ISOI Vectorization

Dmitry Tarakanov
Software Technical Consulting Engineer

intel.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

World is changing: HW and SW change, too!

More Cores - More Threads = Wider Vectors

5100
series
Core(s) 1 2
Threads 2 2
SIMD
Width 128 128

Intel® Xeon®
Scalable Processor

Intel” Xeon® Processor

5500 5600 E5-2600 E5-2600 E5-2600 E5-2600 Platinum Platinum
series series V2 V3 V4 8180 9282
4 6 8 12 18 22 28 56
8 12 16 24 36 44 56 112
128 128 256 256 256 256 512 512

High performance software must be both
» Parallel (multi-thread, multi-process)

* Vectorized

*Product specification for launched and shipped products available on ark.intel.com.

intel.

3

Intel® Advisor: Vectorize & Thread or Performance Dies
Threaded + Vectorized Can Be Much Faster that Either One Alone

<—\/ectorized &
A Threaded

200
o
w) - . .
S “Automatic” Vectorization Not Enough
T~ Explicit pragmas and optimization often required The Differenceis
S 8 Growing with Each
S & New Generation of
g 2 Hardware
(O]
5 &]3OX
s = Threaded
@ “
[
—
50
/ .
) — Vec;tonzed
. N - B — s —o <« Serial

2010 2012 2013 2014 2016 2017

Intel® Xeon™ Intel® Xeon™ Processor Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon® Platinum

Processor EE,Q()OO Processor Processor Processor Pru)(:essorS]XX formerly

X5é8omrmer\\; formerly codenamed E5 2600 V2 E5 2600 V3 E5 2600 V4 (\odm,m@dSkylake
codenamed Sandy Bridge formerly codenamed [ormerIY(::0df:vh¢3rh0d : i Sérv(}r

Westmere lvy Bridge Haswell

Testing Date: Performance results are based on testing by Intel employees as of 2017 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: See Vectorize & Thread or Performance Dies Configurations for 2010-2016 Benchmarks in Backup.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex. Your costs and results may vary.

intel.

http://www.intel.com/PerformanceIndex

Rich Set of Capabilities for High Performance Code Design
Intel® Advisor

e [0000 =
5; g7k [+ | oe o[el
000 .

Offload Modelling Roofline Analysis Vectorization Thread Prototyping Build Heterogeneous
Optimization Algorithms
Design offload strategy and Optimize your application Model, tune, and test
ggg.el performance on for memory and compute. Enable more vector multiple threading designs. Create and analyze data
parallelism and improve its flow and dependency

efficiency. computation graphs.

- J

intel.

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

= Have you: = Data Driven Vectorization:
. . T . » What vectorization will pay off most?
Recompiled for AVXZ with _“ttlf gall * What's blocking vectorization? Why?
* Wondered where to vectorize: - Are my loops vector friendly?
» Recoded intrinsics for new arch.? Will reorganizing data increase
« Struggled with compiler reports? performance?

* |s it safe to just use pragma simd?

(48| Elapsed time: 125.725 ectoriz ecto
FILTER All Modules ~|| AllSources ~|| Loops And Functions || All Threads =
[F) Summary = % Survey & Roofline ™ Refinement Reports:

"Intel® Advisor's Vectorization Advisor
permitted me to focus my work where it

[=) Function CllStesand Loops | 818 | ¥ Pt s Time~ | Total Time really mattered. When you have only a
2O Rep st ommerreit | L SE) 185 limited amount of time to spend on
4O [loop in main at roofline.c | ™ 7415 T41s 1 1 1 it 1 n

[(5 ::uu: in main at run::ine‘ci:.iz?»l} I O :T::;s: :T::jfs: O ptl m Izatlo n’ It Is I nvalu a b le'

IE O [loop inm n at roofline.cpp:247] O 6.967: @ 6.967s)
35 [loop in mai roofline.cpp: O 9495
u ::nn: inma :ttrn:"f:ine.qp)::;::} O :;::sl' ::;::: Gllles CI Varlo
37 [loop in main at roofline.cpp:199] O 2454510 245451
oty) | T T Senior Software Architect
45 [loop in main at roofline.cpp:256] [0 ©10ppo.. 0.042s1 3.327s) . . .
HO[Iunpinm n ot roofline.cpp:30d] | [0.040s] | 1843458 Irish Centre for H’gh_End Comput’ng

intel.

6

Spend your time in the most efficient place!
A typical vectorized loop consists of...

* Optional
» Used for the unaligned references in
your loop

| Vectorized

Body w

32 byte boundary

. TripCount /VectorLength #0
Remamder e Scalar or slower vector is used

intel.

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization
Filter vectorized

loops

What prevents
vectorization?

i Elapsed time: 0.50s m

"1l Refinement Reports

Summary @ Survey & Roofline

[+][=] Function Call Sites and Loops

« 0 [loop in sefial_mandelbrot at mandelbrot.cpp:70]

=@ [loop in m3inompparallel@164 at mandelbrot.cpp:181]
<1 [loop in m@in$ompiparallel@219 at mandelbrot.cpp:237]

i_mandelbrot at mandelbrot.cpp:126]
i_mandelbrot at mandelbrot.cpp:114]
fomp$parallel@164 at mandelbrot.cpp:169]
mandelbrot at mandelbrot.cpp:58]
mandelbrot at mandelbrot.cpp:57]
andelbrot at mandelbrot.cpp:112]
tmp$parallel@164 at mandelbrot.cpp:164]
piparallel@164 at mandelbrot.cpp:164]
p$parallel@219 at mandelbrot.cpp:225]
péparallel@219 at mandelbrot.cpp:225]
p$parallel@219 at mandelbrot.cpp:225]

-

¥

11111111117 171%

¥ Performance
Issues

¥ 2 Possible ineffi ...
¥ 1 Data type conv...
1 Data type conv...
@ 1 Data type conv...
¥ 1 Data type conv...
¥ 2 Assumed depe...

@ 1 Data type conv...

@ 2 Possible ineffici ..

Focus on
hot loops

CPU Time

Total Time

0.152s I
0.108s IR
0.088s I
0.100s B0

0.1625 SN

2

Self Time «

02025 [JEEE 0.202s [Scalar

0.152
0.108s
0.088s 00
0.012sl
0.010s0

0.202s [0.000s|
0.202s [0.000s|

0.100s

0.1625 SN
0.162s [N

0.108; I
0.108; I
0.108s

0.000s|
0.000s|
0.000s!
0.000s!
0.000s|
0.000s|

Type

Scalar

Inside vectorized
Inside vectorized
Vectorized (Body)
Scalar

Scalar

Scalar

Scalar

Threaded (OpenMP)
Scalar

Threaded (OpenMP)
Scalar

Vectorized (Body)

Vectorized Loops

Why No Vectonzation? v :
Vector... Efficiency Gain E.. | VL

8 loop control variable was not identified. Explicitly compute the it...

8 loop control variable was not identified, Explicitly compute the it...

AVX2 | |269x 4

8 guter loop was not auto-vectorized: consider using SIMD directive
8 outer loop was not auto-vectorized: consider using SIMD dirg

8 inner loop was already vectorized

8 vector dependence prevents vectonzation
8 loop control variable was not identifieg
8 inner loop was already vectorized
8 inner loop was already vectog

issues do | have?

What vectorization

Which Vector instructions

are used?

How efficient
is the code?

intel.

5 Steps to Efficient Vec

torization

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

S Total s 9 Compiler Vectonzation

Time Time Laop Type
00945 00945 [Sealar

Function Call Sites and Loopsa
Why No Vectorization?

[H{loop in runCForallLambdal oaps] wector dependence prevents vector .

inner loap s already vectorized

H{loop in runCForaliLambdal oaps] 1140s 37445 [Scalar

BV [loop in std:_Complex_base<doublestruct € double_complex?:i..

2. Guidance: detect problem and recommend how to
fix it

& P |ssue: Peeled/Remainder loop(s) present
@ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials

Utilizing Full Vectors...
() Recommendation: Align memory access

Projected maximum performance gain: High
Projection confidence: Medium

se one of the memory accesses in the source loop does not

Jectorizedts s ra R coptntocessing}Fluataz Arloaciddacalyy 3. “Precise” Trlp Counts + FLOPs & MASKS: understand ry access and tell the compiler your memory access is aligned.
Peeled loop; loop stuts were reordered T - - = byte boundary:
e : utilization, parallelism granularity & overheads
[H{loop in std:basic_string<char,struct stdchar_traits <chars class stdheallo,, 00005
Hlaop in stdbasic_string<char,struct steachar_traits<chars,cless stebaalla,, 0,005 T [Tt Counts : g SIZE*sizeof(float), 32);
[H{loop in stdinum_put<char class stdostreambuf_terstor<charstruct st 00005 |M2d‘a“ ‘Mm |Max ‘Imanonnwam ‘caucoum |
315158 1 11 31509 1
044051 1 11 <0000 2408000
0010sl i1 12 <000 207556
0010sl | i2 19 <00ls 117319
00101 | i3 15 <00ls 1312315
4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis
Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site_203 runCRawLoops runCRawLoops.coc1063 € RAW:L No infoermation available No information available
) loop_site 139 runCRawLoops runCRawLoops.coc622 No information available 139567/ 36% / 25 Mixed strides
D @ T}‘];IE Site Name Sources Modules State loop_site 160 runCRawLoops runCRawLoops.coc925 No information available 100%/0% /0% All unit strides
P1 Q@ Parallel site information site2 dqtest2.cpp dqtest2 + Mot a problem T
© Readat ite d F ite2 datest? F o AN Memory Access Patterns
P2 #30 after wiia dapendency | sie. eaie.cpp qtes viud D @ Stridev Type Source Modules Alignment
@ Read after write dependency site2 dgtest2.cpp detest2 Re Mew 22 @ 001 Unit stride runCRawLoops.coc637 Icals.exe
m Wirite after write dependency|site2 datest2.cpp dqtest2 | /New = HO(SHACH 6
636 plip] (0] += y[i2+32]);
F5 @ Wiite after wiite dependency site2 dgtest2.cpp dqtest2 R New 637 plip] [1] += z[32+32];
. . 638 i2 += e[i2+32];
P& @ wiite after read dependency site2 dgtest2.cpp datest2 R Mew 639 32 += £[32432];
P7 @ Wiite atter read dependency site2 dgtest2 cpp; idle.h dgtest2 Re Mew @3 @ 00 Unit stride runCRawloops.0oc638 lcals.exe
P30 @ -1575; -63; -26; -25; -1: 0; 1; 25; 26; 63; 2164801 Variable stride runCRawlLoops.0oc628 Icals.exe
626 il &= 64-1;
627 jl &= 64-1;
€28 Plip] (2] += B[31][il];

intel.

9

1. Compiler diagnostics + Performance

Data + SIMD efficiency information

Efficiently Vectorize your code

i Elapsed time: 0.50s m

Summary % Survey & Roofline ™1 Refinement Reports

[+] [=] Function Call Sites and Loops ‘

]

BE#® [loop in serial_ mandelbrot at mandelbrot.cpp:57]

¥ Performance (CPU Time

(m)a

[loop in simd_mandelbrot at mandelbrot.cpp:126] ! [|

[loop in simd_mandelbrot at mandelbrot.cpp:114] [@2 Possible ineffici... 0.100s Il 0.012s0

lloop in mainSomp$parallel@164 at mandelbrotcpp:169] | [§ 1 Data type conv... 0.162s - 0.010s0

[loop in serial_mandelbrot at mandelbrot.cpp:58] [T #1Data type conv... 0.202s - 0.000s|
[

1 Data type con... 0.202sl 1/ 0.000s|

@ fiter AlModues ~ [T B A Theads ~

2 \
| Type Why Mo Vectorization?

Issues Total Time | Self Time = \
0.088: 18 0.088s 0 Inside vectorized

Vectonized (Body)]
Scalar 8 outer loop was not auto-vectorized: consider using SIMD directive
Scalar 8 outer loop was not auto-vectorized: consider using SIMD directive

* outer loop was not auto-vectorized: consider using 5IMD directive

s 0 [loop in simd_mandelbrot at mandelbrot.cpp:112] ¥ 1 Data type conv... 0.100s Il 0.000s| Scalar 8 inner loop was already vectorized
< *» <

Source Top Down Code Analytics Assembly ¥ Recommendations @ Why Mo Vectorization?

Line Source Total Time | % | Loop/Function Time | %

54 ff Traverse the sample space in equally spaced steps with width * height

55 // samples

56 //¥pragma omp simd // vectorize code

57 B for (int j = 0; j < height; ++j) { 202,006.000usec mm—

0 [loop in serial mandelbrot at mandslbrot.cpp:57]
Scalar loop. Outer loop was not auto-vectorized: consider using SIMD directive

Ho loop transformations applied

intel.

10

2. Guidance: detect problem and
recommend how to fix it

Get Specific Advice For Improving Vectorization
& lapsed time: 050s [% fiter Al Modules v [T B Al Threads v

B Summary @ Survey & Roofline ™1 Refinement Reports

. P CPU Time 2
|+| [=] Function Call Sites and Loops [E|i ¥ Performance | - T) Type Why No Vectorization?
Issues Total Time | Self Time w
<O [loop in serial_mandelbrot at mandelbrot.cpp:70] [0.202s - IJ.EGES- Scalar 8 loop control variable was not identifie

<O [loop inm 01520 0152088 Scalar 8 loop control variable was not identifie

Click to see recommendation 01068 101088 wside vectorzed
0.088: 1 0.088: 08 Inside vectorized

<1 [loop in m
s/ 0 [loop in simd_mandelbrot at mandelbrot.cpp:126]

B® [loop in simd_mandelbrot at mandelbrot.cpp:114] B | 2 Possible ineffi... 0.100s(] 0.012sl Vectorized (Body)
<0 [loop in mainfompiparallel @164 at mandelbrot.cpp:169] [§1Data type conv... 0.162s - 0.010s1 Scalar 8 outer loop was not auto-vectorized: cc
— I

< > || <€

Source Top Down Code Analytics Assembly ¥ Recommendations & Why No Vectorization?

Advisor shows hints on issue fix

All Adwisor-detectable issues: C++ | Forfran

o Possible inefficient memory access patterns present
Inefficient memory access patterns may result in significant vector code execution slowdown or block automatic vectorization by the compiler. Improve performance by investigating.

Confirm inefficient memory access patterns
There i1s no confirmation inefficient memory access patterns are present. To fioc Run a Memory Access Patierns analysis

@ Data type conversions present
There are multiple data types within loops. Utilize hardware vectorization support more effectively by avoiding data type conversion.

@ Use the smallest data type
The source loop contains data types of diffierent widths. To fix: Use the smallest data type that gives the needed precision to use the entire vector register width

intel.

11

3. “Precise” Trip Counts + FLOPs & MASKS: understand
utilization, parallelism granularity & overheads

l[dentify how many times the loop executes & collect loop trip counts data

B Elapsed time: 0505 IRt Bt © Fiter AlModues

B Summary % Survey & Roofline ™} Refinement Reports

« Performance

+| [=] Function Call Sites and Loops ms
o ! P —] Issues

o
L]

T
oo
m

| [loop in mainSompSparallel@219 at mandelbrot.cpp:237] |
« I [loop in simd_mandelbrot at mandelbrot.cpp:126] |

Check actual
trip counts

B® [loop in simd_mandelbrot at mandelbrot.cpp:114] . * 2 Possible ineffi..

«0 [loop in mainfomp$parallel@164 at mandelbrot.cpp:169] | # 1 Data type conv
+/ 10 [loop in serial_mandelbrot at mandelbrot.cpp:58] | ¥ 1 Data type conv
«/0 [loop in serial_mandelbrot at mandelbrot.cpp:57] |u-" @ 1 Data type conv

0.012sl

Not enough to
know the time
spentin a loop

mandelbrot.cpp All Threads -

CPU Time [Trip Counts 2
Total Time Self Time+ |Total Elapsed... Self Elapsed .. | Average Call Count
0.108s D 010808 0.020s 0.020s a0) 524288

0.088: 0 0.088s 00 0.088s 0.088s a0 h 524288

Need to know the
number of
iterations, too

intel.

12

4. Loop-Carried Dependency Analysis

Factors that prevent Vectorizing your code

1. Loop-carried dependencies 3. Loop structure, boundary condition
DO I =1, N struct _x { int d; int bound; };
ENDﬁéI + M) = A(I) + B(I) YOid doit(int *a, struct _x *x)

M >= SIMDlength" for(:l.nt i= 0,' i< x—>bound; l++)
af[i] = O;
1a. Pointer aliasing (compiler-specific) }
void scale(int *a, int *b) 4. Outer vs. inner loops
{
for (int i = 0; i < 1000; i++)
b[i] = z * a[i]; for(i = 0; i <= MAX; i++) {
} for(j = 0; j <= MAX; j++) {

D[j][i] += 1;
}

}
2. Function calls (incl. indirect)

for (1= 1, i< e ith) 5. Cost-benefit (compiler specific..)
x =x0+1i * h;
sumx = sumx + func(x, y, xp);

}

intel.

13

4. Loop-Carried Dependency Analysis

s It Safe to Vectorize?

Dependencies Analysis to identity and explore loop-carried dependencies
(0] Elapsed time: 0.50s m Mot Vectorized [Filter: All Modules - mandelbrot.cpp m All Threads -

B Summary % Survey & Roofline ™! Refinement Reports

+| |=| Function Call Sites and Loops ‘] ¥ Performance CPU Time & Type Why No Vectorization?
Issues Total Time Self Time
«/ 10 [loop in serial_mandelbrot at mandelbrot.cpp:58] . # 1 Data type conr'-r.... IJ.EI.‘}ES- 0.000s| .Scalar B outer loop was not auto-vectorized: consider
«/ 0 [loop in serial_mandelbrot at mandelbrot.cpp:57] # 1 Data type conv .. IJ.EI.‘}ES- 0.000s| Scalar B outer loop was not auto-vectorized: consider
+/0 [loop in simd_mandelbrot at mandelbrot.cpp:112] "~ @1Data type conv... 0.100s 0.000s| Scalar 8 inner loop was already vectorized

B % [loop in mainfomp$parallel@164 at mandelbrot.cpp:164] * 2 Assumed dep...| 0.162s(___] |0.000s|
«/ D [loop in mainfompSparallel @164 at mandelbrot.cpp:164]
«/ (0 [loop in mainfompSparallel@219 at mandelbrot.cpp:225] Nlata type conv ..

Threaded (Open ... ~ vector dependence prevents vectorization

0.000s| Scalar & loop control variable was not idenjg
Threaded (Open...

8 inner loop was already vectornz

Select loop
and run
Dependency
Analysis

Vector Dependence

prevents
Vectorization

intel.

14

5. Memory Access Patterns Analysis

Factors that vour Vectorized code

~55% _ _
2. 1 9){ | | 3.Small trip counts not multiple of VL
1a. Indirect memory access Viectorization Gain Viectorization Efficiency void doit(int *a, int *b, int

"”’,,f" ~ unknown_small value)
for (i=0; i<N; i++) {

for(int i = 0; i <

!)) (0] unknown_small value; i++)
A[B[i]] = C[i]*D[1i] \J\/r]B/ 1155 /4) a[i] = z*b[i];
}
1b. Memory sub-system Latency / lOSt? _
Throughput 4. Branchy codes, outer vs. inner loops
void scale(int *a, int *Db) for(i = 0; i <= MAX; i++) {
{ if (D[i] < N)
for (int i = 0; i < VERY BIG; i++4) do_this (D) ;
cl[i] =z * a[i][]]- else if (D[i] > M)
b[i] = z * a[i]; do_that() ;
} //..

Run MAP analysis

2. Serialized or “sub-optimal”

function calls o _ 1 5. MANY others: spill/fill, floating-point
[l Memory Access Patterns accuracy trade-offs, FMA, DIV/SQRT, Unrolling
for (i = 1; i < nx; i++) {
sumx = sumx + > > @
serialized func call(x, y,xp);

}

intel.

15

5. Memory Access Patterns Analysis

M emo ry Unit strided (contiguous): _
access aw Ao |aie | [ae [atst [[|

patterns I | | |
01 [t a1 [

consantsuidee: | Less efficient | Avivanyaccess: (INGHICIENE]

G—

s s —

intel. s

Comparison / Accuracy Level

Overhead

Goal

Analyses

Result

Low

1.1%

GGet basic insights about how well
your application is vectorized
and how you can improve
vectorization efficiency

Survey

Basic Survey report

Medium

Get more insights about how well
your application is vectorized
and the number of iterations in
loops/functions

Survey + Characterization (Trip
Counts)

Survey report extended with trip
count data

Vectorization Accuracy Levels

High

10 - 40x

(et detailed insights about your application
performance, including performance issues
and detailed optimization recommendations

Survey + Characterization (Trip Counts, FLOF,
Call Stacks) + Memory Access Patterns

Extended Survey report with trip counts and
floating-point and integer operations (FLOP
and INTOP)

Memory Access Patters with memaory traffic
data and memory usage issues

intel.

17

Vectorization Lab — Prepare Data

1. Build C++ application

cd

./base && make

2. Run Survey analysis to find hotspots and get performance data for your application
advisor —--collect=survey --project-dir=./advisor results -- ./release/Mandelbrot
3. Collect more detailed data

Determine the number of loop iterations and collect data about floating-point and integer operations

advisor --collect=tripcounts --flop --project-dir=./advisor results
-- ./release/Mandelbrot

Get IDs and locations of loops

advisor --report=survey --project-dir=./advisor results

-- ./release/Mandelbrot

Mark up loops for deeper analysis (e.g. 2 scalar loops)
advisor —--mark-up-loops --select=mandelbrot.cpp:57,mandelbrot.cpp:69

—--project-dir=./advisor results -- ./release/Mandelbrot

Check for possible dependencies

advisor --collect=dependencies --project-dir=./advisor results
--search-dir src:r=./src -- ./release/Mandelbrot

Check memory access patterns

advisor --collect=map --project-dir=./advisor results
--search-dir src:r=./src -- ./release/Mandelbrot

intel.

18

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization

Vectorization Lab — Anal

Check details on the loops of interest

» Dependencies? — No. Can vectorize!
v Refinement Analysis Data

These loops were analyzed for memory access patterns and dependencies
Site Location

O loop in senal_mandelbrot at mandelbrot cpp:60
O loop in senal_mandelbrot at mandelbrot cpp:71

= Vectorized? — No. Try to vectorize!

W Performance

+| [=] Function Call Sites and Loops &
o P El Issues

2 [loop in serial_mandelbrot at mandelbrot.cpp:69] [
s ¥ senal_mandelbrot

B® [loop in serial_mandelbrot at mandelbrot.cpp:57] 1 Data type con ...

+/ 0 [loop in serial_mandelbrot at mandelbrot.cpp:56] | &1 Datatype conv..

CPU Time

Total Time

0.180s
0.180s
0.180s
0.180s

2

Self Time -

.D.1ﬂﬂs-.5calar

0.000s|
0.000s|
0.000s|

Ype

Inlined Function
Scalar
Scalar

yze Results (Serial)

Dependencies
& No dependencies found
& No dependencies found

Why Mo Vectorization?

8 loop control variable was not identified. Explicitly compute the iteration count

- outer loop was not auto-vectorized: consider using S5IMD directive

& outer loop was not auto-vectorized: consider using SIMD directive

intel.

19

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization

Vectorization Lab — Vectorize

Run Advisor for SIMD implementation (with #pragma omp simd used) of application

. CPU Time Vectorized Loops
[+][=] Function Call Sites and Loops (m]s ¥ Performance - : - Type Why No Vectorization? - — T
Issues Total Time Self Time - Vector ... | Efficiency GainE.. \VL{
<1 [loop in simd_mandelbrot at mandelbrot.cpp:125] [-D.ﬂElEs- 0.082s - Inside vectorized

B® [loop in simd_mandelbrot at mandelbrot.cpp:113] 1 Data type con ... 0.090s| | 0.008s Vectorized (Body)
< § simd_mandelbrot # 1 Data type conv... vD.ﬂElL}s- 0.000s| Inlined Function

< T [loop in simd_mandelbrot at mandelbrot.cpp:111] [1 Data type conv.. 'D.ﬂ'al}s- 0.000s] Scalar & inner loop was already v...

mandelbrot.cpp:113 loop is vectorized

Total Time is 2 times less than in scalar case

intel.

20

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization

