed. Don't use
it!

● Use the module system:

$ module avail python
------------------------------- /lrz/sys/share/modules/files/tools --------------
python/2.7_anaconda_nompi python/2.7_intel(default) python/3.5_intel

$ module load python

$ python
Python 2.7.13 (default, Jan 11 2017, 10:56:06) [GCC] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python module at LRZ

● LRZ uses the conda package manager for python libraries.
In the default module only a minimla set of libraries is
provided. You have to generate your own environment to get
more

$ module load python

$ conda create –n py36 python=3.6

$ source activate py36

$ conda install scipy=0.15

$ conda list

Generate your own python LRZ environment

Shells

the python interactive command line interface was not very
comfortable, so ipython was born. It evolved later on to a Web-
Interface (jupyter). You can enter even shell commands.

$ ipython
Python 3.6.2 |Continuum Analytics, Inc.| (default, Jul 20 2017, 13:51:32)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: pwd
Out[1]: '/home/hpc/pr28fa/a2815ah‘
In [2]: import os; os.getcwd()
Out[2]: '/home/hpc/pr28fa/a2815ah'

ipython

ipython is a hybrid between the python cli, a bash shell and macros.
It recognizes shell commands (ls, pwd, cp, ..) and macros (magic
commands) can be defined by %name or %%name.
In [2]: %timeit sum(range(1000))
20.8 µs ± 412 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [13]: %%timeit

...: x=sum(range(100))

...: y=x+1

...:
1.52 µs ± 5.34 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

ipython

help information can be retrieved by ?command and more detailed
information by ??command

In [17]: ?pprint
Docstring: Toggle pretty printing on/off.
File: ~/.conda/envs/py36/lib/python3.6/site-
packages/IPython/core/magics/basic.py

In [16]: ??pprint
Source:

@line_magic
def pprint(self, parameter_s=''):

"""Toggle pretty printing on/off."""
ptformatter = self.shell.display_formatter.formatters['text/plain']
ptformatter.pprint = bool(1 - ptformatter.pprint)
print('Pretty printing has been turned',....

ipython

finally ipython evolved into a web-service where you can
run any code through a browser interface and even plot.

jupyter

Explain what the following commands return
>>> !ls
>>> files=!ls –al
>>> files.sort(5,num=True)
>>> files.grep(“a”,field=2)
>>> %cd
>>> %timeit

ipython exercise

Computing and Plotting Libraries

scipy

Numerical Computations

● a powerful N-dimensional array object
● sophisticated (broadcasting) functions
● tools for integrating C/C++ and Fortran code
● useful linear algebra, Fourier transform, and random

number capabilities
● for comparison to other array languages (Numpy vs

MATLAB, R, IDL) see:
http://mathesaurus.sourceforge.net/

numpy

● NumPy’s main object is the homogeneous
multidimensional array. It is a table of elements
(usually numbers), all of the same type, indexed by a
tuple of positive integers. In NumPy dimensions are
called axes.

>>> A=[[1., 0., 0.],[0., 1., 2.]]
>>> A.ndim
>>> A.shape
>>> A.size
>>> A.dtype
>>> A.itemsize

Numpy in a nutshell

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')

Array Creation

>>> np.zeros((3,4))
>>> np.ones((3,4), dtype=np.int16)
>>> np.empty((2,3))
>>> np.arange(10,30,5)
>>> np.arange(0,2,0.3)
>>> np.linspace(0,2,9)
>>> b = np.arange(12).reshape(4,3)

Array Creation

● Vector Operations on Arrays:
- elementwise add, substract, multiply, divide, power
- special functions: sin, cos, ...
- elementwise comparison
- Matrix Product A@B
- in place operations A+=3
- A.sum(), A.cumsum(), A.min(), A.max()

Basic Operations

● these functions operate elementwise on an array,
producing an array as output

all, any, apply_along_axis, argmax, argmin, argsort,
average, bincount, ceil, clip, conj, corrcoef, cov, cross,
cumprod, cumsum, diff, dot, floor, inner, inv, lexsort,
max, maximum, mean, median, min, minimum, nonzero,
outer, prod, re, round, sort, std, sum, trace, transpose,
var, vdot, vectorize, where

Universal Functions

● indexing and slicing like for python lists
>>> a[2:5]
>>> a[: :-1]
>>> b[1:3, :]
>>> b[-1]

Indexing, Slicing, Iterating

>>> np.vstack((a,b))
array([[8., 8.],

[0., 0.],
[1., 8.],
[0., 4.]])

>>> np.hstack((a,b))
array([[8., 8., 1., 8.],

[0., 0., 0., 4.]])

Stacking Arrays

● Simple assignments make no copy of array objects or of their
data.

>>> a = np.arange(12)
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same object
True
>>> d = a.copy() # a new array object with new data is created
>>> d is a
False

Copy and views

Numpy has a plentitude of random number distributions
uniform:
>>> A = np.random.random(2,3))
>>> A = np.random.uniform(size=10)
others are:
beta, binomial, chisquare, dirichlet, exponential, F,
gamma, geometric, gumbel, hypergeometric, laplace,
logistic, lognormal, logseries, multinormal, normal,
pareto, poisson, power, Rayleigh, Cauchy, standard_t,
triangular, uniform, vonmises, wald, weibul, zipf

Random Numbers

Explain the output of the following commands:
>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x
>>> y = np.arange(10)
>>> y
>>> a = np.array([1, 2, 3, 6])
>>> b = np.linspace(0, 2, 4)
>>> c = a - b
>>> c
>>> a**2

numpy exercise

matplotlib

matplotlib

jupyter+scipy+matplotlib+latex

Data Analysis using Pandas

● DataFrame object for data manipulation with integrated indexing.
● Tools for reading and writing data between in-memory data structures

and different file formats.
● Data alignment and integrated handling of missing data.
● Reshaping and pivoting of data sets.
● Label-based slicing, fancy indexing, and subsetting of large data sets.
● Data structure column insertion and deletion.
● Group by engine allowing split-apply-combine operations on data sets.
● Data set merging and joining.
● Hierarchical axis indexing to work with high-dimensional data in a

lower-dimensional data structure.
● Time series-functionality: Date range generation and frequency

conversion, moving window statistics, moving window linear
regressions, date shifting and lagging.

Pandas – Data Frames for python

The two primary data structures of pandas
● Series (1-dimensional)
● DataFrame (2-dimensional)
handle the vast majority of typical use cases in finance,
statistics, social science, and many areas of engineering.
For R users:
● DataFrame provides everything that R’s data.frame provides
● pandas is built on top of NumPy and is intended to integrate

well within a scientific computing environment with many
other 3rd party libraries.

Pandas in a nutshell

DataFrame is a container for Series, and Series is a
container for scalars.

for col in df.columns:
series = df[col]
do something with series

s = pd.Series([1, 3, 5, np.nan, 6, 8])

Dataframes and Series

● Object Creation
● Viewing Data
● Selection
● Missing Data
● Operations
● Merge
● Grouping
● Reshaping
● Time Series
● Categorials
● Plotting
● Data I/O

pandas

Creating a Series by passing a list of values, letting
pandas create a default integer index:

s = pd.Series([1, 3, 5, np.nan, 6, 8])

Creating a DataFrame by passing a NumPy array, with a
datetime index and labeled columns:

df = pd.DataFrame(np.random.randn(6, 4),
index=dates, columns=list('ABCD'))

Object Creation

df.head()
df.tail(3)
df.index
df.columns
df.to_numpy()
df.describe()

Viewing Data

df['A']
df[0:3]
df.loc[:, ['A', 'B']]
df.iloc[3:5, 0:2]
df[df.A > 0]
df[df > 0]
df2[df2['E'].isin(['two', 'four'])]
df.loc[:, 'D'] = np.array([5] * len(df))
df2[df2 > 0] = -df2

Selection

df1 = df.reindex(index=dates[0:4],
columns=list(df.columns) + ['E'])
df1.dropna(how='any')
df1.fillna(value=5)
pd.isna(df1)

Missing Data

df.mean()
df.mean(1)
df.apply(np.cumsum)
df.apply(lambda x: x.max() - x.min())
s.value_counts()
s.str.lower()

Operations

pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
pd.merge(left, right, on='key')
df.append(s, ignore_index=True)

Merge

By “group by” we are referring to a process involving one
or more of the following steps:
● Splitting the data into groups based on some criteria
● Applying a function to each group independently
● Combining the results into a data structure
>>> df.groupby('A').sum()
>>> df.groupby(['A', 'B']).sum()

Grouping

● Stack
The stack() method “compresses” a level in the
DataFrame’s columns.

● Pivot Table
>>> pd.pivot_table(df, values='D', index=['A', 'B'],
columns=['C'])

Reshaping

>>> ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
>>> ts = ts.cumsum()
>>> ts.plot()

Plotting

● CSV
>>> pd.read_csv('foo.csv')
>>> df.to_csv('foo.csv')
● Excel
>>> pd.read_excel('foo.xlsx', 'Sheet1', index_col=None,
na_values=['NA'])
>>> df.to_excel('foo.xlsx', sheet_name='Sheet1')
● HDF5
>>> pd.read_hdf('foo.h5', 'df')
>>> df.to_hdf('foo.h5', 'df')

Getting Data In/Out

Machine Learning Packages

● Theano (discontinued)
● Tensorflow (Google)
● Torch/PyTorch (Facebook)
● MXnet (Apache, Amazon)
● CNTK (Microsoft)
● Keras (on top of TensoFlow, Tehano or CNTK)
● Caffe / Caffe2 (Facebook, lightweight)
● PaddlePaddle (Baidu for text mining in English and

Chinese)
● Scikit Learn (google summer of code)

Python Packages

Theano:
● numerical computation library for Python
● computations are expressed using a Numpy-esque

syntax
● compiled to run efficiently
● CPU or GPU architectures
● Dead since 2017, but still in use
● Developers now at goolge

theano

● TensorFlow
● open-source software library
● dataflow programming across a range of tasks
● symbolic math library
● used for machine learning applications
● neural networks
● research and production at Google
● very active
● steep learning curve

tensorflow

load TensorFlow
>>> import tensorflow as tf
Initialize two vectors
>>> x = tf.constant([1,2,3,4])
>>> y = tf.constant([5,6,7,8])
Multiply
z= tf.multiply(x, y)
Initialize Session and run
>>> with tf.Session() as sess:
. . . out = sess.run(z)
. . . print(out)
6

tensorflow

load TensorFlow
>>> import tensorflow as tf
Initialize two vectors
>>> x = tf.constant([1,2,3,4])
>>> y = tf.constant([5,6,7,8])
Multiply
z= tf.multiply(x, y)
Initialize Session and run
>>> with tf.Session() as sess:
. . . out = sess.run(z)
. . . print(out)
6

tensorflow

● Keras is a high-level neural networks API
● Running on top of TensorFlow, CNTK, or Theano
● Developed with a focus on enabling fast experimentation
● Allows for easy and fast prototyping (through user

friendliness, modularity, and extensibility)
● Supports both convolutional networks and recurrent

networks, as well as combinations of the two
● Runs seamlessly on CPU and GPU

Keras

resnet50 pretrained application in keras

from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg‘
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265',
u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]

Keras Applications

Parallel and distributed programming

Why?
● You have many independent tasks (easy)
or
● You want to accerelate single complex task (hard)

Recipe:
Turn the single complex task into many independent
simple tasks, but how?

How-to go parallel

Why?
● You have many independent tasks (easy)
or
● You want to accerelate single complex task (hard)

Recipe:
Turn the single complex task into many independent
simple tasks, but how?

How-to go parallel

Why parallel programming?

End of the free lunch

Moore's law means
no longer faster
processors, only more
of them. But beware!

2 x 3 GHz < 6 GHz

(cache consistency,
multi-threading, etc)

Supercomputer scaling

Supercomputer Layout

Switch
IslandFat Tree

Pruned TreeSupercomputer
aka HPC Cluster

Accelerator: GPU, MIC
Core (4)
Socket (2)

Node

● multiprocessing
● Mpi4py
● Ipython parallel
● dask

See also:
https://chryswoods.com/parallel_python/README.html

Parallel and Distributed Programming

● The standard Python interpreter (called CPython)
does not support the use of threads well.

● The CPython Python interpreter uses a “Global
Interpreter Lock” to ensure that only a single line of a
Python script can be interpreted at a time, thereby
preventing memory corruption caused by multiple
threads trying to read, write or delete memory in
parallel.

● Because of the GIL, parallel Python is normally based
on running multiple forks of the Python interpreter,
each with their own copy of the script and their own
GIL.

Global Interpreter Lock (GIL)

Embarrassingly parallel

• many independent processes (10 - 100.000)
• no communication between processes
• individual tasklist for each process
• private memory for each process
• results are stored in a large storage medium

● Take as example the following script
myscript.sh:
#!/bin/bash
source /etc/profile.d/modules.sh
module load python
source activate py36
cd ~/mydir
python myscript.py

You can run it interactively by:
$./myscript.sh

Embarrassingly parallel (step-by-step)

Please do not block the login nodes with production jobs, but run the
script in an interactive slurm shell:
$ salloc –pmpp2_inter –n1 myscript.sh

Change the last line in the script:
#!/bin/bash
source /etc/profile.d/modules.sh
module load python
source activate py36
cd ~/mydir
srun python myscript.py

Embarrassingly parallel (step-by-step)

Run multiple copies of the the script in an interactive slurm shell:
$ salloc –pmpp2_inter –n4 myscript.sh

You will get 4 times the output of the same run.

To use different input files you can use the environment variable:
os.environ['SLURM_PROCID'] (it is set to 0,1,2,3,...)

Use this variable to select your workload.

Example:
$ salloc –pmpp2_inter –n2 srun
python –c "import os; os.environ['SLURM_PROCID']"
0
1

Embarrassingly parallel (step-by-step)

Run the script as slurm batch job:
$ sbatch -pmpp2_inter -n4 myscript.sh

You can put the options inside the slurm file:

#!/bin/bash
#SBATCH -pmpp2_inter
#SBATCH -n4
source /etc/profile.d/modules.sh
module load python
cd ~/mydir
srun python myscript.py

Embarrassingly parallel (step-by-step)

For serial (single node, multithreaded but not MPI) loads use the
serial queue and add options for the runtime:

#!/bin/bash
#SBATCH --clusters=serial
#SBATCH -n4 # 4 tasks
#SBATCH --time=01:00:00 # 1hour
source /etc/profile.d/modules.sh
module load python
cd ~/mydir
srun python myscript.py

$ sbatch myscript.slurm

Embarrassingly parallel (step-by-step)

If you want to send a large number of jobs then use Job
Arrays.

$ sbatch -array=0-31 myscript.slurm

The variable SLURM_ARRAY_TASK_ID is set to the
array index value. Get it in python via:

os.environ['SLURM_ARRAY_TASK_ID']

The maximum size of array job is 1000

SLURM Job Arrays

● List my jobs:
$ squeue –Mserial –u <uid>

● Cancel my job
$ scancel <jobid>

● Submit batch job
$ sbatch myscript.slurm

● Run interactive shell
$ salloc -n1 srun --pty bash -i

Important SLURM commands

The ipcluster command provides a simple way of
starting a controller and engines in the following
situations:
● When the controller and engines are all run on

localhost. This is useful for testing or running on a
multicore computer.

● When engines are started using the mpiexec
command that comes with most MPI implementations

● When engines are started using the SLURM batch
system

Ipython and ipcluster

Starting ipcluster:
$ ipcluster start -n 4

Then start ipython and connect to the cluster:
$ ipython
In [1]: from ipyparallel import Client
In [2]: c = Client()

...: c.ids

...: c[:].apply_sync(lambda: "Hello, world!")
Out[2]: ['Hello, world!', 'Hello, world!', 'Hello,
world!', 'Hello, world!']

Using ipcluster

Create a parallel profile:
ipython profile create --parallel --profile=slurm

cd into ~/.ipython/profile_slurm/ and add the following:

ipcontroller_config.py:
c.HubFactory.ip = u'*'
c.HubFactory.registration_timeout = 600
ipengine_config.py:
c.IPEngineApp.wait_for_url_file = 300
c.EngineFactory.timeout = 300

Ipcluster on SLURM

ipcluster_config.py:

c.IPClusterStart.controller_launcher_class =
'SlurmControllerLauncher'
c.IPClusterEngines.engine_launcher_class =
'SlurmEngineSetLauncher'
c.SlurmEngineSetLauncher.batch_template = """#!/bin/sh
#SBATCH --ntasks={n}
#SBATCH --clusters=serial
#SBATCH --time=01:00:00
#SBATCH --job-name=ipy-engine-
srun ipengine --profile-dir="{profile_dir}" --cluster-id=""
"""

Cont.

Start a python shell and import the client function
>>> from ipyparallel import Client

Connect to the ipcluster
>>> c=Client(profile="slurm")

Generate a view on the cluster
>>> dview=c[:]

The view can now be used to perform parallel
computations on the cluster

Usage of ipcluster

Run a string containing python code on the ipcluster:
>>> dview.execute("import time")

Run a single function and wait for the result:
>>> dview.apply_sync(time.sleep, 10)

Or return immediately:
>>> dview.apply_async(time.sleep, 10)

Map a function on a list by reusing the nores of the cluster:
>>> dview.map_sync(lambda x: x**10, range(32))

Usage of ipcluster

Define a function that executes in parallel on the
ipcluster:
In [10]: @dview.remote(block=True)

....: def getpid():

....: import os

....: return os.getpid()

....:
In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]

Defining parallel functions

The @parallel decorator parallel functions, that break up
an element-wise operations and distribute them,
reconstructing the result.
In [12]: import numpy as np
In [13]: A = np.random.random((64,48))
In [14]: @dview.parallel(block=True)

....: def pmul(A,B):

....: return A*B

Usage of ipcluster with NumPy

You can create a view of the ipcluster that allows for
loadbalancing of the work:
>>> lv=c.load_balanced_view()

This view can be used with all the above mentioned
methods, auch as: execute, apply, map and the
decorators.
The load balancer can even have different scheduling
strategies like "Least Recently Used", "Plain Random",
"Two-Bin Random", "Least Load" and "Weighted"

Loadbalancing

Shared Memory (your laptop)

• a few threads working closely
together (10-100)

• shared memory
• single tasklist (program)
• cache coherent non-uniform

memory architecture aka ccNUMA
• results are kept in shared memory

● Multiprocessing allows your script running multiple
copies in parallel, with (normally) one copy per
processor core on your computer.

● One is known as the master copy, and is the one that
is used to control all of worker copies.

● It is not recommended to run a multiprocessing
python script interactively, e.g. via ipython or ipython
notebook.

● It forces you to write it in a particular way. All imports
should be at the top of the script, followed by all
function and class definitions.

multiprocessing

all imports should be at the top of your script
import multiprocessing, sys, os
all function and class definitions must be next
def sum(x, y):

return x+y

if __name__ == "__main__":
You must now protect the code being run by
the master copy of the script by placing it

a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]

Now write your parallel code... etc. etc.

multiprocessing

Multiprocessing pool
from multiprocessing import Pool, current_process

def square(x):
print("Worker %s calculating square of %d" % (current_process().pid, x))

return x*x

if __name__ == "__main__":
nprocs = 2

print the number of cores
print("Number of workers equals %d" % nprocs)

create a pool of workers
pool = Pool(processes=nprocs)

create an array of 10 integers, from 1 to 10
a = range(1,11)

result = pool.map(square, a)
total = reduce(lambda x,y: x+y, result)

print("The sum of the square of the first 10 integers is %d" % total)

● Use futures and a context manager:

from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=1) as ex:

future = ex.submit(pow, 323, 1235)
print(future.result())

Multiprocessing futures

Message Passing

• many independent processes (10 - 100.000)
• one tasklist for all (program)
• everyone can talk to each other (in principle)
• private memory
• needs communication strategy in order to scale out
• very often: nearest neighbor communication
• beware of deadlocks!

$ mpiexec -n 4 python myapp.py

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:

data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

mpi4py

Worker queue

• many independent processes (10 - 100.000)
• central task scheduler (database)
• private memory for each process
• results are sent back to task scheduler
• rescheduling of failed tasks possible

dask

Familiar: Provides parallelized NumPy array and Pandas DataFrame objects
Flexible: Provides a task scheduling interface for more custom workloads and integration
with other projects.
Native: Enables distributed computing in Pure Python with access to the PyData stack.
Fast: Operates with low overhead, low latency, and minimal serialization necessary for
fast numerical algorithms
Scales up: Runs resiliently on clusters with 1000s of cores
Scales down: Trivial to set up and run on a laptop in a single process, even on a
smartphone running android
Responsive: Designed with interactive computing in mind it provides rapid feedback and
diagnostics to aid humans

● dask arrays are
composed of numpy
arrays.

● the subarrays can live
in the same process or
in another process on
a different node

● dask has a scheduler
which distributes the
work on a whole
cluster if needed

dask.array

>>> import dask.array as da
>>> a=da.random.uniform(size=1000, chunks=100)

https://docs.dask.org/en/latest/array-api.html

● like dask.arrays uses numpy arrays,
dask.dataframe uses pandas

● dask.dataframes can be distributed
over a cluster of nodes and operations
on them are scheduled by the dask
scheduler

>>> import dask.dataframe as dd
>>> df=dd.read_csv('2014-*.csv')

dask.dataframe

>>> a=da.random.uniform(size=1000,chunks=100)
>>> b=a.sum()
>>> c=a.mean()*a.size
>>> d=b-c
>>> d.compute()

the computation starts at the last command. If you have
a dask cluster then all computations can be distributed to
the cluster.

dask execution graph

● Start a scheduler which organizes the computing
tasks

$ dask-scheduler
● dask workers
$ dask-worker localhost:8786
$ dask-ssh host.domain
$ mpirun --np 4 dask-mpi
$ dask-ec2
$ dask-kubernetes
$ dask-drmaa

dask.distributed

● Start a client
>>> from dask.distributed import Client
>>> client = Client('localhost:8786')

now all dask operations will be
distributed to the scheduler which
distributes them to the cluster

dask.distributed

● install qpython
● open pip console
● install dask
● install toolz
● install ipython

dask mobile

Dask DataFrame has the following limitations:
● Setting a new index from an unsorted column is

expensive
● Many operations like groupby-apply and join on

unsorted columns require setting the index, which as
mentioned above, is expensive

● The Pandas API is very large. Dask DataFrame does
not attempt to implement many Pandas features or
any of the more exotic data structures like NDFrames

● Operations that were slow on Pandas, like iterating
through row-by-row, remain slow on Dask DataFrame

Dask dataframe limitations

Dask DataFrame is used in situations where Pandas is
commonly needed, usually when Pandas fails due to
data size or computation speed:
● Manipulating large datasets, even when those

datasets don’t fit in memory
● Accelerating long computations by using many cores
● Distributed computing on large datasets with

standard Pandas operations like groupby, join, and
time series computations

When to use dask

Dask DataFrame may not be the best choice in the following
situations:
● If your dataset fits comfortably into RAM on your laptop, then

you may be better off just using Pandas. There may be simpler
ways to improve performance than through parallelism

● If your dataset doesn’t fit neatly into the Pandas tabular model,
then you might find more use in dask.bag or dask.array

● If you need functions that are not implemented in Dask
DataFrame, then you might want to look at dask.delayed which
offers more flexibility

● If you need a proper database with all that databases offer you
might prefer something like Postgres

When NOT to use dask

https://docs.dask.org/en/latest/bag.html
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/delayed.html
https://www.postgresql.org/

Low level programming

08.10.19 Leibniz-Rechenzentrum 157

Python numerical libraries

● superset of the Python programming
language

● designed to give C-like performance
● code is mostly written in Python
● compiled language that generates

CPython extension modules
● extension modules can then be loaded

and used by regular Python code using
the import statement

● Cython files have a .pyx extension

08.10.19 Leibniz-Rechenzentrum 158

cython

hello.pyx:
def say_hello():

print "Hello World!"

launch.py:
import hello
hello.say_hello()

08.10.19 Leibniz-Rechenzentrum 159

cython

08.10.19 Leibniz-Rechenzentrum 160

cython in ipython/jupyter notebooks

The End:
XKCD

Course Evaluation

Please visit
https://survey.lrz.de/index.php/248382

and rate this course.

Your feedback is highly appreciated!
Thank you!

