
Intel® Compiler introduction
November 2021

2
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

▪ Introduction

▪Compiler Optimizations

• High-Level Optimizations

• InterProcedural Optimizations

• Profile-Guided Optimizations

• Auto-Parallelization

• FP model

• Vectorization

• Lab & Demo

• LLVM-based Intel Compilers

Introduction

4
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Introduction to Compilers

Source Code

High level

Readable

Abstract

…

Target Code

Low level

Target ISA

Hard to read

…

COMPILER

5
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Architecture – simplified model
Source

Code

Target

Code

Intermediate

Representation

(IR)

Optimizer

Code

Generator

icc

icpc

icl

ifort

Compiler

Driver

Compiler Optimizations

7
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Common optimization options

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen

-prof-use

Optimize for speed across the entire program (“prototype switch”)

fast options definitions changes over time!

-fast
same as:
-ipo –O3 -no-prec-div –static –fp-model fast=2 -xHost

OpenMP support -qopenmp

Automatic parallelization -parallel

tinyurl.com/icc-user-guide

https://tinyurl.com/icc-user-guide

8
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

High-Level Optimizations
Basic Optimizations with icc -O…

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations
excludes optimizations tending to increase code size

-O2 default for icc/icpc (except with -g)
includes auto-vectorization; some loop transformations, e.g. unrolling, loop interchange;
inlining within source file;
start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations
including cache blocking, loop fusion, prefetching, …
suited to applications with loops that do many floating-point calculations or process large data sets

9
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

InterProcedural Optimizations (IPO)
Multi-pass Optimization

icc -ipo
Analysis and optimization across function and/or source file boundaries, e.g.

▪ Function inlining; constant propagation; dependency analysis; data & code layout; etc.

2-step process:

▪ Compile phase – objects contain intermediate representation

▪ “Link” phase – compile and optimize over all such objects

▪ Seamless: linker automatically detects objects built with -ipo and their compile options

▪ May increase build-time and binary size

▪ But build can be parallelized with -ipo=n
▪ Entire program need not be built with IPO, just hot modules

Particularly effective for applications with many smaller functions

Get report on inlined functions with -qopt-report-phase=ipo

10
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

InterProcedural Optimizations
Extends optimizations across file boundaries

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO

Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

icc/ifort

11
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Profile-Guided Optimizations (PGO)
▪ Static analysis leaves many questions open for the optimizer like:

• How often is x > y

• What is the size of count

• Which code is touched how often

▪ Use execution-time feedback to guide (final) optimization

▪ Enhancements with PGO:

• More accurate branch prediction

• Basic block movement to improve instruction cache behavior

• Better decision of functions to inline (help IPO)

• Can optimize function ordering

• Switch-statement optimization

• Better vectorization decisions

if (x > y)

do_this();

else

do that();

for(i=0; i<count; ++i)

do_work();

Compile sources
with the prof-gen

option

Run the
Instrumented

Executable

(one or more times)

Compile with
prof-use option

12
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

PGO Usage: Three-Step Process

Compile + link to add instrumentation

icc –prof-gen prog.c –o prog

Execute instrumented program

./prog (on a typical dataset)

Compile + link using feedback

icc –prof-use prog.c –o prog

Dynamic profile:
12345678.dyn

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
prog

Instrumented executable:
prog

13
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math Libraries

▪ icc comes with Intel’s optimized math libraries

▪ libimf (scalar) and libsvml (scalar & vector)

▪ Faster than GNU* libm

▪ Driver links libimf automatically, ahead of libm

▪ Additional functions (replace math.h by mathimf.h)

▪Don’t link to libm explicitly! -lm

▪ May give you the slower libm functions instead

▪ Though the Intel driver may try to prevent this

▪ gcc needs -lm, so it is often found in old makefiles

14
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-Parallelization

▪ Based on OpenMP* runtime

▪ Compiler automatically translates loops into equivalent multithreaded code with using this
option:

-parallel

▪ The auto-parallelizer detects simply structured loops that may be safely executed in parallel,
and automatically generates multi-threaded code for these loops.

▪ The auto-parallelizer report can provide information about program sections that were
parallelized by the compiler. Compiler switch:

-qopt-report-phase=par

15
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪Accuracy
• Produce results that are “close” to the correct value
• Measured in relative error, possibly in ulp

▪ Performance
• Produce the most efficient code possible

▪ Reproducibility

• Produce consistent results
• From one run to the next
• From one set of build options to another
• From one compiler to another
• From one platform to another

Floating-Point (FP) Programming Objectives

These objectives usually conflict!
Use of compiler options lets you control the tradeoffs.

Different compilers have different defaults.

16
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Floating Point Reproducibility Controls
-fp-model
▪ fast [=1] allows value-unsafe optimizations (default)

▪ fast=2 allows a few additional approximations

▪ precise value-safe optimizations only

▪ source | double | extended imply “precise” unless overridde

▪ except enable floating-point exception semantics

▪ strict precise + except + disable fma +
don’t assume default floating-point environment

▪ consistent most reproducible results between different
processor types and optimization options

-fp-model precise -fp-model source
▪ recommended for best reproducibility

▪ also for ANSI/ IEEE standards compliance, C++ & Fortran

▪ “source” is default with “precise” on Intel 64

Vectorization

18

❑ Scalar mode
– one instruction produces

one result

– E.g. vaddss, (vaddsd)

❑ Vector (SIMD) mode
– one instruction can produce

multiple results

– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =

x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

8 doubles for AVX-512

for (i=0; i<n; i++) z[i] = x[i] + y[i];

SIMD: Single Instruction, Multiple Data

19
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Many ways to vectorize

Ease of use
Compiler:

Auto-vectorization (no change of code)

Programmer
control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* SIMD directives

20

Auto-vectorization of Intel Compilers

#include <math.h>

void foo (float * theta, float * sth) {

int i;

for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);

}

vmovups zmm1, ZMMWORD PTR [r12+rdi*4] #5.21

vextractf64x4 ymm2, zmm1, 1 #5.21

vcvtps2pd zmm3, ymm1 #5.21

vaddpd zmm0, zmm16, zmm3 #5.30

vcvtps2pd zmm4, ymm2 #5.21

vaddpd zmm17, zmm16, zmm4 #5.30

call QWORD PTR [__svml_sin8@GOTPCREL+rip] #5.17

vmovaps zmm18, zmm0 #5.17

vmovaps zmm0, zmm17 #5.17

call QWORD PTR [__svml_sin8@GOTPCREL+rip] #5.17

vcvtpd2ps ymm2, zmm18 #5.17

vcvtpd2ps ymm1, zmm0 #5.17

vinsertf64x4 zmm3, zmm2, ymm1, 1 #5.17

vmovups ZMMWORD PTR [rsi+rdi*4], zmm3 #5.8

vcvtss2sd xmm16, xmm16, DWORD PTR [r12+r14*4] #5.17

vaddsd xmm0, xmm16, QWORD PTR .L_2il0floatpacket.1[rip] #5.17

call sin #5.17

vcvtsd2ss xmm0, xmm0, xmm0 #5.8

vmovss DWORD PTR [r13+r14*4], xmm0

godbolt.org/z/dWvEh7GGc

https://godbolt.org/z/dWvEh7GGc

21
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Types for Intel® Architecture

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

AVX
Vector size: 256 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 4, 8, 16, 32

Intel® AVX-512

Vector size: 512 bit
Data types:

• 8, 16, 32, 64 bit integer

• 32 and 64 bit float

VL: 8, 16, 32, 64

22
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Evolution of SIMD for Intel Processors

MMX MMX MMX MMX MMX MMX MMX MMX

SSE SSE SSE SSE SSE SSE SSE SSE

SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2

SSE3 SSE3 SSE3 SSE3 SSE3 SSE3 SSE3

Prescott
2004

SSSE3 SSSE3 SSSE3 SSSE3 SSSE3 SSSE3

SSE4.1 SSE4.1 SSE4.1 SSE4.1 SSE4.1

SSE4.2 SSE4.2 SSE4.2 SSE4.2

AVX AVX AVX

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

Merom
2006

Willamette
2000

Penryn
2007

AVX2 AVX2 AVX2

AVX-512 F/CD AVX-512 F/CD

AVX-512
ER/PR

AVX-512
VL/BW/DQ

Nehalem
2007

Sandy Bridge
2011

Haswell
2013

Knights
Landing

2015

Skylake
server
2015

128b

SIMD

256b

SIMD

512b

SIMD

23
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Basic Vectorization Switches I

-x<code>

▪ Might enable Intel processor specific optimizations

▪ Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

<code> indicates a feature set that compiler may target (including instruction sets and
optimizations)

▪ Microarchitecture code names: BROADWELL, HASWELL, IVYBRIDGE, KNL, KNM,
SANDYBRIDGE, SILVERMONT, SKYLAKE, SKYLAKE-AVX512

▪ SIMD extensions: CORE-AVX512, CORE-AVX2, CORE-AVX-I, AVX, SSE4.2, etc.

▪ Example: icc -xCORE-AVX2 test.c

ifort -xSKYLAKE test.f90

24
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Basic Vectorization Switches II
-ax<code>

• Multiple code paths: baseline and optimized/processor-specific

• Optimized code paths for Intel processors defined by <code>

• Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

• Baseline code path defaults to -msse2 (/arch:sse2)

• The baseline code path can be modified by –m<code> or –x<code>

• Example: icc -axCORE-AVX512 -xAVX test.c

icc -axCORE-AVX2,CORE-AVX512 test.c

-m<code>

▪ No check and no specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

▪ Missing check can cause application to fail in case extension not available

▪ -xHost

25
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® AVX-512 generation for SKX/CLX

Compile with processor-specific option -xCORE-AVX512

By default it will not optimize for more restrained ZMM register usage which
works best for certain applications

A new compiler option -qopt-zmm-usage=low|high is added to
enable a smooth transition from AVX2 to AVX-512

icpc -c -xCORE-AVX512 -qopenmp -qopt-report:5 foo.cpp

remark #15305: vectorization support: vector length 4

…

remark #15321: Compiler has chosen to target XMM/YMM

vector. Try using -qopt-zmm-usage=high to override

…

remark #15478: estimated potential speedup: 5.260

tinyurl.com/tunesimd

void foo(double *a, double *b, int size) {

#pragma omp simd

for(int i=0; i<size; i++) {

b[i]=exp(a[i]);

}

}

https://tinyurl.com/tunesimd

26
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Looking for best compiler options?
It depends!
▪ workload, hw, OS, compiler version, memory allocation, etc.
▪ take a look on benchmark results and options for reference:

SPECint®_rate_base_2017: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4

SPECfp®_rate_base_2017: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4

SPEC HPC2021: -qopt-zmm-usage=high -Ofast -xCORE-AVX512 -qopenmp -ipo
-qopt-multiple-gather-scatter-by-shuffles -fimf-precision=low:sin,sqrt
[for IFORT: -align array64byte -nostandard-realloc-lhs]

27
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Reports – Optimization Report
▪ -qopt-report[=n]: tells the compiler to generate an optimization report

n: (Optional) Indicates the level of detail in the report. You can specify values 0 through 5. If you
specify zero, no report is generated. For levels n=1 through n=5, each level includes all the
information of the previous level, as well as potentially some additional information. Level 5
produces the greatest level of detail. If you do not specify n, the default is level 2, which produces a
medium level of detail.

▪ -qopt-report-phase[=list] specifies one or more optimizer phases for which
optimization reports are generated.
loop: the phase for loop nest optimization

vec: the phase for vectorization

par: the phase for auto-parallelization

all: all optimizer phases

▪ -qopt-report-filter=string: specified the indicated parts of your application, and
generate optimization reports for those parts of your application.

28
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

28

Reasons for Vectorization Failures and Inefficiency

Most frequent reasons:

▪ Data dependence

▪ Alignment

▪ Unsupported loop structure

▪ Non-unit stride access

▪ Function calls

▪ Non-vectorizable mathematical functions

All those are common and will be explained in detail next!

29
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

29

Data Dependency and vectorization

Example:
Despite cyclic dependency, the loop can be vectorized for SSE or AVX in
case of VL being max. 3 times the data type size of array A.

Loop-independent dependence

Loop-carried dependence

DO I = 1, 10000

A(I) = B(I) * 17

X(I+1) = X(I) + A(I)

ENDDO

DO I = 1, N

A(I + 3) = A(I) + C

END DO

Anti DependencyFlow Dependency Output Dependency

read-after-write write-after-read write-after-write

X = …

… = X

… = X

X = …

X = …

X = …

30
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

30

Failing Disambiguation

▪ Many potential dependencies detected by the compiler result from unresolved memory
disambiguation:

The compiler has to be conservative and has to assume the worst case regarding “aliasing”!

Example:

▪ Without additional information (like inter-procedural knowledge) the compiler has to assume a and b
to be aliased!

▪ Use directives, switches and attributes to aid disambiguation!

▪ This is programming language and operating system specific

▪ Use with care as the compiler might generate incorrect code in case the hints are not fulfilled!

void test(int *a, int *b, int *c, int* d, int* e)

{

for (int i = 0; i < 10000; i++) b[i] = a[i]+c[i]*d[i]+e[i];

}

godbolt.org/z/qf4TKdEca

https://godbolt.org/z/qf4TKdEca

31
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

31

Disambiguation Hints I
▪ Disambiguating memory locations of pointers in C99: -std=c99

▪ Intel® C++ Compiler also allows this for other modes
(e.g. -std=c89, -std=c++11, …), too - not standardized, though: -restrict

▪ Declaring pointers with keyword restrict asserts compiler that they only reference individually
assigned, non-overlapping memory areas

▪ Also true for any result of pointer arithmetic (e.g. ptr + 1 or ptr[1])

▪ Example:
void scale(int *a, int * restrict b, int *c, int* d, int* e)

{

for (int i = 0; i < 10000; i++) b[i] = a[i]+c[i]*d[i]+e[i];

}

godbolt.org/z/r34hPaz3j

https://godbolt.org/z/r34hPaz3j

32
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

32

Disambiguation Hints II

▪ Directive:

#pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

▪ For C/C++:

• Assume no aliasing at all (dangerous!): -fno-alias

• No aliasing between function arguments: -fargument-noalias

• No aliasing between function arguments and global storage: -fargument-noalias-global

33
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Report – An Example
$ icc -c -xcommon-avx512 -qopt-report=3 -qopt-report-phase=loop,vec foo.c

Creates foo.optrpt summarizing which optimizations the compiler performed or tried to perform.
Level of detail from 0 (no report) to 5 (maximum).
-qopt-report-phase=loop,vec asks for a report on vectorization and loop optimizations only
Extracts:

LOOP BEGIN at foo.c(4,3)
Multiversioned v1

remark #25228: Loop multiversioned for Data Dependence…
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….

LOOP END

LOOP BEGIN at foo.c(4,3)
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END

#include <math.h>

void foo (float * theta, float * sth) {

int i;

for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);

}

godbolt.org/z/dWvEh7GGc

https://godbolt.org/z/dWvEh7GGc

34
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Report – An Example
$ icc -c -xcommon-avx512 -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -
fargument-noalias foo.c
…

LOOP BEGIN at foo.c(4,3)
…

remark #15417: vectorization support: number of FP up converts: single precision to double precision 1
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 111
remark #15477: vector cost: 10.310
remark #15478: estimated potential speedup: 10.740
remark #15482: vectorized math library calls: 1
remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END

report to stderr
instead of foo.optrpt

godbolt.org/z/dWvEh7GGc

#include <math.h>

void foo (float * theta, float * sth) {

int i;

for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);
}

https://godbolt.org/z/dWvEh7GGc

35
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Report – An Example
$ icc -S -xcommon-avx512 -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -
fargument-noalias foo.c
LOOP BEGIN at foo2.c(4,3)
…
remark #15305: vectorization support: vector length 32
remark #15300: LOOP WAS VECTORIZED

remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 109
remark #15477: vector cost: 5.250
remark #15478: estimated potential speedup: 20.700
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END

$ grep sin foo.s
call __svml_sinf16_b3

#include <math.h>

void foo (float * theta, float * sth) {

int i;

for (i = 0; i < 512; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

godbolt.org/z/dWvEh7GGc

https://godbolt.org/z/dWvEh7GGc

36

Cache-hierarchy:
• For data and instructions
• Usually inclusive caches
• Races for resources
• Can improve access speed
• Cache-misses & cache-hits

Cache-line:
• Always full 64 byte block
• Minimal granularity of every load/store
• Modifications invalidate entire cache-line (dirty bit)

Cache-Hierarchy & Cache-Line

L2 Cache

L3 Cache

I DL1 Caches

Memory

F
e

tc
h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it

0x1234
0x5678

Instructions

…

Instructions

Instructions

Instructions

1: mov 0x1234, %rbx

2: mov 0x5678, %rcx

3: mov %rcx, 0x1234

4: …

5: …

6: …
Instructions

65
4
32

1

0x1234

0x1234

0x5678

0x5678

0x1234
0x5678

0x1234

0x1234

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-hit

65
4
32

1

37

What happens if data spawns across cache-lines?
• Loads/stores require all cache-lines of a

datum to be loaded into cache.
• In worst case this doubles load/store times:

Both cache-lines n and n+1 need to be loaded up to L1 cache to access x!

Align data by padding or explicitly by compiler attributes to fit into exactly one cache-line, e.g.:

Alignment

Memory

…

Cache-line n

Cache-line n+1

…

62 byte

#pragma pack(2)

struct {

… // 62 byte

int x; // 4 byte

} data;

#pragma pack(2)

struct {

… // 62 byte

… // 2 byte

int x; // 4 byte

} data;

38
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

38

Compiler Helps with Alignment SSE: 16 bytes

AVX: 32 bytes

AVX512 64 bytes

A[0] A[1] A[2] A[3] A[4] A[5]

A[2] A[3] A[4] A[5]

A[6] A[7] A[8]

Vectorized body :

A[0] A[1]

Peel :

A[8]A[6] A[7]

Remainder :

Compiler can split loop in 3 parts to have aligned access in
the loop body

39
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

39

Data Alignment for C/C++
▪ Aligned heap memory allocation by intrinsic/library call:

void* aligned_alloc(std::size_t alignment, std::size_t size); (since C++17)

void* _mm_malloc(int size, int base)

int posix_memaligned(void **p, size_t base, size_t size)

▪ Automatically allocate memory with the alignment of that type using new operator:

#include <aligned_new>

▪ Align attribute for variable declarations:

alignas specifier (since C++11):

alignas(64) char line[128];

<var> __attribute__((aligned(base)))

40
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

40

Compiler Alignment Hints for C/C++

▪ Hint that start address of an array is aligned (Intel Compiler only):
__assume_aligned(<array>, base)

▪ #pragma vector [aligned|unaligned]

▪ Only for Intel Compiler

▪ Asserts compiler that aligned memory operations can be used for all data accesses in loop
following directive

▪ Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

41

Alignment Hints for Fortran

▪ Align variables:
!DIR$ ATTRIBUTES ALIGN: base :: variable

▪ Align data items globally:

-align array<n>byte

Aligns the start of arrays on an n-byte boundary

▪ !DIR$ VECTOR [ALIGNED|UNALIGNED]

▪ Asserts compiler that aligned memory operations can be used for all data accesses in loop following
directive

▪ Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

▪ Hint that an entity in memory is aligned:
!DIR$ ASSUME_ALIGNED address1:base [, address2:base] ...

42
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

42

Unsupported Loop Structure
Loops where compiler does not know the iteration count:

▪ Upper/lower bound of a loop are not loop-invariant

▪ Loop stride is not constant

▪ Early bail-out during iterations (e.g. break, exceptions, etc.)

▪ Too complex loop body conditions for which no SIMD feature instruction exists

▪ Loop dependent parameters are globally modifiable during iteration
(language standards require load and test for each iteration)

Transform is possible, e.g.:

godbolt.org/z/qPed69Tsh

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

int local_ub = x->bound;

for(int i = 0; i < local_ub; i++)

a[i] = 0;

}

loop was not vectorized: loop control variable i was found, but loop
iteration count cannot be computed before executing the loop

https://godbolt.org/z/qPed69Tsh

43
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

43

Memory access patterns

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit stride (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant stride:

A[0].y A[1].x A[1].y A[2].x A[2].y

A[0].x A[1].x A[2].x A[3].x

A[3] A[0] A[1]

Random access:

A[2]

A[0] A[1] A[2] A[3]

44
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

44

Memory access patterns

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit stride (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant stride:

A[0].y A[1].x A[1].y A[2].x A[2].y

A[0].x A[1].x A[2].x A[3].x

A[3] A[0] A[1]

Random access:

A[2]

A[0] A[1] A[2] A[3]

45
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

45

What is Intel® SDLT?

▪ The SIMD Data Layout Template library is a C++11 template library to quick convert Array
of Structures to Structure of Arrays representation

▪ SDLT vectorizes your code by making memory access contiguous, which can lead to more
efficient code and better performance

A

Z[i+0] Z[i+1] Z[i+2] Z[…]

Y[i+0] Y[i+1] Y[i+2] Y[…]

X[i+0] X[i+1] X[i+2] X[…]

vector_register_10 1 2 3

X

A[i+0]

Y Z X

A[i+1]

Y Z X

A[i+2]

Y Z X

A[i+3]

Y Z

vector_register_10 1 2 3

AOS SOA

tinyurl.com/intelsdlt tinyurl.com/sdltdocumentation

https://tinyurl.com/intelsdlt
https://tinyurl.com/sdltdocumentation

46
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® SDLT Example

#include <iostream>

#define N 1024

typedef struct RGBs {

float r;

float g;

float b;

} RGBTy;

void main()

{

RGBTy a[N];

#pragma omp simd

for (int k = 0; k<N; ++k) {

a[k].r = k*1.5; // non-unit stride access

a[k].g = k*2.5; // non-unit stride access

a[k].b = k*3.5; // non-unit stride access

}

std::cout << "k =" << 10 <<

", a[k].r =" << a[10].r <<

", a[k].g =" << a[10].g <<

", a[k].b =" << a[10].b << std::endl;

}

godbolt.org/z/GTfWWY4P4

AVX-512

AVX2

https://godbolt.org/z/GTfWWY4P4

47
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® SDLT Example
#include <iostream>

#include <sdlt/sdlt.h>

#define N 1024

typedef struct RGBs {

float r;

float g;

float b;

} RGBTy;

SDLT_PRIMITIVE(RGBTy, r, g, b)

void main()

{

// Use SDLT to get SOA data layout

sdlt::soa1d_container<RGBTy> aContainer(N);

auto a = aContainer.access();

// use SDLT Data Member Interface to access struct members r, g, and b.

// achieve unit-stride access after vectorization

#pragma omp simd

for (int k = 0; k<N; ++k) {

a[k].r() = k*1.5; // non-unit stride access

a[k].g() = k*2.5; // non-unit stride access

a[k].b() = k*3.5; // non-unit stride access

}

std::cout << "k =" << 10 <<

", a[k].r =" << a[10].r() <<

", a[k].g =" << a[10].g() <<

", a[k].b =" << a[10].b() << std::endl;

}

AVX-512

godbolt.org/z/z8dGooGbv

https://godbolt.org/z/z8dGooGbv

48
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

48

Use function calls inside loop
▪ Success of in-lining can be verified using the optimization report:
-qopt-report=<n> -qopt-report-phase=ipo

Intel compilers offer a large set of switches, directives and language extensions to control
in-lining globally or locally, e.g.:

• #pragma [no]inline (C/C++), !DIR$ [NO]INLINE (Fortran):
Instructs compiler that all calls in the following statement can be in-lined or may never be in-lined

• #pragma forceinline (C/C++), !DIR$ FORCEINLINE (Fortran):
Instructs compiler to ignore the heuristic for in-lining and to inline all calls in the following
statement

• See section “Inlining Options” in compiler manual for full list of options

▪ IPO offers additional advantages to vectorization

• Inter-procedural alignment analysis

• Improved (more precise) dependency analysis

49
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

49

Vectorizable Mathematical Functions
▪ Calls to most mathematical functions in a loop body can be vectorized using “Short

Vector Math Library” (SVML):

• SVML (libsvml) provides vectorized implementations of different mathematical functions

• From 18.0 version also has scalar implementation

• Enable scalar math library functions using the Short Vector Math Library (SVML) via

-fimf-use-svml=true

• Optimized for latency compared to the VML library component of Intel® MKL which realizes same
functionality but optimized for throughput

▪ Routines in libsvml can also be called explicitly, using intrinsics (C/C++)

▪ These mathematical functions are currently supported:

acos acosh asin asinh atan atan2 atanh cbrt

ceil cos cosh erf erfc erfinv exp exp2

fabs floor fmax fmin log log10 log2 pow

round sin sinh sqrt tan tanh trunc

Lab

51
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

51

Hands-on exercises

▪ git clone https://github.com/ivorobts/compiler-optimization.git

▪Use Vectorization_Lab.pdf for instructions

• C++/Fortran – choose what you prefer

▪ Build – on login node

▪ Run – on compute node:

sbatch -n1 -p cm2_inter -w "i22r07c05s01" -o vec_res.txt job.sh

source /opt/intel/oneapi/setvars.sh

https://github.com/ivorobts/compiler-optimization.git
https://github.com/ivorobts/compiler-optimization.git

52
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

52

Exercise – vectorization/matvector/c

▪ Go to the folder vectorization/matvector/c

▪ Build without vectorization:

icc -O2 –xAVX -no-vec multiply.c driver.c -o matvector

▪ Run: ./matvector

53
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

53

Exercise – vectorization/matvector/c

▪ Go to the folder vectorization/matvector/c

▪ Build with vectorization:

icc -O2 –xAVX multiply.c driver.c -o matvector

▪ Run: ./matvector

▪ Please have a look at the optimization report:

icc -O2 –xAVX multiply.c driver.c -o matvector -qopt-

report=3

▪ No improvement. Why?

54
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

54

Exercise – Unit Strides

▪ Please have a look at the multiply.c

• What is inc_i and inc_j? Does compiler know their value in compile-time?

▪ Build with vectorization and check optimization report:

icc -O2 –xAVX multiply.c driver.c -o matvector -qopt-

report=3

▪ Run: ./matvector

▪ Are loops vectorized now?

Solution: go to the folder vectorization/matvector/c/solutions/unit-stride

55
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

55

Exercise – Multiversioning

▪ Check opt report again

• Please pay attention at 2 block. What does it mean?

▪ Build with vectorization and check optimization report:

icc -O2 –xAVX multiply.c driver.c -o matvector -qopt-report=3

▪ Run: ./matvector

▪ Are loops vectorized now?
Solution: go to the folder vectorization/matvector/c/solutions/multiversioning_off

56
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

56

Exercise – Vectorization of Inner Loop

▪ Please have a look at the compiler report for multiply.c

• The compiler needs additional information to recognize the assumed dependencies

▪Can we provide information without modifying the code?

icc -O2 –xAVX multiply.c driver.c -o matvector -

fargument-noalias

▪ Run: ./matvector

▪ Are loops vectorized now?
Solution: -fargument-noalias option

57
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

57

Exercise – Vectorization of Inner Loop

▪ Please have a look at the compiler report for multiply.c

• The compiler needs additional information to recognize the assumed dependencies

▪Can we provide information for a specific loop?

• Please, add #pragma ivdep to the appropriate place

icc -O2 –xAVX multiply.c driver.c -o matvector

▪ Run: ./matvector

▪ Are loops vectorized now?

Solution: go to the folder vectorization/matvector/c/solutions/ivdep

58
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

58

Exercise – Vectorization of Inner Loop

▪ Please have a look at the compiler report for multiply.c

• The compiler needs additional information to recognize the assumed dependencies

▪Can we provide information for a specific pointer?

• Please, add restrict keyword to the appropriate place and add -
restrict option

icc -O2 –xAVX multiply.c driver.c -o matvector -restrict

▪ Run: ./matvector

▪ Are loops vectorized now?
Solution: go to the folder vectorization/matvector/c/solutions/restrict

59
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

59

Exercise – Alignment Improvements

▪ Please have a look at driver.c and check how a, b and c are
allocated

• Can we guarantee alignment of these arrays? How?

▪ Are loops vectorized now?

Solution: go to the folder vectorization/matvector/c/solutions/align

60
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

60

Exercise – Alignment Improvements

▪ Please have a look at driver.c and check how a, b and c are
allocated

• Can we guarantee alignment of these arrays? How?

• Attributes?

• Compiler directives?

▪ Are loops vectorized now?

Solution #1: go to the folder vectorization/matvector/c/solutions/align
Solution #2: go to the folder vectorization/matvector/c/solutions/assume_aligned

61
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

61

Exercise – Alignment Improvements

▪Advanced:

• Please look closer to each row of a matrix

• Can we apply the knowledge about SIDM vector size?

• What happens with the remainder elements?

▪Are loops vectorized now?

Solution: go to the folder vectorization/matvector/c/solutions/align

NBody Demo

63
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

63

▪ Let’s consider a distribution of point masses located at r_1,…,r_n
and have masses m_1,…,m_n

▪We want to calculate the position of the particles after a certain time
interval using the Newton law of gravity

struct Particle

{

public:

Particle() { init();}

void init()

{

pos[0] = 0.; pos[1] = 0.; pos[2] = 0.;

vel[0] = 0.; vel[1] = 0.; vel[2] = 0.;

acc[0] = 0.; acc[1] = 0.; acc[2] = 0.;

mass = 0.;

}

real_type pos[3];

real_type vel[3];

real_type acc[3];

real_type mass;

};

Nbody gravity simulation

64
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

64

Nbody kernel implementation
GSimulation.cpp:

...

for (i = 0; i < n; i++) { // update acceleration

for (j = 0; j < n; j++) {

real_type distance, dx, dy, dz;

real_type distanceSqr = 0.0;

real_type distanceInv = 0.0;

dx = particles[j].pos[0] - particles[i].pos[0];

dy = particles[j].pos[1] - particles[i].pos[1];

dz = particles[j].pos[2] - particles[i].pos[2];

distSqr = dx*dx + dy*dy + dz*dz + softeningSquared;

distInv = 1.0 / sqrt(distanceSqr);

particles[i].acc[0] += dx * G * particles[j].mass * distInv * distInv * distInv;

particles[i].acc[1] += …

particles[i].acc[2] += …

}

}

...

65
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

65

nbody-demo/ver0

▪ Use different compiler options and try to target the underlying architecture:

▪ -xCORE-AVX2 or -xHost

▪ -O3

▪ -ipo

▪ -prof-gen and -prof-use

▪ -parallel

▪ Explain why some options don‘t bring additional speed-up. Try some more tests here:

git clone https://github.com/fbaru-dev/nbody-demo.git

https://github.com/fbaru-dev/nbody-demo.git

66
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

66

nbody-demo/ver4

▪ Go to the folder nbody-demo/ver4

▪ Type make to compile code.

▪ Type make run to run the test and measure the timing.

▪ Please have a look at the compiler report.

LLVM-based Intel Compilers

68
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Architecture – simplified model
Source

Code

Target

Code

Intermediate

Representation

(IR)

Optimizer

Code

Generator

icc

icpc

icl

ifort

Compiler

Driver

LLVM
or

IL0

69

Intel Compiler Transition: Classic to LLVM

Start Your Migration Now

▪ Expand to XPUs

▪ Modern LLVM Infrastructure

Intel® oneAPI DPC++/C++ Compiler

▪ Use for all new projects

▪ Migrate legacy projects

Intel® Fortran Compiler (Beta)

▪Test drive now & Provide feedback

▪Prepare for migration

Performance

Features &

Intel oneAPI DPC++/C++ Compiler

(CPU, GPU, FPGA)

Intel C++ Compiler Classic

(CPU only)

Intel Fortran Compiler (Beta)

(CPU, GPU)

Intel Fortran Compiler Classic

(CPU only)

Performance, Quality, and Support Continues

Performance

Features &

70

Intel® Compilers

Intel Compiler Target
OpenMP
Support

OpenMP
Offload
Support

Included in
oneAPI
Toolkit

Intel® C++ Compiler Classic, IL0
icc/icpc/icl

CPU Yes No HPC

Intel® Fortran Compiler Classic, IL0
ifort

CPU Yes No HPC

Intel® Fortran Compiler(Beta), LLVM
ifx

CPU, GPU Yes Yes HPC

Intel® oneAPI DPC++/C++ Compiler, LLVM
dpcpp

CPU, GPU,
FPGA*

Yes Yes Base

Intel® oneAPI DPC++/C++ Compiler, LLVM
icx/icpx

CPU
GPU*

Yes Yes Base

Cross Compiler Binary Compatible and Linkable!

tinyurl.com/oneapi-standalone-components

https://tinyurl.com/oneapi-standalone-components

71

What is ICX?

▪Close collaboration with Clang*/LLVM* community

▪ ICX is Clang front-end (FE), LLVM infrastructure

▪ PLUS Intel proprietary optimizations and code generation

▪Clang FE pulled down frequently from open source, kept current

▪ Always up to date in ICX

▪ We contribute! Pushing enhancements to both Clang and LLVM

▪ Enhancements working with community – better vectorization, opt-
report, for example

Intel Confidential 71

tinyurl.com/blog-on-icx

https://tinyurl.com/blog-on-icx

72

Major Changes Overview

▪Written for ICC to ICX transition

▪ LLVM is a different compilation technology. EXPECT differences

▪Options: undocumented IL0 options all ignored

• icx -qnextgen-diag option to get a list of supported and unsupported options

▪ IPO/PGO - new LLVM LTO/PGO instead

▪ FP Model is not the same

▪ Intrinsics are handled very differently

▪ C/C++ Pragmas – a lot of Intel proprietary ones not supported

• enable -Wunknown-pragmas to warn on unsupported pragmas

▪ __INTEL_LLVM_COMPILER is defined instead of __INTEL_COMPILER

tinyurl.com/icc-to-icx-migration-guide

https://tinyurl.com/icc-to-icx-migration-guide

73

Major Changes Overview

▪Not supported features:

• Auto-parallelization (-parallel option)

• Intel Cilk™ Plus (pragma simd) replaced by OpenMP pragmas

• -ax not implemented yet

▪ Optimization reports

▪ Analyzers may be affected

• Advisor needs opt reports for Vectorization Advisor

• VTune can’t get code lines/clear symbols for OpenMP regions

▪no macOS support

74

Fortran Essentials and Specifics

Intel® Fortran Compiler Classic

• ifort - Intel Fortran front end + IL0 Intel proprietary backend

• v2021.x in oneAPI HPC Toolkit

• CPU only, traditional compiler. NO OFFLOAD TO GPU

• Recommended Fortran Compiler for 2021 for Production Use

Intel® Fortran Compiler (Beta)

• ifx – Intel Fortran front end + LLVM backend

• Same “ifort” front-end v2021.x

• Offload to Intel GPUs via OpenMP

• Binary compatible with DPCPP, ICX, ICC, IFORT

tinyurl.com/ifort-to-ifx-migration-guide

https://tinyurl.com/ifort-to-ifx-migration-guide

75

IFX Status, Setting Expectations
• BETA (Nov 2021)

• IFX CORE Fortran LANGUAGE

• F77, F90/95, majority of F03 and F08

• Use -stand f03 if you want warnings for features not in F2003

• Use -stand f08 –warn errors options to abort if any F08 or above detected.

• IFX OpenMP Support

• All OpenMP 4.5 features supported (2021.4 version)

• Substantial part of OpenMP5.0/5.1

software.intel.com/content/www/us/en/develop/articles/fortran-language-and-openmp-features-in-ifx.html

https://software.intel.com/content/www/us/en/develop/articles/fortran-language-and-openmp-features-in-ifx.html

76

QUESTIONS?

77
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Notices & Disclaimers
▪ This document contains information on products, services and/or processes in development. All information provided here is subject to change

without notice.

▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such
as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or
its subsidiaries in the U.S. and other countries. Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

78

