
1

Principles of Optimization

 

Code Optimization Workshop | 27.6.2022 | Jonathan Coles

• Understanding...

• Modern CPU architecture

• Data layout and structures

• Parallelization options

• What and how to optimize

• Measuring...

• Code behavior under varying assumptions

• Implementing...

• A simple N-body code

2

Goals of this workshop

3

Decide on goals for optimization

• Reduced time to solution

• Reduced memory requirements

• Other resources

• Compute hardware → More cores / socket?

• Energy → Different CPU or frequency?

4

Types of optimization

• Compiler optimization

• Algorithmic optimization

• Implementation optimization

• Data movement

• Parallelization

5

Some of the many challenges

• Algorithmic optimization

• Theoretical improvements often require fundamental changes to existing software

• New / different data structures

• Implementation optimization

• There is a growing disconnect between the computer "model" behind programming languages and the

underlying hardware.

• Requires code to be written in a way that translates well on to the machine architecture.

• Data movement

• Cost of data movement is usually not apparent at the language level.

• Caching effects can be hard to predict.

• Parallelization

• Multiple levels possible: instruction level, thread level, machine level

• Coordinating multiple threads of execution is difficult.

• Complex data dependencies and data structures can interfere with parallelization efforts.

6

Process of optimization
• Measure

• Establish a method of measuring your performance criteria and correct/expected results.

• Must be simple to run so that it can be used frequently.

• Measure a base line to compare future improvements again.

• Not always obvious where performance problems lie and can be machine or simulation dependent!

• Record

• Save your measurements to a file or database.

• Include as much information about the configuration used as is reasonable.

• Plot

• Visualizing how performance changes with code changes is invaluable.

• Trends become clearer and can suggest new ideas.

• Modify

• Based on what was learned investigate new ideas and code changes.

• Test

• Always test that the results haven't changed in a significant way.

• It won't matter how fast the code is if it produces the wrong answer!

7

Things to keep in mind

• Simple is often better than complex

• Despite the complexity of modern hardware, often the most

straightforward thing is the fastest.

• Might need to "unlearn" some design patterns

• Optimization is a balance of resources

• Sometimes being wasteful in one area can lead to gains in another

8

Things to keep in mind

• Two ways to make something run in less time:

• Do the same amount of work faster (or in parallel).

• Do less work ← often the easiest solution!

• Don't spend a year rewriting a routine to run 10x faster on a
GPU if you can simply use the routine 10x less frequently.

• Often true regarding I/O.

9

Things to keep in mind

• Performance may be dependent on input

• Need to understand if the test case is representative of how

the code will be used. Particularly true of scientific codes.

• Danger of optimizing the wrong thing

• Tools won't tell you this directly.

10

Tools to help

• Source code control

• git, svn, etc.

• Keep track of your changes and commit often.

• Useful to go back easily to make comparisons.

• Profiler

• Intel Advisor

• perf

• likwid

• Debugger

• gdb, totalview

• Compiler optimization reports

• Listen to the compiler.

• Although cryptic, can often suggest why optimizations like vectorization aren't working.

11

Parallelization with OpenMP

• OpenMP (Open Multi-Processing) is standard that defines an API to support multi-
processing within a programming language.

• Enables parallel execution of code with cores on a single machine. Does not deal with

• Does not directly change the language but defines annotations that a compiler can
recognize to transform code into a parallel version.

• OpenMP is a vast topic, which is the subject of many other courses. Here you will only
need to recognize ideas from the following example.

12

Parallelization with OpenMP

/* Open a parallel region. Threads are created that begin to execute the block simultaneously.

 * Variables declared before this region will be shared (no copies made) between all threads. */

#pragma omp parallel default(shared)

{

 printf("Hello!"); /* Each thread says hello */

 /* Partition the loop and assign each thread an (~)equally sized contiguous subset of the full range. */

 #pragma omp for schedule(static)

 for (int i=0; i < N; i++)

 {

 c[i] = a[i] + k*b[i];

 }

}

13

Parallelization with OpenMP

/* For self-contained parallel regions, keywords can be combined */

#pragma omp parallel for default(shared) schedule(static)

for (int i=0; i < N; i++)

{

 c[i] = a[i] + k*b[i];

}

