ISOr Offload Modeling

Dmitry Tarakanov
Software Technical Consulting Engineer

intel.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

Rich Set of Capabilities for High Performance Code Design

Intel® Advisor

(- . a .\

Offload Modelling

Design offload strategy and
model performance on
GPU.

- J

Roofline Analysis

Optimize your application
for memory and compute.

0000
-+ o)

Vectorization Thread Prototyping

Optimization
IModel tune, and test

Enable more vector multiple threading designs.

parallelism and improve its
efficiency.

.:.l-<:

Build Heterogeneous
Algorithms

Create and analyze data
flow and dependency
computation graphs.

Intel® Advisor - Offload Modeling

“Run on CPU or GPU - Predict for GPU"

» Helps to define which sections of the code should run on a given accelerator

» Provides performance projection on accelerators

Offload Modeling
EEEEEER] - Acceiersted Regions - Logs -

Top Merics Offloading is

See Main Offioad Modeling View

(2 ‘ IJ. 1 :f ‘.|
| 13.9x > | 4. 7| 81% 211 | Compute-bound
Speed Up for Accelerated Code Amdahl's Law Speed Up Fraction of Accelerated Code Number of Offloads
Program Metrics Offload Bounded By
L |
| Original 0.213 u L3 Cache BW 0%
J |

Accelerated 0.06s m LLC BW 0%

Memory BW 0%

Program Time on H 0.04s Target Platform Gen8 GT2 m Data Transfer 0%

m Non Accelerated Time 0s Number of Offloads 1 Invoke Tax 0%

Re CO m m e n d e d | Time in MPI calls 0s Speed Up for Accelerated Code 13.8x B Transfer Tax 0%

. m Time on Target 0.01s Amdahi's Law Speed Up 4.1x m Dependency 0%

fO r Offl Oad N g Fraction of Accelerated Code B1% & Trip Count 0%

. m frac_Global_Atomic_bound_offloads 0%

Not profitable a Unkoown o

. Non Offioaded 19%

for offloading
Top Non-Offloaded
Speed-Up Estimated Bound... Estima... Estima... Execution Time Why Mot Offloaded
[eop in senal mandelbrot af = CPU 171.8ms [loop in st _zlib _compress at - CPU 297ms Noi profitable because of offload
139450 GPU 123ms Compute 2.1MB sib_image_write h 885) 14.7TMB GPU 20.7ms overhead (taxes)

intel.

Intel® Advisor - Offload Modeling

Find code that can be profitably offloaded

Loop takes 81%

R e — of the whole app

. X tion tim
is 4.1x faster SASCEES =

| 13.9x 2 | 4.1x 7 | 81% ® | 1

Speed Up for Accelerated Code Amdahi's Law Speed Up rachon of Accelerated Code Number of Offioads

Program Metrics
Loop on GPU is | Onginal 831
13.9x faster Accelerated 336y pe— —

th an on C P U u Program Time on H 0.04s Target Platform Gen8 GT2
m Non Accelerated Time Os Number of Offioads 1

@ Time in MPI calis 0s Speed Up for Accelerated Code 13.9x

m Time on Target 0.01s Amdahi's Law Speed Up 4.1x

Fraction of Accelerated Code B81%

intel.

Intel® Advisor - Offload Modeling

Find code that can be profitably offloaded

1.a

Baseline HW (Programming model)

CPU
measured

CPU
measured

CPU+iGPU
measured

(C,C++,Fortran, Py)

(DPC++, OCL, OMP,
“target=host")

(DPC++, OCL, OMP,
“target=offload")

Target HW

CPU +
measured

CPU +
measured

CPU +
measured

GPU
estimated

GPU
estimated

GPU
estimated

intel.

Intel® Advisor - Offload Modeling

Find code that can be profitably offloaded

Region X Region Y

Execution time on baseline platform (CPU) I

'

i

i

i

i

i

i

- H -
1 l} l’
i / /
i / /
/
1 / /
/
/

/
/
/

Final estimated time on target device (GPU) m IZ

X — profitable to Y - too much overhead,
accelerate, t(X) > t(X') | not accelerable, t(Y)<t(Y’)

e Execution time on accelerator. Estimate
assuming bounded exclusively by Compute

» Execution time on accelerator. Estimate assuming
bounded exclusively by caches/memory

* Offload Tax estimate (data transfer + invoke)

v

v

v

v
r~+

+1

t region = maX(tcompute1 tmemory subsystem) B tdata transfer tax invocation tax

intel.

In-Depth Analysis of Top Offload Regions

» Provides a detailed description of modeling for each loop
= Timings (total time, time on the accelerator, speedup) recommended for offloading
Offload metrics (offload tax data transfers) + Compute-bound

= Memory traffic (DRAM, L3, L2, L1), trip count « Estimated to run on GPU in 12.3ms
* Transfers 2.1MB of data

Loop at mandelbrot.cpp:56 is

= Highlight which part of the code should run on the accelerator
Offload Modeling . 13.9x 81% 1
Summary o [QeedEEE G « Logs - Speed Up for Fraction of Accelerated Code Number of Offloads
CPU+GPU
Basic Estimated Metrics b Estimated Bounded By B B s B

Throughput Taxes With Reuse Transfer With Reuse

Time Officad Summary

Speed-Up

Compute 12 3ms Launch Tax < 0. 1ms
¥ [loop in senal_mandelbrot at mandelbrot. cpp:56] 171.8ms 13.945x Offioaded m m
¥ [loop in serial_mandelbrot at mandelbrot cpp:57) 171.8ms
[loop in serial_mandelbrot at mandelbrot.cpp:69] 171.8ms
Compute 3 3ms Launch Tax 569 3ms Read T.2TMB
¥ [loop in sthi_zlib_compress at stb_image_write h-B85] 29.7ms 0.051x 29.7ms Not offioaded L3 BW 0 Tme All Taxes 569 3ms Wiite 7 47MB
¥ [loop in sthi_zlib_compress at stb_image_write h-891] 19.8ms
w sthiw__zlib_countm 19.8ms
[loop in stbiw__zlib_countm at stb_image_write h:825] 19.8ms
¥ stbiw__sbgrowf 9.8ms
realloc_base 9.8ms

intel.

In-Depth Analysis of Top Offload Regions

Loop metrics are matched with Sources and Call Tree

Source Top-Down
Loop/F) Measured » Basic Estimated Metrics B Estimated Bounded By ¥» Estimated Data »
oop/Function Transfer With
Time Speed-Up Time Offioad Summary Throughput Taxes With Reuse Reuse
¥ Total 211.4ms
¥ RtlUserThreadStart 211.4ms
Source Top-Down
¥ BaseThreadinitThunk 211.4ms ™ — s Offioaded s Up -
52 _mm_malloc{width * height * sizeof(unsig
¥ _scrt_common_main_seh 211.4ms 53
54 Iraverse the sample space in equally spat
¥ main 211.4ms 55 amples
56 for (int j = 8; j < height; ++j) { Yes 13.945x 12.3ms
¥ serial_mandelbrot 171.8ms o7 for (dnt 1 =0; 1 < width; ++i) {
58 double z_real = x8 + 1 * xstep;
Lompute 12.3ms Launch lax < 0. 1ms
¥ [loop in serial_mandelbrot at mandelbrot. cpp:56] 34! y s m m
Compute 12 2ms
¥ [lcop in serial_mandelbrot at mandelbrot.cpp:57) 171.8ms 1718 DRAMBW <0 1ms
Compute 12.1ms
[loop in serial_mandelbrot at mandelbrot.cpp:69) 171.8ms 171.8... L3 BW oms

intel.

Program Tree

* The program tree offers another view of the proportion of code that can be
offloaded to the accelerator.

* Generated if the DOT(GraphViz*) utility is installed

Before you start to use Offload Advisor

= The only strict requirement for compilation and linking is full debug
information:

-g: Requests full debug information (compiler and linker)

= Offload Advisor supports any optimization level, but the following settings
are considered the optimal requirements:

-02: Requests moderate optimization

-no-ipo: Disables inter-procedural optimizations that may inhibit Offload
Advisor to collect performance data (Intel® C++ & Fortran Compiler
specific)

intel.

Performance Estimation Flow

» Performance estimation steps: Output:

A. Profiling
B. Performance modelling

1. report.html
@unwmmwsan o ipnconsss o | vmowoommo 1 | Fo

Program metrics @ Offloads bounded by @ Gen9 GT2 configuration @ &8

» 3 different approaches to get estimation:
* run_oa.py (both A and B), most convenient

« collect.py (A) + analyze.py (B)

« advixe-cl (multiple times, A) Tt
+ analyze.py (B), most control e =

= Performance estimation result:
« List of loops to be offloaded

 Estimated speed-up (relative to baseline) 2. report.csv (whole grid in CSV table)
For batch processing

intel.

Using Python scripts to run Offload Advisor

= Set up the Intel® Advisor environment

(implicitly done by oneAPI setvars.sh)
source <advisor_install dir>/advixe-vars.sh Analyze for a specific

Environment variable APM points to <ADV_INSTALL_DIR>/perfmodels GPU config

* Run the data collection
advixe-python $APM/collect.py advisor project --config gen9 -- <app> [app_options]

Also works with other installed python, advixe-python only provided for convenience.

* Run the performance modelling
advixe-python $APM/analyze.py advisor_ project --config gen9 --out-dir proj _results

View the report.html generated (or generate a command-line report)

* Alternatives: run_oa.py or advixe-cl + analyze-py

intel.

How to Run Offload Modeling

Anal Statically calculate
s stacl_<s the number of

I : during collection ol
= Run Survey analysis to get baseline performance data

advisor --collect=survey --stackwalk-mode=o6nline --static-instruction-mix
-—project-dir=<my project dir> --search-dir sym:r=<my symbols dir>
-—-search-dir bin:r=<my bin dir> --search-dir src:r=<my source dir>

-— ./myapp [app parameters]

= Run Trip Counts and FLOP analysis to get call count data Model CPU

and model cache for Gen9 GT2 GPU Sche penavor
advisor --collect=tripcounts --flop --stacks --enable-cache-simulation
-—data-transfer=]light --target-device=gen9 gt2

sym:r=<my symbols dir>
JI=<my source dir>

Analyze for a
specific GPU

——project-dir=<my presgct dir> --search-aO
—-—-search-dir bin:r=<my bl p> ——search-dir
T . /myapp [app_pa rameters] Model data transfer between

host and device memory configuration

= Model performance on Gen9 GT2 GPU

advisor --collect=projection --config=gen9 gt2 --no-assugme-dependencies
o oroject-dir—<my project dirs
- - no dependencies

intel.

Offload Modeling Resources

= User guide
https://software.intel.com/content/www/us/en/develop/documentation/advisor-
user—-quide/top/design-for-gpu-offload/offload-modeling-perspective.html

» Cookbook recipes
https://software.intel.com/content/www/us/en/develop/documentation/advisor-

cookbook/top/design-and-optimize—application-with-offload-advisor.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-
cookbook/top/model —cpp—application—-performance-on—-a-target-gpu.html

= More user resources
https://software.intel.com/content/www/us/en/develop/articles/offload-

modeling—-resources—for—-intel—-advisor—-users.html

intel. s

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/design-and-optimize-application-with-offload-advisor.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/model-cpp-application-performance-on-a-target-gpu.html
https://software.intel.com/content/www/us/en/develop/articles/offload-modeling-resources-for-intel-advisor-users.html

