
The
Intel® MPI
Library
Michael Steyer, Technical Consulting Engineer, Intel Architecture, Graphics & Software (IAGS)

2IAGS

Refer to https://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization choices in Intel
software products.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance
varies depending on system configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn
more at [intel.com].

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.
Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.
© Intel Corporation

NOTICES AND DISCLAIMERS

IAGS 3

Agenda

1. Intel® MPI Introduction

2. Fabrics

3. Pinning

4. Tuning

1. AutoTuner Hands-on!

5. Numerical Reproducibility

IAGS 4

Optimized MPI Application Performance
▪ Application-specific tuning

▪ Automatic tuning

▪ Support for latest Intel® Xeon® Scalable Processors

Lower Latency and Multi-vendor Interoperability
▪ Industry-leading latency

▪ Performance-optimized support for the fabric capabilities

through OpenFabrics Interfaces (OFI)

Faster MPI Communication
▪ Optimized collectives

Sustainable scalability
▪ Native InfiniBand interface support allows for lower latencies,

higher bandwidth, and reduced memory requirements

Key Updates
▪ Intel® GPU pinning support

▪ Distributed Asynchronous Object Storage (DAOS) support

▪ Intel® Xeon® Platinum processor 92XX optimizations

▪ Mellanox ConnectX: 3/4/5/6 (FDR/EDR/HDR) support enhancements

Intel® MPI Library

Achieve optimized MPI performance

Omni-Path
Ethernet
, IPoIB,
IPoOPA

InfiniBand
iWarp,
RoCE

Shared
Memory

…Other
Networks

Intel® MPI Library

Fabrics

Applications

CrashCFD Climate OCD BIO Other...

Develop applications for one fabric

Select interconnect fabric at runtime

Cluster

Intel® MPI Library – One MPI Library to
develop, maintain & test for multiple fabrics

⬅️ ⌂

IAGS 5

Fabrics

IAGS 6

Intel® MPI library 2018 SW stack

HW

MPI low level transport

MPI high level abstraction layer CH3

DAPL
RC

DAPL
UD

OFA TCP TMI

PSM2 PSM

Each transport layer required independent optimization

Infiniband Eth, IPoIB,
IPoOPA

OPA
iWarp,
RoCE

usNICAries TrueScale

IAGS 7

Intel® MPI library 2019+ SW stack

HW

OFI provider

MPI low level transport

MPI high level abstraction layer CH4

OFI

gni mlx verbs efa tcp psm2 psm

Infiniband
Eth, IPoIB,

IPoOPA
Intel OPA

iWarp,
RoCE

AWS EFAAries TrueScale

IMPI 2019 U8 is shipped with a prebuilt libfabric (mlx, psm2, verbs, and tcp providers)

OFI community

http://libfabric.org/

http://libfabric.org/

IAGS 8

Support for InfiniBand* Fabrics

▪ LibFabric verbs currently supports only the RC mode

▪ Stability and performance via verbs is sub-optimal

▪ IMPI 2019 U5 introduces custom (IMPI specific) libfabric mlx provider

▪ Hardware support for Dynamic Connection (DC) mode introduced with
EDR* and newer

Requirements

▪ Intel® MPI Library 2019 Update 5 or higher

▪ Mellanox UCX* Framework v1.4 or higher (Mellanox* OFED)

IAGS 10

Pinning

IAGS 11

Process Pinning with Intel MPI

Default Intel Library MPI pinning Impact

I_MPI_PIN=on Pinning Enabled

I_MPI_PIN_MODE=pm Use Hydra for Pinning

I_MPI_PIN_RESPECT_CPUSET=on Respect process affinity mask

I_MPI_PIN_RESPECT_HCA=on Pin according to HCA socket

I_MPI_PIN_CELL=unit Pin on all logical cores

I_MPI_PIN_DOMAIN=auto:compact Pin size #lcores/#ranks : compact

I_MPI_PIN_ORDER=compact Order domains adjacent

IAGS 12

The Intel MPI Pinning Simulator
https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html

• Starting with IMPI 2019U8

• Web- based interface -

• Platform configuration options

• load configuration by importing
cpuinfo (IMPI utility) output

• or manually define platform
configuration

• Provides IMPI environment
variable settings for desired
pinning

IAGS 13

Custom Mask (left) and 4 Socket Config (right)

IAGS 14

Tuning

IAGS 15

Intel MPI Tuning

• Intel MPI Library’s out of box (OOB) tuning is designed to be widely applicable

to several applications, workloads and topologies. However, further tuning is

still profitable for,
▪ untested number of total ranks and ranks per node combination

▪ non-standard message sizes (e.g. 512 KB < msg_size < 1024 KB)

▪ new network topologies

▪ untested interconnects (e.g. Cray)

▪ applications with high imbalance

▪ non-standard/user defined datatypes

▪ uncommon collectives (e.g. reduce_scatter)

• Achieving even small performance gains without code changes/rebuilding for

the most time-consuming applications on a cluster over its service life represent

significant savings.

IAGS 16

Intel MPI Tuning

CPU
programming

model

IMPI 2018 and before IMPI 2019 and beyond

3. Autotuner
4. mpitune_fast

1. mpitune
2. Fast tuner

IAGS 17

Introduction

Tuning utility

Parameter

MPItune Fast Tuner Autotuner mpitune_fast

Tuning overhead

Ease of use

Application tuning

Microbenchmark tuning

Adoption in production

environments

Good

Ok

Bad

IAGS 18

Autotuner – dynamic tuning

MPI_Allreduce 3rd invocation: 0th preset of Allreduce

MPI_Allreduce 4th invocation: 1st preset of Allreduce

…
MPI_Allreduce k-th invocation: nth preset of Allreduce

MPI_Allreduce (k+1)-th invocation: Best preset of Allreduce

MPI_Allreduce N-th invocation: Best preset of Allreduce

…

E
xe

cu
ti

o
n

 t
im

e
li

n
e

▪ No extra calls. Pure application driven tuning

▪ The procedure is performed for each message size and for each communicator

MPI_Allreduce

MPI_Allreduce 1st invocation: Warm-up (not timed)

2nd invocation: OOB tuning (timed)

IAGS 19

Environment variables – Main flow control

I_MPI_TUNING_MODE=<auto|auto:application|auto:cluster> (disabled by default)

I_MPI_TUNING_AUTO_ITER_NUM=<number> Tuning iterations number (1 by default).

I_MPI_TUNING_AUTO_SYNC=<0|1> Call internal barrier on every tuning iteration

(disabled by default)

Guidance on I_MPI_TUNING_AUTO_ITER_NUM

Min invocations required for a certain collective call for a certain message size in a

certain communicator = I_MPI_TUNING_AUTO_WARMUP_ITER_NUM + [(range+1)*

I_MPI_TUNING_AUTO_ITER_NUM]

IAGS 21

Get started with the autotuner

1. Step 1 – Enable autotuner and store results (store is optional):

• $ export I_MPI_TUNING_MODE=auto

• $ export I_MPI_TUNING_BIN_DUMP=./tuning_results.dat

• $ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -time 4800

2. Step 2 – Use the results of autotuner for consecutive launches (optional):

• $ unset I_MPI_TUNING_MODE

• $ export I_MPI_TUNING_BIN=./tuning_results.dat

• $ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -time 4800

NOTE: You may adjust number of tuning iterations (minimal overhead/maximum precision balance) and
use autotuner with every application run without results storing.

IAGS 23

Autotuner Example

Configuration possibly slowing down tuning run in favour of results.:

• I_MPI_TUNING_MODE=auto

• I_MPI_TUNING_AUTO_WARMUP_ITER_NUM=1

• I_MPI_TUNING_AUTO_ITER_NUM=64

• I_MPI_TUNING_AUTO_SYNC=1

• I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD=4194304

• I_MPI_TUNING_AUTO_STORAGE_SIZE=4194304

• I_MPI_TUNING_BIN_DUMP=./my_tuning_file.dat

Apply tuning results via

• I_MPI_TUNING_BIN=./my_tuning_file.dat

IAGS 25

Merging tuning files

It is possible to merge tuning files over time and generate a master tuning file
if required.

$ I_MPI_TUNING_BIN=tuned1.dat,tuned2.dat

I_MPI_TUNING_BIN_DUMP=./tuned_merged.dat mpirun -n 1 ./dummy_mpi_app

• In case of conflicts between tuning files, left most one gets higher priority.
• IMPI runtime accepts multiple tuning files through I_MPI_TUNING_BIN.

IAGS 26

mpitune_fast

• tunes the Intel® MPI Library to the cluster configuration using
autotuner functionality.

• iteratively launches the Intel® MPI Benchmarks with the proper
autotuner environment and generates a tuning file.

• supports Slurm and LSF job managers. mpitune_fast
automatically finds job allocated hosts and performs launches.

• Example

$ mpitune_fast -f ./hostfile -c alltoall,allreduce,barrier

Autotuner mpitune_fast
Application specific tuning Cluster wide tuning

Regular users System administrators

Scope

Intended for

IAGS 28

Hands-On Intel MPI Autotuner

1) $ cp -r /lrz/sys/courses/hcow1w21/impi_labs . && cd impi_labs

2) $./compile.sh && sbatch impi_at.sh

3) Take some time to study impi_at.sh

4) Wait for the job to finish, study the output files

5) Feel free to change the benchmark or the tuning parameters for
your own experiments

IAGS 29

Numerical Reproducibility

IAGS 30

Motivation: Numerical Reproducibility

program rep
use mpi
implicit none
integer :: n_ranks,rank,errc
real*8 :: global_sum,local_value

call MPI_Init(errc)
call MPI_Comm_size(MPI_COMM_WORLD, n_ranks, errc)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, errc)

local_value = 2.0 ** -60

if(rank.eq.15) local_value= +1.0
if(rank.eq.16) local_value= -1.0

call
MPI_Reduce(local_value,global_sum,1,MPI_DOUBLE_PRECISION, &

MPI_SUM,0,MPI_COMM_WORLD, errc)

if(rank.eq.0) write(*,'(f22.20)') global_sum

call MPI_Finalize(errc)
end program rep

$ cat ${machinefile_A}
ehk248:16
ehs146:16
ehs231:16
ehs145:16
$ cat ${machinefile_B}
ehk248:32
ehs146:32
ehs231:0
ehs145:0
$ mpiifort -fp-model strict –o ./rep.x ./rep.f90

$ export I_MPI_ADJUST_REDUCE=3
$ mpirun -n 64 -machinefile ${machinefile_A} ./rep.x
0.00000000000000000000
$ mpirun -n 64 -machinefile ${machinefile_B} ./rep.x
0.00000000000000004163

$ export I_MPI_ADJUST_REDUCE=1
$ mpirun -n 64 -machinefile ${machinefile_A} ./rep.x
0.00000000000000004163
$ mpirun -n 64 -machinefile ${machinefile_B} ./rep.x
0.00000000000000004163

IAGS 31

Conditional Numerical Reproducibility with IMPI

I_MPI_CBWR – Conditional BitWise Reproducibility

Repeatable Provides consistent results if the application is launched under exactly the same conditions –

repeating the run on the same machine- and configuration.

Reproducible

(conditionally)

Provides consistent results even if the distribution of ranks differs, while the number of ranks (&

#threads for hybrid applications) involved has to be stable. Also, the runtime including the

microarchitecture has to be consistent.

I_MPI_CBWR
<arg>

CBWR compatibility
mode

Description

0 None Do not use CBWR in a library-wide mode. CNR-safe communicators may be created
with MPI_Comm_dup_with_info explicitly. This is the default value.

1 Weak mode Disable topology aware collectives. The result of a collective operation does not depend on the rank placement.
The mode guarantees results reproducibility across different runs on the same cluster (independent of the rank
placement).

2 Strict mode Disable topology aware collectives, ignore CPU architecture, and interconnect during algorithm selection. The
mode guarantees results reproducibility across different runs on different clusters (independent of the rank
placement, CPU architecture, and interconnection)

IAGS 32

QUESTIONS?

33

