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Rich Set of Capabilities for High Performance Code Design

Intel® Advisor
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Offload Modelling

Design offload strategy and
model performance on
GPU.
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Roofline Analysis

Optimize your application
for memory and compute.
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Vectorization Thread Prototyping

Optimization
IModel tune, and test

Enable more vector multiple threading designs.

parallelism and improve its
efficiency.
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Build Heterogeneous
Algorithms

Create and analyze data
flow and dependency
computation graphs.



Intel® Advisor - Offload Modeling

“Run on CPU or GPU - Predict for GPU"

» Helps to define which sections of the code should run on a given accelerator

» Provides performance projection on accelerators
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Intel® Advisor - Offload Modeling

Find code that can be profitably offloaded

Loop takes 81%

R e — of the whole app
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Intel® Advisor - Offload Modeling

Find code that can be profitably offloaded

1.a

Baseline HW (Programming model)

CPU
measured

CPU
measured

CPU+iGPU
measured

(C,C++,Fortran, Py)

(DPC++, OCL, OMP,
“target=host")

(DPC++, OCL, OMP,
“target=offload")

Target HW

CPU +
measured

CPU +
measured

CPU +
measured

GPU
estimated

GPU
estimated

GPU
estimated
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Intel® Advisor - Offload Modeling

Find code that can be profitably offloaded

Region X Region Y

Execution time on baseline platform (CPU) I
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Final estimated time on target device (GPU) m IZ

X — profitable to Y - too much overhead,
accelerate, t(X) > t(X') | not accelerable, t(Y)<t(Y’)

e Execution time on accelerator. Estimate
assuming bounded exclusively by Compute

» Execution time on accelerator. Estimate assuming
bounded exclusively by caches/memory

* Offload Tax estimate (data transfer + invoke)
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In-Depth Analysis of Top Offload Regions

» Provides a detailed description of modeling for each loop
= Timings (total time, time on the accelerator, speedup) recommended for offloading
Offload metrics (offload tax data transfers) +  Compute-bound

= Memory traffic (DRAM, L3, L2, L1), trip count « Estimated to run on GPU in 12.3ms
* Transfers 2.1MB of data

Loop at mandelbrot.cpp:56 is

= Highlight which part of the code should run on the accelerator
Offload Modeling . 13.9x 81% 1
Summary o [QeedEEE G « Logs - Speed Up for Fraction of Accelerated Code Number of Offloads
CPU+GPU
Basic Estimated Metrics b Estimated Bounded By B B s B
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Speed-Up

Compute 12 3ms Launch Tax < 0. 1ms
¥ [loop in senal_mandelbrot at mandelbrot. cpp:56] 171.8ms 13.945x Offioaded m m
¥ [loop in serial_mandelbrot at mandelbrot cpp:57) 171.8ms
[loop in serial_mandelbrot at mandelbrot.cpp:69] 171.8ms
Compute 3 3ms Launch Tax 569 3ms Read T.2TMB
¥ [loop in sthi_zlib_compress at stb_image_write h-B85] 29.7ms 0.051x 29.7ms Not offioaded L3 BW 0 Tme All Taxes 569 3ms Wiite 7 47MB
¥ [loop in sthi_zlib_compress at stb_image_write h-891] 19.8ms
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In-Depth Analysis of Top Offload Regions

Loop metrics are matched with Sources and Call Tree

Source Top-Down
Loop/F ) Measured » Basic Estimated Metrics B Estimated Bounded By ¥»  Estimated Data »
oop/Function Transfer With
Time Speed-Up Time Offioad Summary Throughput Taxes With Reuse Reuse
¥ Total 211.4ms
¥ RtlUserThreadStart 211.4ms
Source Top-Down
¥ BaseThreadinitThunk 211.4ms ™ — s Offioaded s Up -
52 _mm_malloc{width * height * sizeof(unsig
¥ _scrt_common_main_seh 211.4ms 53
54 Iraverse the sample space in equally spat
¥ main 211.4ms 55 amples
56 for (int j = 8; j < height; ++j) { Yes 13.945x 12.3ms
¥ serial_mandelbrot 171.8ms o7 for (dnt 1 =0; 1 < width; ++i) {
58 double z_real = x8 + 1 * xstep;
Lompute 12.3ms Launch lax < 0. 1ms
¥ [loop in serial_mandelbrot at mandelbrot. cpp:56] 34! y s m m
Compute 12 2ms
¥ [lcop in serial_mandelbrot at mandelbrot.cpp:57) 171.8ms 1718 DRAMBW <0 1ms
Compute 12.1ms
[loop in serial_mandelbrot at mandelbrot.cpp:69) 171.8ms 171.8... L3 BW oms
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Program Tree

* The program tree offers another view of the proportion of code that can be
offloaded to the accelerator.

* Generated if the DOT(GraphViz*) utility is installed




Before you start to use Offload Advisor

= The only strict requirement for compilation and linking is full debug
information:

-g: Requests full debug information (compiler and linker)

= Offload Advisor supports any optimization level, but the following settings
are considered the optimal requirements:

-02: Requests moderate optimization

-no-ipo: Disables inter-procedural optimizations that may inhibit Offload
Advisor to collect performance data (Intel® C++ & Fortran Compiler
specific)

intel.



Performance Estimation Flow

» Performance estimation steps: Output:

A. Profiling
B. Performance modelling

1. report.html
@unwmmwsan o ipnconsss o | vmowoommo 1 | Fo

Program metrics @ Offloads bounded by @ Gen9 GT2 configuration @ &8

» 3 different approaches to get estimation:
* run_oa.py (both A and B), most convenient

« collect.py (A) + analyze.py (B)

« advixe-cl (multiple times, A) Tt
+ analyze.py (B), most control e =

= Performance estimation result:
« List of loops to be offloaded

 Estimated speed-up (relative to baseline) 2. report.csv (whole grid in CSV table)
For batch processing
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Using Python scripts to run Offload Advisor

= Set up the Intel® Advisor environment

(implicitly done by oneAPI setvars.sh)
source <advisor_install dir>/advixe-vars.sh Analyze for a specific

Environment variable APM points to <ADV_INSTALL_DIR>/perfmodels GPU config

* Run the data collection
advixe-python $APM/collect.py advisor project --config gen9 -- <app> [app_options]

Also works with other installed python, advixe-python only provided for convenience.

* Run the performance modelling
advixe-python $APM/analyze.py advisor_ project --config gen9 --out-dir proj _results

View the report.html generated (or generate a command-line report)

* Alternatives: run_oa.py or advixe-cl + analyze-py
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How to Run Offload Modeling

Anal Statically calculate
s stacl_<s the number of

I : during collection ol
= Run Survey analysis to get baseline performance data

advisor --collect=survey --stackwalk-mode=o6nline --static-instruction-mix
-—project-dir=<my project dir> --search-dir sym:r=<my symbols dir>
-—-search-dir bin:r=<my bin dir> --search-dir src:r=<my source dir>

-— ./myapp [app parameters]

= Run Trip Counts and FLOP analysis to get call count data Model CPU

and model cache for Gen9 GT2 GPU Sche penavor
advisor --collect=tripcounts --flop --stacks --enable-cache-simulation
-—data-transfer=]light --target-device=gen9 gt2

sym:r=<my symbols dir>
JI=<my source dir>

Analyze for a
specific GPU

——project-dir=<my presgct dir> --search-aO
—-—-search-dir bin:r=<my bl p> ——search-dir
T . /myapp [ app_pa rameters ] Model data transfer between

host and device memory configuration

= Model performance on Gen9 GT2 GPU

advisor --collect=projection --config=gen9 gt2 --no-assugme-dependencies
o oroject-dir—<my project dirs
- - no dependencies
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Offload Modeling Resources

= User guide
https://software.intel.com/content/www/us/en/develop/documentation/advisor-
user—-quide/top/design-for-gpu-offload/offload-modeling-perspective.html

» Cookbook recipes
https://software.intel.com/content/www/us/en/develop/documentation/advisor-

cookbook/top/design-and-optimize—application-with-offload-advisor.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-
cookbook/top/model —cpp—application—-performance-on—-a-target-gpu.html

= More user resources
https://software.intel.com/content/www/us/en/develop/articles/offload-

modeling—-resources—for—-intel—-advisor—-users.html
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