
1

Fundamentals of Accelerated
Computing with CUDA C/C++

Dr. Momme Allalen | LRZ | 17.05.2022

Overview

• The workshop is co-organized by LRZ, CSC, IT4Innovations and NVIDIA Deep Learning Institute (DLI) for the
Partnership for Advanced Computing in Europe (PRACE).

• NVIDIA Deep Learning Institute (DLI) offers hands-on training for developers, data scientists, and researchers
looking to solve challenging problems with deep learning.

• This 4-days workshop offered for the first time online combines lectures about fundamentals of Deep Learning
for Multiple Data Types and Multi-GPUs with lectures about Accelerated Computing with OpenACC and
CUDA C/C++

• Learn how to train and deploy a neural network to solve real-world problems, how to generate effective
descriptions of content within images and video clips, how to effectively parallelize training of deep neural
networks on Multi-GPUs and how to accelerate your applications with OpenACC and CUDA C/C++.

• The lectures are interleaved with many hands-on sessions using Jupyter Notebooks. The exercises will be
done on a fully configured GPU-accelerated workstation in the cloud.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Fundamentals of Accelerated Computing with
CUDA C/C++

• You learn the basics of CUDA C/C++ by:

• Accelerating CPU-only applications to run their latent parallelism on GPUs.
• Utilizing essential CUDA memory management techniques to optimize accelerated

applications.
• Exposing accelerated application potential for concurrency and exploiting it with

CUDA streams.
• Leveraging command line and visual profiling to guide and check your work.
• Upon completion, you’ll be able to accelerate and optimize existing C/C++ CPU-only

applications using the most essential CUDA tools and techniques. You’ll understand
an iterative style of CUDA development that will allow you to ship accelerated
applications fast.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Tentative Agenda

10:00-10:15 Intro - CUDA C/C++
10:15-12:00 Accelerating Applications with CUDA C/C++

12:00-13:00 Lunch Break
13:00-14:20 Managing Accelerated Application Memory

with CUDA Unified Memory and nsys

14:20-14:30 Coffee Break

14:30-15:45 Asynchronous Streaming and Visual Profiling for Accelerated
Applications with CUDA C/C++

15:45-16:00 Q&A, Final Remarks

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Workshop Webpage

• Lecture material will be made available under:
• https://tinyurl.com/dli-workshop-lrz22

• Access CUDA C/C++ Code:
• See the: Chat Window

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

https://tinyurl.com/dli-workshop-lrz22

Training Setup

• To get started, follow these steps:
• Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in with my

NVIDIA Account" and then '"Create Account".

• If you use your own laptop, make sure that WebSockets works for you:
Test your Laptop at http://websocketstest.com
• Under ENVIRONMENT, confirm that '"WebSockets" is checked yes.
• Under WEBSOCKETS (PORT 80]. confirm that "Data Receive", "Send", and "Echo Test" are

checked yes.
• lf there are issues with WebSockets, try updating your browser.

We recommend Chrome, Firefox, or Safari for an optimal performance.

• Visit http://courses.nvidia.com/dli-event and enter the event code provided by the instructor.
• You're ready to get started.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

http://courses.nvidia.com/join
http://websocketstest.com/
http://courses.nvidia.com/dli-event

And now …

Enjoy the course!

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need to program for GPU?

Moore‘s law is dead !!

The long-held notion that the processing
power of computers increases exponentially
every couple of years has hit its limit

The free lunch is over ..

Future is parallel !

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need to program for GPU?

Typical example Intel chip: Core i7 7th Gen
§ 4*CPU cores
§ with hyperthreading
§ Each with 8-wide AVX instructions
§ GPU with 1280 processing elements

Intel Kaby Lake-S

Programming on chip:
- Serial C/C++ .. Code alone only takes advantage of a very
small amount of the available resources of the chip
- Using vectorisation allows you to fully utilise the resources of
a single hyper-thread
- Using multi-threading allows you to fully utilise all CPU cores

GPU need to be used?
Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need to program for GPU?

Using heterogeneous programming allows you to
dispatch and fully utilise the entire chip.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need to program for GPU?

GPU programming:

- Limited only to a specific domain
- Separate source solutions
- Verbose low Level APIs

• oneAPI & DPC++
• HIP
• CUDA C/C++
• Kokkos
• HPX
• OpenCL
• SYCL …

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need GPUs on HPC?

• Increase in
parallelism

• Today almost a
similar amount of
efforts on using
CPUs vs GPUs
by real
applications

• GPUs well-suited
to deep learning.

NVIDIA Software uses CUDA

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need “accelerators” on HPC?
Top500.org

NVIDIA
GPUs

www.top500.org

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Why do we need “accelerators” on HPC?
Green top500

NVIDIA
GPUs

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

GPU vs CPU Architecture

•GPU devotes more transistors data processing rather than data caching and flow
control. Same problem executed on many data elements in parallel.

* Large number of small cores
* Less control structured and
more processing units
*Less flexible program model
*There’re more restrictions but
Requires a lot less power

* Small number of large cores
* More control structures and
less processing units
*Optimised for latency which
requires quite a lot of power

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

25Fundamentals of Accelerated Computing with CUDA C/C++; Allalen@lrz.de

GPU vs CPU Architecture
Introduction

•GPU devotes more transistors data processing rather than data caching and flow
control. Same problem executed on many data elements in parallel.

GPU vs CPU Architecture
Introduction

•GPU devotes more transistors data processing rather than data caching and flow
control. Same problem executed on many data elements in parallel.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

GPU vs CPU Architecture
Introduction

•Hopper GPU (H100) with over 80 Billion Transistors on an 814 mm²
•80 GB memory
•First support PCIe Gen5 and utilize the HBM3 enabling 3TB/s.
•30Tflops of peak FP64, 60Tflops with FP64 tensor-core or 32FP performance.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

What and Why CUDA C/C++ ?

- CUDA = ”Compute Unified Device Architecture”
* Introduced and released in 2006 for the GeForce 8800*

• GPU = dedicated super-threaded, massively data parallel - co-processor

C/C++ plus a few simple extensions
- Compute oriented drivers, language, and tools

Allows HPC programmers to model problems and achieve up to 100x performance.

Documentations:
CUDA_C_Programming_Guide.pdf
CUDA_C_Getting_Started.pdf
CUDA_C_Toolkit_Release.pdf

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

CUDA Programming Model

• A kernel is executed as a grid of thread
blocks

• All threads share data memory space
• A thread block is a batch of threads that

can cooperate with each other by:
• Synchronizing their execution
• Efficiently sharing data through a low

latency shared memory
• Tow threads from two different blocks

cannot cooperate
• Sequential code launches

asynchronously GPU kernels

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

CUDA C/C++

Host: The CPU and ist memory
(host memory)

Terminology:

Device

Device: The GPU and ist
memory (device memory)

Host

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

CUDA Devices and Threads
Execution Model

GPU: Massive Parallel Region
Device

Host

Host

CPU: Serial/&Multicore Region

CPU: Serial/&Multicore Region

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

CUDA C/C++

The CPU allocates memory on the GPU
The CPU copies data from CPU to GPU
The CPU launches kernels on the GPU
The CPU copies data to CPU from GPU

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

NVCC Compiler

• NVIDIA provides a CUDA-C compiler

à nvcc

• NVCC splits your code in 2: Host code and
Device code.

• Device code sent to NVIDIA device compiler.

• nvcc is capable of linking
together both host and device
code into a single executable.

• Convention: C++ source files
containing CUDA syntax are

typically given the extension .cu.

• For „.cpp“ extension use:
nvcc –x cu –arch=sm_70 –o exe code.cpp

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

36

Lab1: Accelerating Applications with CUDA C/C++
Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.lrz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Lab1: Accelerating Applications with
CUDA C/C++

Prerequisites

You should already be able to:

• Declare variables, write loops, and use
if / else statements in C.

• Define and invoke functions in C.

• Allocate arrays in C.

• No previous CUDA knowledge is
required.

Objectives

By the time you complete this lab, you will be able to:

• Write, compile, and run C/C++ programs that both call
CPU functions and launch GPU kernels.

• Control parallel threadhierarchy using execution
configuration.

• Refactor serial loops to execute their iterations
in parallel on a GPU.

• Allocate and free memory available to both CPUs and
GPUs.

• Handle errors generated by CUDA code.
• Accelerate CPU-only applications.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

nvc; nvc++ Compiler

nvc :is a C11 compiler for NVIDIA GPUs and AMD, Intel,
OpenPOWER, and Arm CPUs. It invokes the C compiler,
assembler, and linker for the target processors with options derived
from its command line arguments. nvc supports ISO C11, supports
GPU programming with OpenACC, and supports multicore CPU
programming with OpenACC and OpenMP.

nvc++ : is a C++17 compiler for NVIDIA GPUs and AMD, Intel,
OpenPOWER, and Arm CPUs. It invokes the C++ compiler, assembler,
and linker for the target processors with options derived from its command
line arguments. nvc++ supports ISO C++17, supports GPU and multicore
CPU programming with C++17 parallel algorithms, OpenACC, and
OpenMP.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

nvfortran, nvcc Compiler

nvfortran : is a Fortran compiler for NVIDIA GPUs and AMD, Intel,
OpenPOWER, and Arm CPUs. It invokes the Fortran compiler, assembler,
and linker for the target processors with options derived from its command line
arguments. nvfortran supports ISO Fortran 2003 and many features of ISO Fortran
2008, supports GPU programming with CUDA Fortran, and GPU and multicore
CPU programming with ISO Fortran parallel language features,
OpenACC, and OpenMP.

nvcc : is the CUDA C and CUDA C++ compiler driver for NVIDIA GPUs.
nvcc accepts a range of conventional compiler options, such as for defining
macros and include/library paths, and for steering the compilation process. nvcc
produces optimized code for NVIDIA GPUs and drives a supported host compiler
for AMD, Intel, OpenPOWER, and Arm CPUs.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

40

Lab2: Managing Accelerated Application Memory
with CUDA Unified Memory and nsys

Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.lrz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Lab2: Managing Accelerated Application Memory
with CUDA Unified Memory and nsys

Prerequisites

You should already be able to:

• Write, compile, and run C/C++
programs that both call CPU functions and

launch GPU kernels.

• Control parallel thread hierarchy using
execution configuration.

• Refactor serial loops to execute their
iterations in parallel on a GPU.

• Allocate and free Unified Memory.

Objectives

By the time you complete this lab, you will be able to:
• Use the NVIDIA Command Line Profiler (nprof) to

profile accelerated application performance.
• Understanding of Streaming Multiprocessors to

optimize execution configurations.
• Understand the behavior of Unified Memory with

regard to page faulting and data migrations.
• Use asynchronous memory prefetching to reduce

page faults and data migrations for increased
performance.

• Employ an iterative development cycle to rapidly
accelerate and deploy applications.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

CUDA® PROFILING TOOLS

nvvp: NVIDIA visual profiler
nvprof: tool to understand and optimize the performance of your CUDA,

OpenACC or OpenMP applications,
Application level opportunities
Overall application performance

Overlap CPU and GPU work, identify the bottlenecks (CPU or GPU)
Overall GPU utilization and efficiency

-Overlap compute and memory copies
-Utilize compute and copy engines effectively.

Kernel level opportunities
• Use memory bandwidth efficiently
• Use compute resources efficiently
• Hide instruction and memory latency

There are more features, example for Dependency Analysis
Command: nvprof --dependency-analysis --cpu-thread-tracing on ./executable_cuda

Nsight Systems
Nsight Compute

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

NSIGHT PRODUCT FAMILY

Standalone Performance Tools:

Ns- Systems – System-wide application algorithm tuning

Ns- Compute – Debug/&Profile specific CUDA kernels

Ns- Graphics – Analyze/&Optimize specific graphics workloads

IDE Plugins
Nsight Eclipse Edition/Visual Studio – editor, debugger, some perf analysis

Docs/product: https://developer.nvidia.com/nsight-systems

Nsight
Graphics

Nsight
Compute

Nsight
Systems

Nvprof will be replaced with nsys –profile=true

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

NSIGHT SYSTEMS

Docs/product: https://developer.nvidia.com/nsight-systems

System-wide application algorithm tuning
Multi-process tree support

Locate optimization opportunities
Visualize millions of events on a very fast GUI timeline
Or gaps of unused CPU and GPU time

Balance your workload across multiple CPUs and GPUs
CPU algorithms, utilization, and thread state
GPU streams, kernels, memory transfers, etc

Multi-platform: Linux & Windows, x86-64, Tegra, Power, MacOSX (host only)

GPUs: Volta, Turing

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

NSIGHT COMPUTE

CUDA Kernel profiler

Docs/product: https://developer.nvidia.com/nsight-systems

Targeted metric sections for various performance aspects (Debug/&Profile)

Very high freq GPU perf counter, customizable data collection and presentation
(tables, charts ..,)

Python-based rules for guided analysis (or postprocessing)

GPUs: Volta, Turing, Amper

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

46

Docs/product: https://developer.nvidia.com/nsight-systems
Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.06.2020

NSIGHT PRODUCT FAMILY

Nsight Graphics
Detailed frame/render performance

Nsight Compute
Detailed CUDA kernel performance

NVIDIA Nsight Systems

Re-check overall
performance

Dive into CUDA
kernels by using
metrics/counter
collection

Re-check overall
performance

Nsight Systems - Analyze application algorithm system-wide
Nsight Compute - Debug/optimize CUDA kernel
Nsight Graphics - Debug/optimize graphics workloads

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

NVIDIA Tools Extension API Library (NVTX)

void Wait(int waitMilliseconds)
{

nvtxNameOsThread(“MAIN”);
nvtxRangePush(__FUNCTION__);
nvtxMark(>"Waiting...");
Sleep(waitMilliseconds);
nvtxRangePop();

}
int main(void)
{

nvtxNameOsThread("MAIN");
nvtxRangePush(__FUNCTION__);
Wait();
nvtxRangePop();

}

The NVIDIA Tools Extension SDK (NVTX) is a C-based Application Programming Interface (API) for annotating
events, code ranges, and resources in your applications.
Applications which integrate NVTX can use NVIDIA Nsight VSE to capture and visualize these events and ranges.

https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html

nsys profile –t nvtx --stats=true …

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

49

Lab3: Asynchronous Streaming, and Visual Profiling
with CUDA C/C++
Dr. Momme Allalen Leibniz Computing Centre, Munich Germany - www.lrz.de
Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Lab3: Asynchronous Streaming, and Visual Profiling
With CUDA C/C++

Prerequisites

To get the most out of this lab you should already be
able to:
• Write, compile, and run C/C++ programs that both call

CPU functions and launch GPU kernels.
• Control parallel thread hierarchy using execution

configuration.
• Refactor serial loops to execute their iterations in parallel

on a GPU.
• Allocate and free CUDA Unified Memory.
• Understand the behaviour of Unified Memory with
regard to page faulting and data migrations.
• Use asynchronous memory prefetching to reduce
page faults and data migrations.

Objectives

By the time you complete this lab you will be
able to:

• Use the Nsight Systems to visually profile
the timeline of GPU-accelerated CUDA

applications.
• Use Nsight Systems to identify, and exploit,

optimization opportunities in GPU-
accelerated CUDA applications.

• Utilize CUDA streams for concurrent kernel
execution in accelerated applications.

• (Optional Advanced Content) Use manual
memory allocation, including allocating

pinned memory, in order to asynchronously
transfer data in concurrent CUDA streams.

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Multiple Streams

Overlap copy
with kernel

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

Multiple Streams
for (int i=0; i<FULL_SIZE; i+= N*2) {
// copy the locked memory to the device, async
cudaMemcpyAsync(dev_a0, host_a+i, N * sizeof(int),cudaMemcpyHostToDevice, stream0);
cudaMemcpyAsync(dev_b0, host_b+i, N * sizeof(int),cudaMemcpyHostToDevice, stream0);

kernel<<<N/256,256,0,stream0>>>(dev_a0, dev_b0, dev_c0);

// copy the data from device to locked memory
cudaMemcpyAsync(host_c+i, dev_c0, N * sizeof(int),cudaMemcpyDeviceToHost, stream0);
// copy the locked memory to the device, async
cudaMemcpyAsync(dev_a1,host_a+i+N, N * sizeof(int),cudaMemcpyHostToDevice, stream1);
cudaMemcpyAsync(dev_b1,host_b+i+N, N * sizeof(int),cudaMemcpyHostToDevice, stream1);

kernel<<<N/256,256,0,stream1>>>(dev_a1, dev_b1, dev_c1);

// copy the data from device to locked memory
cudaMemcpyAsync(host_c+i+N,dev_c1, N * sizeof(int),cudaMemcpyDeviceToHost, stream1);
}

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

53

THANK YOU

Instructor: Dr. Momme Allalen
www.nvidia.com/dli

Fundamentals of Accelerated Computing with CUDA C/C++ | LRZ | 17.05.2022; Allalen@lrz.de

