
1

Managing HPC Application Software with SPACK@LRZ

Leibniz-Rechenzentrum | 2021.11.02| Gerald Mathias / Gilbert Brietzke

Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

2Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Motivation: How to manage the dependency-hell?

• A high-level application may just be the „tip of an iceberg“
when considering a feature-rich configuration of the software
with all it‘s dependencies

• Example: OpenSource CFD-Package OpenFOAM

• Spack may install many different variants of the same
package:
• Built with different compilers
• Built with different MPI-implmentations
• Built with different build-options

e.g.: feature-rich OpenFOAM incl. vtk & paraview

140 dependencies

3Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack is a flexible package manager targeted at HPC-systems

• Spack available at github ‚ready to use‘
few prerequisits only:
• a basic python,
• make and a c/c++-compiler
• tar/gzip/bzip2/xz
• patch + git + curl
• pgp (for gnupg2 commands only)

In principle it may be as simple as:
git clone https://github.com/spack/spack.
. spack/share/spack/setup.env.sh
spack install <package-spec>

• Spack may install many different variants of the same
package:
• Built different package-versions
• Built with different compilers
• Built with different MPI-implementations
• Built with different build-options

• Installation locations are seperated via unique hashes

spack install <package-spec>
e.g.:
spack install hdf5
spack install hdf5%gcc@9.3.0+fortran+hl
spack install hdf5 ^openmpi

-> installations may peacefully coexist

https://github.com/spack/spack

4Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack is one of many package-managers

• Functional Cross-Platform Package Managers:
e.g Nix (NixOs), Gnu Guix (Gnu Guix Linux) … use hashes in install-dirs

• Build-from-source Package Managers
e.g. HomeBrew/LinuxBrew

• Package Managers for specific scripting languages
e.g. Pip (Python), NPM (Javascript)

• Easy Build:
installation framework for managing scientific software on HPC-systems: less flexible
for experimental build-combinations

• Conda:
popluar binary package managers for Python and R (but also for other rpm–like
packaging in user-space). Easy to use.
In general no architecture optimized binaries, not targeted at HPC

5Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

From manual single package installations to automated stack builds

In the past at LRZ …

• Software stack on LRZ HPC-systems used to be
provided via the module system in a non-
orchestrated way with hand-written TCL-files
to make installations available:
applications/libraries/tools /compilers

Limitations:
• Non-transparent or oblique conflicts

and/or dependencies of packages
• Non-transparent package-configs

and build-variants
• Builds often not reproducible

(documentation issue)

Since recently at LRZ …

• Spack compiled software provided for many open-source
packages

Advantages:
• Spack Builds are self-documenting:

-> Package-builds are typically reproducible

• Spack-compiler wrappers inject compiler-flags for the
target-architecture -> optimized software stack

• Installation of many package-variants do not disturb
each other -> many packages may peacefully coexist

• Installation (fetch/configure/build/install/module-
create) of the software is automized

6Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack self documenting artifacts

• `archived-files`contains log of configure-phase (if avail)
• `repos` contains all procedures (package.py‘s) used for installation

(package + all deps)
• `spack-build-env.txt` -- dump of environment during installation
• `spack-build-out.txt` -- dump of output-stream from installation
• `spack-configure-args` -- dump of configure arguments
• `spec.yaml` -- dictionary with input and concretized spack-specs

`.spack` directory in all installation-paths:
-> usefull information from installation process is available

Lets inspect this for our own hdf5 installation :

7Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

1. We do privide compiled software with support via environment–modules (the classical way ~>300 modules)

2. NEW:
module load user_spack
provide compiled software via spack-chaining

• For experienced users:
• may use spack via `module load user_spack`

that provides a preconfigured spack
• making use of already installed packages via spack

chaining of upstream-location (lrzs/sys/spack/x/y)

-> avoids recompiling low level packages in many situations
-> has working defaults configurated for some essential
dependencies (e.g. MPI)

• Simple Example – install (missing) package libvdwxc:

8Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack: A few words on dynamic linking

Priority-ordering of dynamic linking:
1. LD_PRELOAD
2. RPATH
3. LD_LIBRARY_PATH
4. RUNPATH

Spack uses RPATH as default:

• pathes where to find libraries are coded into
the executables & libraries

• executables and libraries are functional
without setting up einvironment:
• -> the binaries know where to look for

their dependency-libraries

installed libgeotiff as example here:

9Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack commands (subset) that may be usefull for your work

query packages:
list list and search available packages
info get detailed information on a

particular package
find list and search installed packages

build packages:
install build and install packages
uninstall remove installed packages
dev-build developer build: build from code

in current working directory
spec show what would be installed,

given a spec

container:
containerize creates recipes to build images

for different container runtimes
environments:
env manage virtual environments

create packages:
create create a new package file
edit open package files in $EDITOR

system:
compilers list available compilers

user environment:
load add package to the user

environment
module manipulate module files
unload remove package from the user

environment
configuration:
config get and set configuration options
repo manage package source repositories

10Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack is open-source with many community contributions

• Spack has excellent documentation:
https://spack.readthedocs.io/en/v0.15.4/

• Spack community gives strong support via slack
https://slack.spack.io/

• Spack repository is hosted on github:
https://github.com/spack/spack
• Spack is under heavy development

• spack-developers
• application-developers
• domain-scientists
• HPC-support-staff
• hardware-vendors

• Consider yourself becoming part of the community:
• Contributing and benefitting from

• LRZ Documentation on spack in user-space (updates pending)
https://doku.lrz.de/display/PUBLIC/Building+software+in+user+space+with+spack

https://spack.readthedocs.io/en/v0.15.4/
https://slack.spack.io/
https://github.com/spack/spack
https://doku.lrz.de/display/PUBLIC/Building+software+in+user+space+with+spack

11Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Backup: user_spack
Further Examples

12Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 2: create your own new package inside your
own repository.

e.g. libgeotiff
Recently moved to github, version that comes built-in-
spack is too old for your purpose

Add the missing stuff: here at least the
dependencies need to be specified

13Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 2: create your own new package inside your
own repository.

E.g. libgeotiff
Recently moved to github, version that comes built in
spack is too old for your purpose

Add the missing stuff: here at least the
dependencies need to be specified

14Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack in user-space:
chaining existing installations into your own Spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 2: create your own new package inside your
own repository.

E.g. libgeotiff
Recently moved to github, version that comes built in
spack is too old for your purpose

Depending on the complexity the package
Implementing package.py
• may be very easy
• may become more difficult
But in many cases it is doable

15Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack in user-space:
chaining existing installation into your own spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 3:

Install existing installation in a different variant:
here -- with debug-option: +debug

Spack-generated environment modules at LRZ
provide a variable <package>_SPEC that holds
location of the input/concretized spack-spec
dumped in a yaml-file: spec.yaml

One may use this to see details of the installation
behind the module: via the spack spec -command

16Managing HPC Application Software with SPACK@LRZ | Gerald Mathias / Gilbert Brietzke

Spack in user-space:
chaining existing installation into your own spack environment

NEW + Experimental (work in progress):
module load user_spack

Example 3 from previous slide continued

