
1

Modern Architecture

 

Code Optimization Workshop | 27.6.2022 | Jonathan Coles

2

Data Storage, Data Movement, and Data Processing

How is data stored?

How is data moved between types of storage?

How is data processed?

3

System Memory and Datatypes

1 byte, 8 bits, 1 character
4 bytes, 32 bits, 1 integer, 1 single-precision floating-point number
8 bytes, 64 bits, 1 long (integer), 1 double-precision floating-point number

s e e e e e e e e e e e m

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

What Every Computer Scientist Should Know About Floating-Point Arithmetic, by David Goldberg

s e e e e e e e e m

general memory

4

Memory hierarchy

Main Memory (GB)

CPU

5

Memory hierarchy

Main Memory (GB)

CPU cores

6

Memory hierarchy

Main Memory (GB)

L3/LL (MB)
L2 (~MB)
L1 (KB)

Registers (B)
CPU cores

C
ac

he

7

Memory hierarchy

8

Memory hierarchy

9

Memory hierarchy

10

Memory hierarchy

11

Memory hierarchy

12

Memory hierarchy

13

SIMD, SSE, AVX

• SIMD - Single Instruction Multiple Data

• The same operation is applied simultaneously multiple inputs

• SSE - Streaming SIMD Extensions

• Further iterations produced SSE2, SSE3, SSE4.1, SSE4.2

• 128 bit XMM registers (4 floats, 2 doubles)

• AVX - Advanced Vector Extensions

• 256 bit wide registers (YMM), supports 3 operand instructions

• AVX-512 has 512-bit registers (ZMM)

vs

a

b

c

+

=

a[0]

b[0]

c[0]

a[1]

b[1]

c[1]

a[2] a[3]

b[2] b[3]

c[2] c[3]

+

=

a[0]

b[0]

c[0]

a[1]

b[1]

c[1]

a[2] a[3]

b[2] b[3]

c[2] c[3]

+

=

a[4]

b[4]

c[4]

a[5]

b[5]

c[5]

a[6] a[7]

b[6] b[7]

c[6] c[7]

vs

14

SIMD, SSE, AVX

#pragma omp simd aligned(a,b,c)

for (int i=0; i < N; i++)  
 c[i] = a[i] * b[i];

..B1.5:

 vmovups zmm0, ZMMWORD PTR [r11+r8*4]

 vmulps zmm1, zmm0, ZMMWORD PTR [r10+r8*4]

 vmovups ZMMWORD PTR [r9+r8*4], zmm1

 add r8, 16

 cmp r8, rdi

 jb ..B1.5

15

SIMD, SSE, AVX

#pragma omp simd aligned(a,b,c)

for (int i=0; i < N; i++)  
 c[i] = a[i] * b[i];

..B1.5:

 vmovups zmm0, ZMMWORD PTR [r11+r8*4]

 vmulps zmm1, zmm0, ZMMWORD PTR [r10+r8*4]

 vmovups ZMMWORD PTR [r9+r8*4], zmm1

 add r8, 16

 cmp r8, rdi

 jb ..B1.5

icc -O3 -xCORE-AVX512 -qopt-zmm-usage=high

16

SIMD, SSE, AVX

#pragma omp simd aligned(a,b,c)

for (int i=0; i < N; i++)  
 c[i] = a[i] * b[i];

•aligned keyword tells the compiler that the arrays have been allocated in a way that
puts the address of the array on an address boundary that is optimal for loading data
into a vector.

•Not necessary to achieve vectorization, but compiler can eliminate generated code to
handle processing elements that occur before a natural alignment address.

17

Cache
• Main memory is far from the CPU

• Access is slow compared to data processing speeds

• Cache is a smaller, but faster copy of data from main memory

• CPU manages movement of data to and from main memory and cache

L3/LL (MB)

L2 (~MB)

L1 (KB)

CPU cores

18

Cache

L3/LL (MB)

L2 (~MB)

L1 (KB)

• Cache is (generally) hierarchical and duplicates data.

• Data in L1 (level 1) is also in L2 (level 2) and L3 (level 3)

• Data in L2 is also in L3

• Memory locations that exist in cache don't need to be copied from main memory each
time they are needed.

• If a memory location is already in cache when needed that is called a cache "hit".

• If the memory location isn't in cache and needs to be copied that is a cache "miss".

• If the cache is full and a new memory location needs to be brought in, some cached

data must be "evicted" and copied to the next highest level.

• A simple eviction "policy" may be Least Recently Used (LRU)

19

Cache
• Copying from main memory has a high latency.

• Memory is copied 64 bytes at a time to reduce total latency.

• Most useful if all 64 bytes can be used once in cache!

• 64 bytes constitutes a "cache line".

• 16 floats, 8 doubles

• For any given cache level n the number of cache lines is sizeof(Ln) / 64.

• Cache lines always aligned with memory addresses in multiples of 64 bytes.

• Accessing a byte anywhere in a line brings in the whole line.

cache line
cache line
cache line
cache line

...

64 bytes ... 64 bytes 64 bytes

20

Cache
• Modern CPUs use N-way set associative cache to decide where cache lines are

placed in the cache.

cache line
cache line
cache line
cache line

...

cache line
cache line
cache line
cache line

...

cache line
cache line
cache line
cache line

...

cache line
cache line
cache line
cache line

...

set 0
set 1
set 2
set 3

...

way 0 way 1 way 2 way 3

• Memory address determines "set"

• Next available slot according to eviction policy determine "way".

• Has some implications for effective cache use. What if all memory accesses happen

on addresses that map to the same set?

21

Prefetching

for (i=0; i < N; i+=step_size)  
 c[i] = a[i] * b[i];

• Simple access patterns can be recognized by the CPU

• Cache lines can be brought in before they are needed.

• Overlaps computing with data copying.

• Compiler may also generate explicit prefetch instructions 

if it recognizes patterns.

22

False Sharing

• Cache is "coherent" on most modern systems.

• Copies of the same cache line can exist in caches of different

cores.

• If a cache line is modified anywhere (any byte) by core A and

then accessed by core B (any byte), the entire cache line is first
copied back to main memory and then to the cache of core B
before being read.

• This can lead to "false sharing" where a cache line
unintentionally bounces between the caches of different cores.

• Can easily lead to a 10x drop in performance.

23

False Sharing
Time Core A Core B

1 Read memory at address 1000234

2 64 bytes from 1000232-1000295

loaded into cache A.

3 Write memory at address 1000234. 
Cache line marked "dirty".

4 Read memory at address 1000280

5 64 bytes from 1000232-1000295

written into main memory.

6 64 bytes from 1000232-1000295

loaded into cache B.

7 Write memory at address 1000280.

Cache line marked "dirty".

8 Read memory at address 1000235

9 64 bytes from 1000232-1000295

written into main memory.

10 64 bytes from 1000232-1000295

loaded into cache A.

11 Write memory at address 1000235. 
Cache line marked "dirty".

Main

L1

Core A B

24

False Sharing

• Common example, manual reduction:
int global_array[N_THREADS];

#pragma omp parallel

{

while (!done)

{

int sum=0

for (int i=0; i < N; i++)

{

sum += some_data[i];

}

global_array[my_thread_id] = sum;

}

}

25

False Sharing
• Possible solution: only write to different cache lines.

• Clearly wasteful. OpenMP also supports thread local variables.

int global_array[N_THREADS][16];

#pragma omp parallel

{

while (!done)

{

int sum=0

for (int i=0; i < N; i++)

{

sum += some_data[i];

}

global_array[my_thread_id] = sum;

}

}

26

Hardware aligned software design

• Data access patterns and cache reuse is crucial for
achieving maximum FLOPs of memory-bound applications.

• Goal is to perform maximum number of floating-point
operations for each byte transferred.

27

Hardware aligned software design

• Clearly, not all algorithms map optimally to the underlying
hardware.

• Hardware prefers simple, predictable, linear processing.

• Compare: linear array access, random access, or linked lists.

• Understanding these principles may allow hardware features to
be utilized.

28

Data organization
struct Particle

{

double m;

double r[3];

double v[3];

double a[3];

} p[N];

m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] mv[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0]v[1] r[0] r[1]

64 byte cache line

29

Data organization
struct Particle

{

float m;

float r[3];

float v[3];

float a[3];

} p[N];

m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] mv[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0]v[1] r[0] r[1]

64 byte cache line

30

Data organization

void update_pos(float dt, int N, struct Particle *p)

{

for (i=0; i < N; i++)

{

p[i].r[0] += p[i].v[0] * dt;

p[i].r[1] += p[i].v[1] * dt;

p[i].r[2] += p[i].v[2] * dt;

}

}

m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] mv[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0]v[1] r[0] r[1]X X X X XX X X X X X XX

31

AoS Vectorization - Gather

m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] mv[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0]v[1] r[0] r[1]X X X X XX X X X X X XX

r[0] r[0] r[0]

AVX XMM register AVX XMM register

r[0] v[0] v[0] v[0] v[0]

32

AoS Vectorization - Compute

m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] mv[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0]v[1] r[0] r[1]X X X X XX X X X X X XX

+ dt * =

AVX XMM register

r[0] r[0] r[0] r[0]r[0] r[0] r[0]

AVX XMM register AVX XMM register

r[0] v[0] v[0] v[0] v[0]

33

AoS Vectorization - Scatter

m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0] v[1] v[2] a[0] a[1] a[2] mv[2] a[0] a[1] a[2] m r[0] r[1] r[2] v[0]v[1] r[0] r[1]X X X X XX X X X X X XX

+ dt * =

AVX XMM register

r[0] r[0] r[0] r[0]r[0] r[0] r[0]

AVX XMM register AVX XMM register

r[0] v[0] v[0] v[0] v[0]

34

Data organization
struct Particle

{

float m;

float r[3];

float v[3];

float a[3];

float timestep;

int neighbors[M];

int id;

...

} p[N];

35

Data organization

•Array of Structures (AOS) is conceptually convenient. Groups
all particle properties together.

•Often does not map well to actual usage. In any given function
only a small fraction of those properties are used.

•Leads to misalignment of structure size with cache line size.

Can we do better?

36

Structure of Arrays (SOA)

struct Particles

{

float m[N];

float rx[N], ry[N], rz[N];

float vx[N], vy[N], vz[N];

float ax[N], ay[N], az[N];

} P;

m m m m m m m m m m m m m m m m

64 byte cache line

rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx

...

...

37

Data organization

•Structure of Arrays (SOA) packs each property together.

•Only properties that are needed by a function are loaded into
cache.

•Alignment is excellent. Access can be more predictable for CPU.

•More awkward to do data rearrangement (e.g., sorting)

38

Data organization

void update_pos(float dt, int N, struct Particles *P)

{

for (i=0; i < N; i++)

{

P.rx[i] += P.vx[i] * dt;

P.ry[i] += P.vy[i] * dt;

P.rz[i] += P.vz[i] * dt;

}

}

39

SoA Vectorization - Gather
rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx ...

rx rx rx rx

vx vx vx vx vx vx vx vx vx vx vx vx vx vx vx vx ...

vx vx vx vx

AVX XMM register AVX XMM register

40

SoA Vectorization - Compute
rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx ...

vx vx vx vx vx vx vx vx vx vx vx vx vx vx vx vx ...

+ dt * = rx rx rx rx

AVX XMM register
rx rx rx rx vx vx vx vx

AVX XMM register AVX XMM register
+ dt *

41

SoA Vectorization - Scatter
rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx rx ...

vx vx vx vx vx vx vx vx vx vx vx vx vx vx vx vx ...

+ dt * = rx rx rx rx

AVX XMM register
rx rx rx rx vx vx vx vx

AVX XMM register AVX XMM register
+ dt *

42

Array aliasing in C

• We have implicitly assumed that each array in SoA is distinct.

• Imagine what could happen if vx is actually a pointer to somewhere in rx?

• This is a very real possibility in C, so the compiler can not assume they are distinct.

• These loops can't be automatically vectorized.

for (i=0; i < N; i++)

P.rx[i] += P.vx[i] * dt;

for (i=0; i < N; i++)

P.rx[i] += P.rx[i] * dt;
→

P.rx[0] += P.vx[0] * dt;

P.rx[1] += P.vx[1] * dt;

P.rx[2] += P.vx[2] * dt;

P.rx[3] += P.vx[3] * dt;

P.rx[0] += P.rx[1] * dt;

P.rx[1] += P.rx[2] * dt;

P.rx[2] += P.rx[3] * dt;

P.rx[3] += P.rx[4] * dt;

43

Array aliasing in C

• We have implicitly assumed that each array in SoA is distinct.

• Imagine what could happen if vx is actually a pointer to somewhere in rx?

• This is a very real possibility in C, so the compiler can not assume they are distinct.

• These loops can't be automatically vectorized.

LOOP BEGIN at nb-soa-kda.c(22,5)

 remark #15344: loop was not vectorized: vector dependence prevents vectorization

 remark #15346: vector dependence: assumed OUTPUT dependence between vx[i] (24:9) and vz[i] (26:9)

 remark #15346: vector dependence: assumed OUTPUT dependence between vz[i] (26:9) and vx[i] (24:9)

LOOP END

44

Array aliasing in C

• restrict keyword tells compiler to trust you that no other array aliasing the given one :-D

•#pragma omp simd will also make the same assumption.

real * restrict vx = v->x;

real * restrict vy = v->y;

real * restrict vz = v->z;

real * restrict ax = a->x;

real * restrict ay = a->y;

real * restrict az = a->z;

#pragma omp simd

for (int i=0; i < N; i++)

{

 vx[i] += ax[i] * dt;

 vy[i] += ay[i] * dt;

 vz[i] += az[i] * dt;

}

45

Data organization
void update_accel(float rs, int N, struct Particles *P)

{

for (i=0; i < N; i++)

{

P.ax[i] = P.ay[i] = P.az[i] = 0.0;

for (j=0; j < N; j++)

{

float dx = P.rx[i] - P.rx[j];

float dy = P.ry[i] - P.ry[j];

float dz = P.rz[i] - P.rz[j];

float ir = 1.0 / sqrt(dx*dx + dy*dy + dz*dz + rs*rs);

P.ax[j] += P.m[i] * dx * ir * ir * ir;

P.ay[j] += P.m[i] * dy * ir * ir * ir;

P.az[j] += P.m[i] * dz * ir * ir * ir;

 }

 }

}

46

Data organization

For this example,
cacheline is four
elements

47

Data organization

For this example,
cacheline is four
elements

48

Data organization

For this example,
cacheline is four
elements

49

Data organization

For this example,
cacheline is four
elements

50

Data organization

For this example,
cacheline is four
elements

51

Data organization

For this example,
cacheline is four
elements

52

Data organization

For this example,
cacheline is four
elements

53

Data organization

For this example,
cacheline is four
elements

54

Data organization

For this example,
cacheline is four
elements

55

Data organization

For this example,
cacheline is four
elements

56

Data organization

For this example,
cacheline is four
elements

57

Data organization

For this example,
cacheline is four
elements

58

Data organization

For this example,
cacheline is four
elements

59

Data organization
void update_accel(float rs, int N, struct Particles *P)

{

for (int ti=0; ti < N; ti += TILE_SIZE)

{

for (int ki=0, i=ti; ki < TILE_SIZE; ki++, i++)

P.ax[i] = P.ay[i] = P.az[i] = 0.0;

for (int tj=0; tj < N; tj += TILE_SIZE)

{

for (int ki=0, i=ti; ki < TILE_SIZE; ki++, i++)

{

for (int kj=0, j=tj; kj < TILE_SIZE; kj++, j++)

{

float dx = P.rx[i] - P.rx[j];

float dy = P.ry[i] - P.ry[j];

float dz = P.rz[i] - P.rz[j];

float ir = 1.0 / sqrt(dx*dx + dy*dy + dz*dz + rs*rs);

P.ax[j] += P.m[i] * dx * ir * ir * ir;

P.ay[j] += P.m[i] * dy * ir * ir * ir;

P.az[j] += P.m[i] * dz * ir * ir * ir;

}

 }

 }

}

60

Non-Uniform Memory Access (NUMA)

• Each socket has its local main memory.

• Each socket can access main memory of other sockets.

• Local memory access is faster.

• Best performance when cores access memory local to their sockets.

• Memory only allocated by OS when written to, not when allocated via malloc
(e.g.).

• Known as "first-touch" policy. Memory is allocated on memory local to the first
core to write ("touch") to it.

61

Non-Uniform Memory Access (NUMA)

•Memory is organized by the hardware into pages. Typically a
page size is 4096 bytes.

•Memory is not allocated all at once by first-touch per page.

• If cores on different sockets touch different pages that are part of
the same array, the array will be physically allocated across
different sockets' main memory.

•Logical access will be unaffected but some cores may require
longer to access some elements than others.

•Best is when cores touch the pages they will need and do not
access any other pages.

62

Non-Uniform Memory Access (NUMA)

void first_touch(void *s, int c, size_t nmemb, size_t size)

{

 long PAGE_SIZE = sysconf(_SC_PAGESIZE);

 char *ptr = s;

 #pragma omp parallel for schedule(static)

 for (long i=0; i < size; i += PAGE_SIZE)

 ptr[i] = 0;

}

63

Non-Uniform Memory Access (NUMA)
$ likwid-topology

[...]

**

NUMA Topology

**

NUMA domains:		 2

--

Domain:			 0

Processors:		 (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)

Distances:		 10 21

Free memory:		 253783 MB

Total memory:		 386682 MB

--

Domain:			 1

Processors:		 (20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)

Distances:		 21 10

Free memory:		 266923 MB

Total memory:		 387032 MB

--

64

Hardware vs. Software Model

•Writing optimal software is made more difficult because what is
good for the hardware does not always align with how we would
like to think about a problem.

•Programming languages are more often designed around
making our mental model easy to express.

•Even simple "object oriented" design can map poorly onto the
hardware.

