Intel[®] VTune[™] Profiler Application Performance Snapshot

Dmitry Tarakanov Software Technical Consulting Engineer

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Aspects of HPC/Throughput Application Performance

Intel Tools covering the Aspects

Before diving into a particular tool ...

- How to assess that I have **potential in performance** tuning?
- Which tool should I use first?
- What to use on **large scale** avoiding being overwhelmed with huge trace size, post processing time and collection overhead?
- How to **quickly** evaluate environment settings or incremental code changes?

• Answer:

Use VTune Profiler's Application Performance Snapshot

Application Performance Snapshot at a glance (1/2)

- High-level **overview** of application performance
 - Detailed reports on MPI statistics
- Primary optimization areas and next steps in analysis with deep tools
- Easy to install, run, explore results with CL or HTML reports
 - No driver installation required working through perf
 - If SEP driver is available will be additional advantage
- Application Performance Snapshot comes bundled with all installations of VTune Profiler on Linux* OS.
 - Standalone VTune Profiler download
 - As part of the Intel[®] oneAPI Base Toolkit
 - As part of the Intel[®] oneAPI System Bring-Up Toolkit

Application Performance Snapshot at a glance (2/2)

• **Low** collection overhead – 1-3%*

- HW counters counting mode only, no overtime
- MPI and OpenMP tracing trace aggregation in runtime, no overtime
 - Trace levels to collect more MPI details (potentially for cost of overhead)
- Ability to choose either tracing or HW counting in the case of interest in particular metric subset and avoid overhead (--collection-mode option)

• Scales to large jobs

- Tested and worked on 64K ranks
- Trace size on default statistics level ~ 4Kb per rank

* MPI app startup on KNL/KNM in the condition of large number of ranks per node might have fixed time slowdown

APS workflow

Setup Environment

• ">source /opt/intel/oneapi/vtune/latest/apsvars.sh"

APS HTML Report

Application Pe	erformance Si	napshot				
Application: Awart, demo Report creation date: 2019-00-00 642:12 Renks per node: 20 OperMPI threads per runk: 4 Logical Core Count per node: 60 Collector type: Event-based counting driver	named Skylake 2.05 CPI (MAX 2.06, MIN 2.04	0.0 52 GF	DO 35.09 LOPS DP.GFLOPS	Your application is MR This may be caused by high busy profiling tools like Intel® Trace A MPI Time OpenMP Imbalance Memory Stalls Vectorization I/O Bound	PI bound. y wait time inside the library (imba analyzer and Collector to explore p Settest sen Zerpet 31.40% <10% 23.61% <10% 31.05% <20% 2.83% >70% 0.00% <10%	Alance), non-optimal communication schema or MPI library settings. Use MPI performance bottlenecks.
MPI Time 13.945 31.4096 of Elapsed Time MPI Imbalance 0.365 0.81% of Elapsed Time TOP 5 MPI Functions Waitall Barrier Isend Irecv Init Intel Omni-Path Fabric Usage Interconnect Bandwidth Outgoing: Incerning: Interconnect Packet Rate Outgoing: Incoming:	% 15.83 7.96 4.31 2.25 0.99 AVG, GB/sec 0.87 0.87 0.87 AVG, Million Packets/sec 3.58 3.58	OpenMP Imbalance 10.485 23.61%* of Elapsed Time Memory Footprint Resident Per node: 11 Per rank: 1 Vitual Per node: 134 Per rank: 7	PEAK 747.98 MB 1684 173.23 MB 84 PEAK 77.43 MB 13306 58.94 MB 665	AVG AVG AVG AVG AVG AVG AVG AVG	565	Vectorization 289%* of Packed PP Operations Instruction Mix: SELOPS 0.00% of uOps PFNOPS Packed 250% from DP FP 128-bit: 2.83% 256-bit: 0.00% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 256-bit: 0.00% Scalar: 97.18%* from DP FP 128-bit: 2.83% 258-bit: 0.00% Scalar: 97.18%* PA rith/Mem Rd Instr. Ratic 0.78

APS HTML Report Breakdown - Overview

- Overview shows all areas and relative impact on code performance
- Provides recommendation for next step in performance analysis
- "X" collapses the summary, removing the flags (objective numbers only)

Your application is MPI bound.

This may be caused by high busy wait time inside the library (imbalance), non-optimal communication schema or MPI library settings. Use <u>MPI profiling tools</u> like <u>Intel® Trace Analyzer and Collector</u> to explore performance bottlenecks.

	Current run	Target	Delta
MPI Time	31.40%	<10%	
OpenMP Imbalance	23.61%	<10%	
Memory Stalls	31.05%	<20%	
Vectorization	2.83%	>70%	
I/O Bound	0.00%	<10%	

X

APS HTML Report Breakdown – Parallel Runtimes

• MPI Time

- How much time was spent in MPI calls
- Averaged by ranks with % of Elapsed time
- Available for MPICH-based MPI and OpenMPI

• MPI Imbalance

- Unproductive time spent in MPI library waiting for data
 - Switched off by default
 - Available for Intel MPI with APS_IMBALANCE_TYPE=1
 - Over supported MPISs with APS_IMBALANCE_TYPE=2

OpenMP Imbalance

- Time spent at OpenMP Synchronization Barriers normalized by number of threads
- Available for Intel OpenMP
- Serial time
 - Time spend outside OpenMP regions
 - Available for Intel OpenMP, shared memory applications only

MPI Time 1.33s 10.75%► of Elapsed Time MPI Imbalance 1.13s 9.19%► of Elapsed Time	
TOP 5 MPI Functions	%
Waitall	10.24
Irecv	0.18
Isend	0.06
Barrier	0.03
Reduce	0.02

OpenMP Imbalance 3.44s 42.25% ▲ of Elapsed Time Serial Time 4.45s

APS HTML Report Breakdown – Memory Access

- Memory stalls measurement with breakdown by cache and DRAM
- Average DRAM Bandwidth*
- NUMA ratio
- Xeon Phi (KNL/KNM):
 - back-end stalls with L2-demand access efficiency
 - Average DRAM AND MCDRAM Bandwidth*

*Average DRAM and MCDRAM bandwidth collection is available with Intel driver or perf system wide monitoring enabled on a system 55.40% of pipeline slots Cache Stalls

(intel)

Xeon Phi⁼ Processo

Cache Stalls 61.10% ► of cycles

DRAM Stalls 9.60% of cycles

Average DRAM Bandwidth 85.47 GB/s

NUMA 0.70% of remote accesses

> Back-End Stalls 95.60% ▶ of pipeline slots

> > L2 Hit Bound 0.70% of cycles

> > L2 Miss Bound 3.50% of cycles

Average DRAM Bandwidth 90.30 CB/s

Average MCDRAM Bandwidth 0.01 GB/s

APS HTML Report Breakdown – Vectorization

- Vectorization efficiency based on HW-event statistics with
 - Breakdown by vector/scalar instructions
 - Floating point vs memory instruction ratio

- SIMD Instr. per Cycle
 - Scalar vs. vectorized instructions

FP Instruction Mix

% of <u>Packed SIMD Instr.</u>: 67.60% % of <u>Scalar SIMD Instr.</u>: 32.40%►

Vectorization 41.40% of Packed FP Operations

Instruction Mix:

SP FLOPs 0.00% of uOps

DP FLOPs 17.40% of uOps Packed: 41.40% from DP FP 128-bit: 41.40% 256-bit: 0.00% Scalar: 58.60% from DP FP

Non-FP 82.60% of uOps

FP Arith/Mem Rd Instr. Ratio

FP Arith/Mem Wr Instr. Ratio

(inter) Xeon Phi[®] Processor

APS Command Line Reports - Summary

I	Summary information	
	Application	: heart_demo_pause
	Report creation date	: 2018-05-23 17:10:46
	Number of ranks	: 22
	Aanks per node	: 22
	WW Platform	. T
	No Flation	· SS
	Collector tune	. Driverless Perf sustem-wide counting
	Used statistics	: /sdb1/builds/dnrohoro/anns/Cardiac/Cardiac/build/s
	obed bodorborob	, cost, surres, apronoro, appe, cararao, cararao, surra,
	Your application has significa	nt OnenMP imbalance.
	Use OpenMP profiling tools lik	e Intel(R) VTune(TM) Amplifier to see the imbalance
	Elapsed time: 28	.87 sec
	SP GFLOPS: 42	.89
	CPI Rate: 2	.21
	The CPI value may be too high.	
	This could be caused by such i	ssues as memory stalls, instruction starvation,
	branch misprediction, or long	latency instructions.
	Use Intel(R) VTune(TM) Amplifi	er General Exploration analysis to specify
	particular reasons of high CPI	
	MPI Time: 3	.10 sec 10.75%
	Your application is MPI bound.	Inis may be caused by high busy wait time
	librory settings Furless the	, non-optimal communication schema or API
	MDT profiling tools like Intel	(D) Trees incluser and Collector to evaluate
	nergible performance bottlener	(K) Hace MHaryser and Corrector to explore
	MPI Imbalance: 1	.43 sec 4.94%
	Top 5 MPI functions (avg tim	e):
	Waitall	1.75 sec (6.06 %)
	Barrier	1.20 sec (4.15 %)
	Isend	0.06 sec (0.21 %)
	Init	0.06 sec (0.20 %)
	Irecv	0.02 sec (0.08 %)
	OpenMP Imbalance: 6	.63 sec 22.98%
	The metric value can indicate	significant time spent by threads waiting at
	barriers. Consider using dynam	ic work scheduling to reduce the imbalance where
	possible. Use Intel(R) VTune(T	M) Amplifier HPC Performance Characterization
	analysis to review impalance d	ata distributed by parriers of different lexical
	regions. Nemeru Stelle:	2 90% of minoline clote
	Coche Stalle:	16 00% of cucles
	DRAM Stalle:	0.00% of cycles
	NIMA: % of Remote Accesses:	59.00%
	A significant amount of DRAM 1	oads was serviced from remote DRAM. Wherever
	possible, consistently use dat	a on the same core, or at least the same
	package, as it was allocated o	n.
	Average DRAM Bandwidth:	0.22 GB/s
	FPU utilization:	0.60%
	The metric value indicates that	t the FPU might be underutilized. This can be a
	result of significant fraction	of non-floating point instructions, inefficient
	vectorization because of legac	y vector instruction set or memory access
	pattern issues, or different k	inds of stalls in the code execution. Explore
	Second level metrics to identi	Ty the next steps in FPU usage improvements.
	SF FLOPS per cycle:	0.19 Out of 32

Innlight	<u></u>	• h	eert demo	ne	1120		
Devent of			earc_denio_	10	1.10.46		
Report of	eacion date	: 4	010-03-23	Ξ.	10:40		
Number of	ranks	: 2	2				
Ranks per	node	: 4	2				
OpenMP th	reads number per ran.	k: 4					
HW Platfo	rm	: 1	ntel(R) Xe	or	i(R) Proc	essor code	named Broadwell
Logical c	ore count per node	: 8	8				
Collector	type	: D	riverless	Ρe	erf syste	m-wide cou	nting
Used stat	istics	: a	ps_result_	20	180523		
Elapsed t	ime: 23	3.87	sec				
SP GFLOPS		2.89					
CPI Rate:		2.21					
MPI Time:		3.10	sec		10.7	5*	
MPI Imk	alance:	1.43	sec		4.9	4%	
Top 5 M	IPI functions (avg tim	me):					
- Waj	tall		1.75 sec		(6.06 %		
Bar	rier		1.20 sec		(4.15 %		
Ise	end		0.06 sec		0.21 %	1	
Ini	t.		0.06 sec		1 0.20 %	í	
Tre	CV.		0.02 sec		(0.08 %	í	
OnenMP In	balance:	6.63	sec		22.9	, 8*	
Memory St	alls.				2 80% of	nineline	slots
Cache 9	talle			1	6 00% of	cucles	51005
DDAM St	alle:			-	0.00% of	cucles	
MIIMA · 2	of Demote locasses:				0.000001 :0 nns	Cycico	
iverore	DRAM Bendwidth:				0 22 GB	/ =	
FDII utili	zation:				6022 00	, .	
en s	LOPS per gugle:			۰.	0 10	Out of	3.2
Jr r Voqt	LOFS per cycle.				25 50%	Out or	
VECU VECU	or capacity.				23.30%		
FF 1	.nstruction Mix:					10%	
3	 of 120 bit instru 				2.	10%	
	* OI 120-DIC INSCE	ucci	ons:		<u> </u>	10%	
	<pre>% OI 250-DIC INSCE ************************************</pre>	ucci	uns:			00%	
	or Scalar FP Instr:				97.	90%	
	rith/Mem Rd Instr. R	atio			0.62		
	rith/Mem Wr Instr. R	atio			3.51		
Disk 170 B	ound: U	.00	sec (U.UU	ļ	:)		
Date	read: 5	.3	MB				
Date	written: 13	.1	КВ				
Memory Foc	tprint:						
Resident:							
Per	node:						
	Peak resident set si	ze			1372.98	MB (node 1	0.125.99.54)
	Average resident set	siz	e :		1372.98	MB	
Per	rank:						
	Peak resident set si	ze			149.25	MB (rank O	
	Average resident set	siz	e:		62.41	MB	
Virtual:							
Per	node:						
	Peak memory consumpt	ion			12182.91	MB (node	10.125.99.54)
	Average memory consu	mpti	on :		12182.91	MB	
Per	rank:						
	Peak memory consumpt	ion			593.81	MB (rank	1)
	Average memory consu	mpti	on :		553.77	MB	

Tip:

>aps -report=<my_result_dir> | grep -v "|" eliminating verbose descriptions

APS Command Line Reports – Detailed MPI statistics

aps-report [keys] [options] <result>

- [keys] what to show
- --functions
- --mpi-time-per-rank
- --message-sizes
- --transfers-per-communication
- --transfers-per-rank
- --node-to-node
- --transfers-per-function
- --communicators-list

[options] – how to show

- --rank
- --comm-id
- --details
- --communicators --volume-threshold
- --time-threshold --number-of-lines
- --no-filters
- --communicators-list
- --format

See descriptions with >aps-report command

Please note: some reports are available with non-default MPS_STAT_LEVEL=1

APS Command Line Reports – Detailed MPI statistics (1/4) Report examples

MPI Time per rank

>aps-report --mpi-time-per-rank <result>

MPI Time	e per Rank				
Rank	LifeTime(sec)	MPI Time(sec)	MPI Time(%)	Imbalance(sec)	Imbalance(%)
0007	72.52	14.31	19.74	4.84	6.67
0004	72.53	11.57	15.96	3.26	4.50
0005	72.52	11.40	15.72	3.20	4.42
0006	72.51	11.11	15.32	3.17	4.37
0000	72.49	11.08	15.29	4.33	5.97
0001	72.52	10.95	15.10	3.01	4.15
0002	72.49	10.79	14.88	2.57	3.55
0003	72.50	10.64	14.68	2.50	3.45
=====================================	580.07	91.86	15.84	26.88	4.63
AVG	72.51	11.48	15.84	3.36	4.63

APS Command Line Reports – Detailed MPI statistics (2/4)

• Message Size Summary by all ranks

>aps-report --message-sizes <result>

Message Sizes summa	ary for all ranks		·		
Message size(B)	Volume(MB)	Volume(%)	Transfers	Time(sec)	Time(%)
8	1.49	0.09	195206	27.79	37.93
176	0.41	0.02	2420	27.67	37.78
4	0.00	0.00	1150	15.55	21.22
100264	115.89	6.94	1212	0.27	0.37
98400	113.74	6.81	1212	0.19	0.26
66256	38.29	2.29	606	0.17	0.23
[filtered out 57 1:	ines]				
======================================					
TOTAL	1670.60	100.00	265160	73.25	100.00

APS Command Line Reports – Detailed MPI statistics (3/4)

• Data Transfers for Rank-to-Rank Communication

>aps-report --transfers-per-communication <result>
Requires setting MPS_STAT_LEVEL=4 before collection launch

Rank> Rank 0023> 0024 0025> 0026 0024> 0025 0021> 0022	Volume(MB) 84.35 84.35 84.15 83.84 83.84	Volume(%) 1.56 1.56 1.56 1.56 1.55	Transfers 13477 13477 13477
0023> 0024 0025> 0026 0024> 0025 0021> 0022	84.35 84.35 84.15 83.84 82.42	1.56 1.56 1.56 1.55	13477 13477 13477
0025> 0026 0024> 0025 0021> 0022	84.35 84.15 83.84	1.56 1.56 1.55	13477 13477
0024> 0025 0021> 0022	84.15 83.84 82.42	1.56 1.55	13477
0021> 0022	83.84	1.55	
	00 10	7:00	13477
0022> 0023	03.43	1.54	13477
[filtered out	16 lines]		
0012> 0011	69.60	1.29	13477
0020> 0019	69.29	1.28	13477
0026> 0025	68.78	1.27	13477
0025> 0024	68.38	1.27	13477
0022> 0021	68.38	1.27	13477
[filtered out	17 lines]		
0016> 0015	58.81	1.09	13477
0028> 0027	57.69	1.07	13477
0007> 0008	56.98	1.05	13477
0030> 0031	54.74	1.01	13477
0006> 0007	54.44	1.01	13477
[filtered out	1108 lines]		
=======================================			
TOTAL	5403.22	100.00	1415619
AVG	4.67	0.09	1224

APS Command Line Reports – Detailed MPI statistics (4/4)

• Data Transfers for Rank-to-Rank Communication – UI representation >aps-report --transfers-per-communication --format=html <result>

use "-v" to generate the chart by volume

Requires setting MPS_STAT_LEVEL=4 before collection

Collection Control API

• To measure a particular application phase or exclude initialization/finalization phases use:

MPI:

- Pause: MPI_Pcontrol(0)
- Resume: MPI_Pcontrol(1)

MPI or Shared memory applications:

- Pause: __itt_pause()
- Resume: ___itt_resume()
 - See how to configure the build of your application to use itt API

Tip: use aps "-start-paused" option allows to start application without profiling and skip initialization phase

Data collection selection to reduce overhead

- Use --collection-mode option to limit collection either by MPI or OpenMP tracing or HW-counters
 - Use case: interest in MPI statistics only
 >mpirun -n 512 -ppn 24 aps --collection-mode=mpi <my_MPI_app>
 In this case APS will not collect HW counters less overhead so Memory
 Stalls and FLOPS/FPU Utilization will not be available in reports

Reducing collected data for MPI tracing

• >exprort MPS_STAT_LEVEL <Level>

Level	Information is collected about
1 (default)	MPI functions and their times
2	MPI functions and amount of transmitted data
3	MPI functions, communicators, and message sizes
4	MPI functions, communicators, communication directions and aggregated traffic
5	MPI functions, communicators, message sizes, and communication directions

Summary

Intel[®] VTune[™] Profiler's Application Performance Snapshot is:

- Your entry point for HPC application performance analysis
- Simple and well-structured command line and HTML reports
- Clear next steps for tuning with connection to detailed performance tools
- Tool-of-choice of MPI efficiency analysis at scale

#